mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-30 15:37:55 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			268 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import warnings
 | |
| from typing import TYPE_CHECKING
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from PIL import Image, _typing
 | |
| 
 | |
| from .helper import assert_deep_equal, assert_image, hopper, skip_unless_feature
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     import numpy
 | |
|     import numpy.typing as npt
 | |
| else:
 | |
|     numpy = pytest.importorskip("numpy", reason="NumPy not installed")
 | |
| 
 | |
| TEST_IMAGE_SIZE = (10, 10)
 | |
| 
 | |
| 
 | |
| def test_numpy_to_image() -> None:
 | |
|     def to_image(dtype: npt.DTypeLike, bands: int = 1, boolean: int = 0) -> Image.Image:
 | |
|         if bands == 1:
 | |
|             if boolean:
 | |
|                 data = [0, 255] * 50
 | |
|             else:
 | |
|                 data = list(range(100))
 | |
|             a = numpy.array(data, dtype=dtype)
 | |
|             a.shape = TEST_IMAGE_SIZE
 | |
|             i = Image.fromarray(a)
 | |
|             if list(i.getdata()) != data:
 | |
|                 print("data mismatch for", dtype)
 | |
|         else:
 | |
|             data = list(range(100))
 | |
|             a = numpy.array([[x] * bands for x in data], dtype=dtype)
 | |
|             a.shape = TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], bands
 | |
|             i = Image.fromarray(a)
 | |
|             if list(i.getchannel(0).getdata()) != list(range(100)):
 | |
|                 print("data mismatch for", dtype)
 | |
|         return i
 | |
| 
 | |
|     # Check supported 1-bit integer formats
 | |
|     assert_image(to_image(bool, 1, 1), "1", TEST_IMAGE_SIZE)
 | |
|     assert_image(to_image(numpy.bool_, 1, 1), "1", TEST_IMAGE_SIZE)
 | |
| 
 | |
|     # Check supported 8-bit integer formats
 | |
|     assert_image(to_image(numpy.uint8), "L", TEST_IMAGE_SIZE)
 | |
|     assert_image(to_image(numpy.uint8, 3), "RGB", TEST_IMAGE_SIZE)
 | |
|     assert_image(to_image(numpy.uint8, 4), "RGBA", TEST_IMAGE_SIZE)
 | |
|     assert_image(to_image(numpy.int8), "I", TEST_IMAGE_SIZE)
 | |
| 
 | |
|     # Check non-fixed-size integer types
 | |
|     # These may fail, depending on the platform, since we have no native
 | |
|     # 64-bit int image types.
 | |
|     # assert_image(to_image(numpy.uint), "I", TEST_IMAGE_SIZE)
 | |
|     # assert_image(to_image(numpy.int), "I", TEST_IMAGE_SIZE)
 | |
| 
 | |
|     # Check 16-bit integer formats
 | |
|     if Image._ENDIAN == "<":
 | |
|         assert_image(to_image(numpy.uint16), "I;16", TEST_IMAGE_SIZE)
 | |
|     else:
 | |
|         assert_image(to_image(numpy.uint16), "I;16B", TEST_IMAGE_SIZE)
 | |
| 
 | |
|     assert_image(to_image(numpy.int16), "I", TEST_IMAGE_SIZE)
 | |
| 
 | |
|     # Check 32-bit integer formats
 | |
|     assert_image(to_image(numpy.uint32), "I", TEST_IMAGE_SIZE)
 | |
|     assert_image(to_image(numpy.int32), "I", TEST_IMAGE_SIZE)
 | |
| 
 | |
|     # Check 64-bit integer formats
 | |
|     with pytest.raises(TypeError):
 | |
|         to_image(numpy.uint64)
 | |
|     with pytest.raises(TypeError):
 | |
|         to_image(numpy.int64)
 | |
| 
 | |
|     # Check floating-point formats
 | |
|     assert_image(to_image(float), "F", TEST_IMAGE_SIZE)
 | |
|     with pytest.raises(TypeError):
 | |
|         to_image(numpy.float16)
 | |
|     assert_image(to_image(numpy.float32), "F", TEST_IMAGE_SIZE)
 | |
|     assert_image(to_image(numpy.float64), "F", TEST_IMAGE_SIZE)
 | |
| 
 | |
|     assert_image(to_image(numpy.uint8, 2), "LA", (10, 10))
 | |
|     assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10))
 | |
|     assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10))
 | |
| 
 | |
| 
 | |
| # Based on an erring example at
 | |
| # https://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function
 | |
| def test_3d_array() -> None:
 | |
|     size = (5, TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1])
 | |
|     a = numpy.ones(size, dtype=numpy.uint8)
 | |
|     assert_image(Image.fromarray(a[1, :, :]), "L", TEST_IMAGE_SIZE)
 | |
|     size = (TEST_IMAGE_SIZE[0], 5, TEST_IMAGE_SIZE[1])
 | |
|     a = numpy.ones(size, dtype=numpy.uint8)
 | |
|     assert_image(Image.fromarray(a[:, 1, :]), "L", TEST_IMAGE_SIZE)
 | |
|     size = (TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], 5)
 | |
|     a = numpy.ones(size, dtype=numpy.uint8)
 | |
|     assert_image(Image.fromarray(a[:, :, 1]), "L", TEST_IMAGE_SIZE)
 | |
| 
 | |
| 
 | |
| def test_1d_array() -> None:
 | |
|     a = numpy.ones(5, dtype=numpy.uint8)
 | |
|     assert_image(Image.fromarray(a), "L", (1, 5))
 | |
| 
 | |
| 
 | |
| def _test_img_equals_nparray(img: Image.Image, np_img: _typing.NumpyArray) -> None:
 | |
|     assert len(np_img.shape) >= 2
 | |
|     np_size = np_img.shape[1], np_img.shape[0]
 | |
|     assert img.size == np_size
 | |
|     px = img.load()
 | |
|     assert px is not None
 | |
|     for x in range(0, img.size[0], int(img.size[0] / 10)):
 | |
|         for y in range(0, img.size[1], int(img.size[1] / 10)):
 | |
|             assert_deep_equal(px[x, y], np_img[y, x])
 | |
| 
 | |
| 
 | |
| def test_16bit() -> None:
 | |
|     with Image.open("Tests/images/16bit.cropped.tif") as img:
 | |
|         np_img = numpy.array(img)
 | |
|         _test_img_equals_nparray(img, np_img)
 | |
|     assert np_img.dtype == numpy.dtype("<u2")
 | |
| 
 | |
| 
 | |
| def test_1bit() -> None:
 | |
|     # Test that 1-bit arrays convert to numpy and back
 | |
|     # See: https://github.com/python-pillow/Pillow/issues/350
 | |
|     arr = numpy.array([[1, 0, 0, 1, 0], [0, 1, 0, 0, 0]], "u1")
 | |
|     img = Image.fromarray(arr * 255).convert("1")
 | |
|     assert img.mode == "1"
 | |
|     arr_back = numpy.array(img)
 | |
|     numpy.testing.assert_array_equal(arr, arr_back)
 | |
| 
 | |
| 
 | |
| def test_save_tiff_uint16() -> None:
 | |
|     # Tests that we're getting the pixel value in the right byte order.
 | |
|     pixel_value = 0x1234
 | |
|     a = numpy.array(
 | |
|         [pixel_value] * TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1], dtype=numpy.uint16
 | |
|     )
 | |
|     a.shape = TEST_IMAGE_SIZE
 | |
|     img = Image.fromarray(a)
 | |
| 
 | |
|     assert img.getpixel((0, 0)) == pixel_value
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "mode, dtype",
 | |
|     (
 | |
|         ("L", numpy.uint8),
 | |
|         ("I", numpy.int32),
 | |
|         ("F", numpy.float32),
 | |
|         ("LA", numpy.uint8),
 | |
|         ("RGB", numpy.uint8),
 | |
|         ("RGBA", numpy.uint8),
 | |
|         ("RGBX", numpy.uint8),
 | |
|         ("CMYK", numpy.uint8),
 | |
|         ("YCbCr", numpy.uint8),
 | |
|         ("I;16", "<u2"),
 | |
|         ("I;16B", ">u2"),
 | |
|         ("I;16L", "<u2"),
 | |
|         ("HSV", numpy.uint8),
 | |
|     ),
 | |
| )
 | |
| def test_to_array(mode: str, dtype: npt.DTypeLike) -> None:
 | |
|     img = hopper(mode)
 | |
| 
 | |
|     # Resize to non-square
 | |
|     img = img.crop((3, 0, 124, 127))
 | |
|     assert img.size == (121, 127)
 | |
| 
 | |
|     np_img = numpy.array(img)
 | |
|     _test_img_equals_nparray(img, np_img)
 | |
|     assert np_img.dtype == dtype
 | |
| 
 | |
| 
 | |
| def test_point_lut() -> None:
 | |
|     # See https://github.com/python-pillow/Pillow/issues/439
 | |
| 
 | |
|     data = list(range(256)) * 3
 | |
|     lut = numpy.array(data, dtype=numpy.uint8)
 | |
| 
 | |
|     im = hopper()
 | |
| 
 | |
|     im.point(lut)
 | |
| 
 | |
| 
 | |
| def test_putdata() -> None:
 | |
|     # Shouldn't segfault
 | |
|     # See https://github.com/python-pillow/Pillow/issues/1008
 | |
| 
 | |
|     im = Image.new("F", (150, 100))
 | |
|     arr = numpy.zeros((15000,), numpy.float32)
 | |
|     im.putdata(arr)
 | |
| 
 | |
|     assert len(im.getdata()) == len(arr)
 | |
| 
 | |
| 
 | |
| def test_resize() -> None:
 | |
|     im = hopper()
 | |
|     size = (64, 64)
 | |
| 
 | |
|     im_resized = im.resize(numpy.array(size))
 | |
| 
 | |
|     assert im_resized.size == size
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "dtype",
 | |
|     (
 | |
|         bool,
 | |
|         numpy.bool_,
 | |
|         numpy.int8,
 | |
|         numpy.int16,
 | |
|         numpy.int32,
 | |
|         numpy.uint8,
 | |
|         numpy.uint16,
 | |
|         numpy.uint32,
 | |
|         float,
 | |
|         numpy.float32,
 | |
|         numpy.float64,
 | |
|     ),
 | |
| )
 | |
| def test_roundtrip_eye(dtype: npt.DTypeLike) -> None:
 | |
|     arr = numpy.eye(10, dtype=dtype)
 | |
|     numpy.testing.assert_array_equal(arr, numpy.array(Image.fromarray(arr)))
 | |
| 
 | |
| 
 | |
| def test_zero_size() -> None:
 | |
|     # Shouldn't cause floating point exception
 | |
|     # See https://github.com/python-pillow/Pillow/issues/2259
 | |
| 
 | |
|     im = Image.fromarray(numpy.empty((0, 0), dtype=numpy.uint8))
 | |
| 
 | |
|     assert im.size == (0, 0)
 | |
| 
 | |
| 
 | |
| @skip_unless_feature("libtiff")
 | |
| def test_transposed() -> None:
 | |
|     with Image.open("Tests/images/g4_orientation_5.tif") as im:
 | |
|         assert im.size == (590, 88)
 | |
| 
 | |
|         a = numpy.array(im)
 | |
|         assert a.shape == (88, 590)
 | |
| 
 | |
| 
 | |
| def test_bool() -> None:
 | |
|     # https://github.com/python-pillow/Pillow/issues/2044
 | |
|     a = numpy.zeros((10, 2), dtype=bool)
 | |
|     a[0][0] = True
 | |
| 
 | |
|     im2 = Image.fromarray(a)
 | |
|     assert im2.getdata()[0] == 255
 | |
| 
 | |
| 
 | |
| def test_no_resource_warning_for_numpy_array() -> None:
 | |
|     # https://github.com/python-pillow/Pillow/issues/835
 | |
|     # Arrange
 | |
|     from numpy import array
 | |
| 
 | |
|     test_file = "Tests/images/hopper.png"
 | |
|     with Image.open(test_file) as im:
 | |
|         # Act/Assert
 | |
|         with warnings.catch_warnings():
 | |
|             warnings.simplefilter("error")
 | |
| 
 | |
|             array(im)
 |