mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-11-04 09:57:43 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			383 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			383 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import math
 | 
						|
from typing import Callable
 | 
						|
 | 
						|
import pytest
 | 
						|
 | 
						|
from PIL import Image, ImageTransform
 | 
						|
 | 
						|
from .helper import assert_image_equal, assert_image_similar, hopper
 | 
						|
 | 
						|
 | 
						|
class TestImageTransform:
 | 
						|
    def test_sanity(self) -> None:
 | 
						|
        im = hopper()
 | 
						|
 | 
						|
        for transform in (
 | 
						|
            ImageTransform.AffineTransform((1, 0, 0, 0, 1, 0)),
 | 
						|
            ImageTransform.PerspectiveTransform((1, 0, 0, 0, 1, 0, 0, 0)),
 | 
						|
            ImageTransform.ExtentTransform((0, 0) + im.size),
 | 
						|
            ImageTransform.QuadTransform(
 | 
						|
                (0, 0, 0, im.height, im.width, im.height, im.width, 0)
 | 
						|
            ),
 | 
						|
            ImageTransform.MeshTransform(
 | 
						|
                [
 | 
						|
                    (
 | 
						|
                        (0, 0) + im.size,
 | 
						|
                        (0, 0, 0, im.height, im.width, im.height, im.width, 0),
 | 
						|
                    )
 | 
						|
                ]
 | 
						|
            ),
 | 
						|
        ):
 | 
						|
            assert_image_equal(im, im.transform(im.size, transform))
 | 
						|
 | 
						|
    def test_info(self) -> None:
 | 
						|
        comment = b"File written by Adobe Photoshop\xa8 4.0"
 | 
						|
 | 
						|
        with Image.open("Tests/images/hopper.gif") as im:
 | 
						|
            assert im.info["comment"] == comment
 | 
						|
 | 
						|
            transform = ImageTransform.ExtentTransform((0, 0, 0, 0))
 | 
						|
            new_im = im.transform((100, 100), transform)
 | 
						|
        assert new_im.info["comment"] == comment
 | 
						|
 | 
						|
    def test_palette(self) -> None:
 | 
						|
        with Image.open("Tests/images/hopper.gif") as im:
 | 
						|
            transformed = im.transform(
 | 
						|
                im.size, Image.Transform.AFFINE, [1, 0, 0, 0, 1, 0]
 | 
						|
            )
 | 
						|
            assert im.palette.palette == transformed.palette.palette
 | 
						|
 | 
						|
    def test_extent(self) -> None:
 | 
						|
        im = hopper("RGB")
 | 
						|
        (w, h) = im.size
 | 
						|
        transformed = im.transform(
 | 
						|
            im.size,
 | 
						|
            Image.Transform.EXTENT,
 | 
						|
            (0, 0, w // 2, h // 2),  # ul -> lr
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
        )
 | 
						|
 | 
						|
        scaled = im.resize((w * 2, h * 2), Image.Resampling.BILINEAR).crop((0, 0, w, h))
 | 
						|
 | 
						|
        # undone -- precision?
 | 
						|
        assert_image_similar(transformed, scaled, 23)
 | 
						|
 | 
						|
    def test_quad(self) -> None:
 | 
						|
        # one simple quad transform, equivalent to scale & crop upper left quad
 | 
						|
        im = hopper("RGB")
 | 
						|
        (w, h) = im.size
 | 
						|
        transformed = im.transform(
 | 
						|
            im.size,
 | 
						|
            Image.Transform.QUAD,
 | 
						|
            (0, 0, 0, h // 2, w // 2, h // 2, w // 2, 0),  # ul -> ccw around quad
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
        )
 | 
						|
 | 
						|
        scaled = im.transform(
 | 
						|
            (w, h),
 | 
						|
            Image.Transform.AFFINE,
 | 
						|
            (0.5, 0, 0, 0, 0.5, 0),
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
        )
 | 
						|
 | 
						|
        assert_image_equal(transformed, scaled)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "mode, expected_pixel",
 | 
						|
        (
 | 
						|
            ("RGB", (255, 0, 0)),
 | 
						|
            ("RGBA", (255, 0, 0, 255)),
 | 
						|
            ("LA", (76, 0)),
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    def test_fill(self, mode: str, expected_pixel: tuple[int, ...]) -> None:
 | 
						|
        im = hopper(mode)
 | 
						|
        (w, h) = im.size
 | 
						|
        transformed = im.transform(
 | 
						|
            im.size,
 | 
						|
            Image.Transform.EXTENT,
 | 
						|
            (0, 0, w * 2, h * 2),
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
            fillcolor="red",
 | 
						|
        )
 | 
						|
        assert transformed.getpixel((w - 1, h - 1)) == expected_pixel
 | 
						|
 | 
						|
    def test_mesh(self) -> None:
 | 
						|
        # this should be a checkerboard of halfsized hoppers in ul, lr
 | 
						|
        im = hopper("RGBA")
 | 
						|
        (w, h) = im.size
 | 
						|
        transformed = im.transform(
 | 
						|
            im.size,
 | 
						|
            Image.Transform.MESH,
 | 
						|
            (
 | 
						|
                (
 | 
						|
                    (0, 0, w // 2, h // 2),  # box
 | 
						|
                    (0, 0, 0, h, w, h, w, 0),  # ul -> ccw around quad
 | 
						|
                ),
 | 
						|
                (
 | 
						|
                    (w // 2, h // 2, w, h),  # box
 | 
						|
                    (0, 0, 0, h, w, h, w, 0),  # ul -> ccw around quad
 | 
						|
                ),
 | 
						|
            ),
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
        )
 | 
						|
 | 
						|
        scaled = im.transform(
 | 
						|
            (w // 2, h // 2),
 | 
						|
            Image.Transform.AFFINE,
 | 
						|
            (2, 0, 0, 0, 2, 0),
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
        )
 | 
						|
 | 
						|
        checker = Image.new("RGBA", im.size)
 | 
						|
        checker.paste(scaled, (0, 0))
 | 
						|
        checker.paste(scaled, (w // 2, h // 2))
 | 
						|
 | 
						|
        assert_image_equal(transformed, checker)
 | 
						|
 | 
						|
        # now, check to see that the extra area is (0, 0, 0, 0)
 | 
						|
        blank = Image.new("RGBA", (w // 2, h // 2), (0, 0, 0, 0))
 | 
						|
 | 
						|
        assert_image_equal(blank, transformed.crop((w // 2, 0, w, h // 2)))
 | 
						|
        assert_image_equal(blank, transformed.crop((0, h // 2, w // 2, h)))
 | 
						|
 | 
						|
    def _test_alpha_premult(
 | 
						|
        self, op: Callable[[Image.Image, tuple[int, int]], Image.Image]
 | 
						|
    ) -> None:
 | 
						|
        # create image with half white, half black,
 | 
						|
        # with the black half transparent.
 | 
						|
        # do op,
 | 
						|
        # there should be no darkness in the white section.
 | 
						|
        im = Image.new("RGBA", (10, 10), (0, 0, 0, 0))
 | 
						|
        im2 = Image.new("RGBA", (5, 10), (255, 255, 255, 255))
 | 
						|
        im.paste(im2, (0, 0))
 | 
						|
 | 
						|
        im = op(im, (40, 10))
 | 
						|
        im_background = Image.new("RGB", (40, 10), (255, 255, 255))
 | 
						|
        im_background.paste(im, (0, 0), im)
 | 
						|
 | 
						|
        hist = im_background.histogram()
 | 
						|
        assert 40 * 10 == hist[-1]
 | 
						|
 | 
						|
    def test_alpha_premult_resize(self) -> None:
 | 
						|
        def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
 | 
						|
            return im.resize(sz, Image.Resampling.BILINEAR)
 | 
						|
 | 
						|
        self._test_alpha_premult(op)
 | 
						|
 | 
						|
    def test_alpha_premult_transform(self) -> None:
 | 
						|
        def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
 | 
						|
            (w, h) = im.size
 | 
						|
            return im.transform(
 | 
						|
                sz, Image.Transform.EXTENT, (0, 0, w, h), Image.Resampling.BILINEAR
 | 
						|
            )
 | 
						|
 | 
						|
        self._test_alpha_premult(op)
 | 
						|
 | 
						|
    def _test_nearest(
 | 
						|
        self, op: Callable[[Image.Image, tuple[int, int]], Image.Image], mode: str
 | 
						|
    ) -> None:
 | 
						|
        # create white image with half transparent,
 | 
						|
        # do op,
 | 
						|
        # the image should remain white with half transparent
 | 
						|
        transparent, opaque = {
 | 
						|
            "RGBA": ((255, 255, 255, 0), (255, 255, 255, 255)),
 | 
						|
            "LA": ((255, 0), (255, 255)),
 | 
						|
        }[mode]
 | 
						|
        im = Image.new(mode, (10, 10), transparent)
 | 
						|
        im2 = Image.new(mode, (5, 10), opaque)
 | 
						|
        im.paste(im2, (0, 0))
 | 
						|
 | 
						|
        im = op(im, (40, 10))
 | 
						|
 | 
						|
        colors = im.getcolors()
 | 
						|
        assert colors is not None
 | 
						|
        assert sorted(colors) == sorted(
 | 
						|
            (
 | 
						|
                (20 * 10, opaque),
 | 
						|
                (20 * 10, transparent),
 | 
						|
            )
 | 
						|
        )
 | 
						|
 | 
						|
    @pytest.mark.parametrize("mode", ("RGBA", "LA"))
 | 
						|
    def test_nearest_resize(self, mode: str) -> None:
 | 
						|
        def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
 | 
						|
            return im.resize(sz, Image.Resampling.NEAREST)
 | 
						|
 | 
						|
        self._test_nearest(op, mode)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("mode", ("RGBA", "LA"))
 | 
						|
    def test_nearest_transform(self, mode: str) -> None:
 | 
						|
        def op(im: Image.Image, sz: tuple[int, int]) -> Image.Image:
 | 
						|
            (w, h) = im.size
 | 
						|
            return im.transform(
 | 
						|
                sz, Image.Transform.EXTENT, (0, 0, w, h), Image.Resampling.NEAREST
 | 
						|
            )
 | 
						|
 | 
						|
        self._test_nearest(op, mode)
 | 
						|
 | 
						|
    def test_blank_fill(self) -> None:
 | 
						|
        # attempting to hit
 | 
						|
        # https://github.com/python-pillow/Pillow/issues/254 reported
 | 
						|
        #
 | 
						|
        # issue is that transforms with transparent overflow area
 | 
						|
        # contained junk from previous images, especially on systems with
 | 
						|
        # constrained memory. So, attempt to fill up memory with a
 | 
						|
        # pattern, free it, and then run the mesh test again. Using a 1Mp
 | 
						|
        # image with 4 bands, for 4 megs of data allocated, x 64. OMM (64
 | 
						|
        # bit 12.04 VM with 512 megs available, this fails with Pillow <
 | 
						|
        # a0eaf06cc5f62a6fb6de556989ac1014ff3348ea
 | 
						|
        #
 | 
						|
        # Running by default, but I'd totally understand not doing it in
 | 
						|
        # the future
 | 
						|
 | 
						|
        pattern: list[Image.Image] | None = [
 | 
						|
            Image.new("RGBA", (1024, 1024), (a, a, a, a)) for a in range(1, 65)
 | 
						|
        ]
 | 
						|
 | 
						|
        # Yeah. Watch some JIT optimize this out.
 | 
						|
        pattern = None  # noqa: F841
 | 
						|
 | 
						|
        self.test_mesh()
 | 
						|
 | 
						|
    def test_missing_method_data(self) -> None:
 | 
						|
        with hopper() as im:
 | 
						|
            with pytest.raises(ValueError):
 | 
						|
                im.transform((100, 100), None)
 | 
						|
 | 
						|
    @pytest.mark.parametrize("resample", (Image.Resampling.BOX, "unknown"))
 | 
						|
    def test_unknown_resampling_filter(self, resample: Image.Resampling | str) -> None:
 | 
						|
        with hopper() as im:
 | 
						|
            (w, h) = im.size
 | 
						|
            with pytest.raises(ValueError):
 | 
						|
                im.transform((100, 100), Image.Transform.EXTENT, (0, 0, w, h), resample)
 | 
						|
 | 
						|
 | 
						|
class TestImageTransformAffine:
 | 
						|
    transform = Image.Transform.AFFINE
 | 
						|
 | 
						|
    def _test_image(self) -> Image.Image:
 | 
						|
        im = hopper("RGB")
 | 
						|
        return im.crop((10, 20, im.width - 10, im.height - 20))
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "deg, transpose",
 | 
						|
        (
 | 
						|
            (0, None),
 | 
						|
            (90, Image.Transpose.ROTATE_90),
 | 
						|
            (180, Image.Transpose.ROTATE_180),
 | 
						|
            (270, Image.Transpose.ROTATE_270),
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    def test_rotate(self, deg: int, transpose: Image.Transpose | None) -> None:
 | 
						|
        im = self._test_image()
 | 
						|
 | 
						|
        angle = -math.radians(deg)
 | 
						|
        matrix = [
 | 
						|
            round(math.cos(angle), 15),
 | 
						|
            round(math.sin(angle), 15),
 | 
						|
            0.0,
 | 
						|
            round(-math.sin(angle), 15),
 | 
						|
            round(math.cos(angle), 15),
 | 
						|
            0.0,
 | 
						|
            0,
 | 
						|
            0,
 | 
						|
        ]
 | 
						|
        matrix[2] = (1 - matrix[0] - matrix[1]) * im.width / 2
 | 
						|
        matrix[5] = (1 - matrix[3] - matrix[4]) * im.height / 2
 | 
						|
 | 
						|
        if transpose is not None:
 | 
						|
            transposed = im.transpose(transpose)
 | 
						|
        else:
 | 
						|
            transposed = im
 | 
						|
 | 
						|
        for resample in [
 | 
						|
            Image.Resampling.NEAREST,
 | 
						|
            Image.Resampling.BILINEAR,
 | 
						|
            Image.Resampling.BICUBIC,
 | 
						|
        ]:
 | 
						|
            transformed = im.transform(
 | 
						|
                transposed.size, self.transform, matrix, resample
 | 
						|
            )
 | 
						|
            assert_image_equal(transposed, transformed)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "scale, epsilon_scale",
 | 
						|
        (
 | 
						|
            (1.1, 6.9),
 | 
						|
            (1.5, 5.5),
 | 
						|
            (2.0, 5.5),
 | 
						|
            (2.3, 3.7),
 | 
						|
            (2.5, 3.7),
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "resample,epsilon",
 | 
						|
        (
 | 
						|
            (Image.Resampling.NEAREST, 0),
 | 
						|
            (Image.Resampling.BILINEAR, 2),
 | 
						|
            (Image.Resampling.BICUBIC, 1),
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    def test_resize(
 | 
						|
        self,
 | 
						|
        scale: float,
 | 
						|
        epsilon_scale: float,
 | 
						|
        resample: Image.Resampling,
 | 
						|
        epsilon: int,
 | 
						|
    ) -> None:
 | 
						|
        im = self._test_image()
 | 
						|
 | 
						|
        size_up = int(round(im.width * scale)), int(round(im.height * scale))
 | 
						|
        matrix_up = [1 / scale, 0, 0, 0, 1 / scale, 0, 0, 0]
 | 
						|
        matrix_down = [scale, 0, 0, 0, scale, 0, 0, 0]
 | 
						|
 | 
						|
        transformed = im.transform(size_up, self.transform, matrix_up, resample)
 | 
						|
        transformed = transformed.transform(
 | 
						|
            im.size, self.transform, matrix_down, resample
 | 
						|
        )
 | 
						|
        assert_image_similar(transformed, im, epsilon * epsilon_scale)
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "x, y, epsilon_scale",
 | 
						|
        (
 | 
						|
            (0.1, 0, 3.7),
 | 
						|
            (0.6, 0, 9.1),
 | 
						|
            (50, 50, 0),
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "resample, epsilon",
 | 
						|
        (
 | 
						|
            (Image.Resampling.NEAREST, 0),
 | 
						|
            (Image.Resampling.BILINEAR, 1.5),
 | 
						|
            (Image.Resampling.BICUBIC, 1),
 | 
						|
        ),
 | 
						|
    )
 | 
						|
    def test_translate(
 | 
						|
        self,
 | 
						|
        x: float,
 | 
						|
        y: float,
 | 
						|
        epsilon_scale: float,
 | 
						|
        resample: Image.Resampling,
 | 
						|
        epsilon: float,
 | 
						|
    ) -> None:
 | 
						|
        im = self._test_image()
 | 
						|
 | 
						|
        size_up = int(round(im.width + x)), int(round(im.height + y))
 | 
						|
        matrix_up = [1, 0, -x, 0, 1, -y, 0, 0]
 | 
						|
        matrix_down = [1, 0, x, 0, 1, y, 0, 0]
 | 
						|
 | 
						|
        transformed = im.transform(size_up, self.transform, matrix_up, resample)
 | 
						|
        transformed = transformed.transform(
 | 
						|
            im.size, self.transform, matrix_down, resample
 | 
						|
        )
 | 
						|
        assert_image_similar(transformed, im, epsilon * epsilon_scale)
 | 
						|
 | 
						|
 | 
						|
class TestImageTransformPerspective(TestImageTransformAffine):
 | 
						|
    # Repeat all tests for AFFINE transformations with PERSPECTIVE
 | 
						|
    transform = Image.Transform.PERSPECTIVE
 |