mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-30 07:27:49 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			592 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from PIL import Image, ImageDraw, ImageOps, ImageStat, features
 | |
| 
 | |
| from .helper import (
 | |
|     assert_image_equal,
 | |
|     assert_image_similar,
 | |
|     assert_image_similar_tofile,
 | |
|     assert_tuple_approx_equal,
 | |
|     hopper,
 | |
| )
 | |
| 
 | |
| 
 | |
| class Deformer(ImageOps.SupportsGetMesh):
 | |
|     def getmesh(
 | |
|         self, im: Image.Image
 | |
|     ) -> list[
 | |
|         tuple[tuple[int, int, int, int], tuple[int, int, int, int, int, int, int, int]]
 | |
|     ]:
 | |
|         x, y = im.size
 | |
|         return [((0, 0, x, y), (0, 0, x, 0, x, y, y, 0))]
 | |
| 
 | |
| 
 | |
| deformer = Deformer()
 | |
| 
 | |
| 
 | |
| def test_sanity() -> None:
 | |
|     ImageOps.autocontrast(hopper("L"))
 | |
|     ImageOps.autocontrast(hopper("RGB"))
 | |
| 
 | |
|     ImageOps.autocontrast(hopper("L"), cutoff=10)
 | |
|     ImageOps.autocontrast(hopper("L"), cutoff=(2, 10))
 | |
|     ImageOps.autocontrast(hopper("L"), ignore=[0, 255])
 | |
|     ImageOps.autocontrast(hopper("L"), mask=hopper("L"))
 | |
|     ImageOps.autocontrast(hopper("L"), preserve_tone=True)
 | |
| 
 | |
|     ImageOps.colorize(hopper("L"), (0, 0, 0), (255, 255, 255))
 | |
|     ImageOps.colorize(hopper("L"), "black", "white")
 | |
| 
 | |
|     ImageOps.pad(hopper("L"), (128, 128))
 | |
|     ImageOps.pad(hopper("RGB"), (128, 128))
 | |
| 
 | |
|     ImageOps.contain(hopper("L"), (128, 128))
 | |
|     ImageOps.contain(hopper("RGB"), (128, 128))
 | |
| 
 | |
|     ImageOps.cover(hopper("L"), (128, 128))
 | |
|     ImageOps.cover(hopper("RGB"), (128, 128))
 | |
| 
 | |
|     ImageOps.crop(hopper("L"), 1)
 | |
|     ImageOps.crop(hopper("RGB"), 1)
 | |
| 
 | |
|     ImageOps.deform(hopper("L"), deformer)
 | |
|     ImageOps.deform(hopper("RGB"), deformer)
 | |
| 
 | |
|     ImageOps.equalize(hopper("L"))
 | |
|     ImageOps.equalize(hopper("RGB"))
 | |
| 
 | |
|     ImageOps.expand(hopper("L"), 1)
 | |
|     ImageOps.expand(hopper("RGB"), 1)
 | |
|     ImageOps.expand(hopper("L"), 2, "blue")
 | |
|     ImageOps.expand(hopper("RGB"), 2, "blue")
 | |
| 
 | |
|     ImageOps.fit(hopper("L"), (128, 128))
 | |
|     ImageOps.fit(hopper("RGB"), (128, 128))
 | |
| 
 | |
|     ImageOps.flip(hopper("L"))
 | |
|     ImageOps.flip(hopper("RGB"))
 | |
| 
 | |
|     ImageOps.grayscale(hopper("L"))
 | |
|     ImageOps.grayscale(hopper("RGB"))
 | |
| 
 | |
|     ImageOps.invert(hopper("1"))
 | |
|     ImageOps.invert(hopper("L"))
 | |
|     ImageOps.invert(hopper("RGB"))
 | |
| 
 | |
|     ImageOps.mirror(hopper("L"))
 | |
|     ImageOps.mirror(hopper("RGB"))
 | |
| 
 | |
|     ImageOps.posterize(hopper("L"), 4)
 | |
|     ImageOps.posterize(hopper("RGB"), 4)
 | |
| 
 | |
|     ImageOps.solarize(hopper("L"))
 | |
|     ImageOps.solarize(hopper("RGB"))
 | |
| 
 | |
|     ImageOps.exif_transpose(hopper("L"))
 | |
|     ImageOps.exif_transpose(hopper("RGB"))
 | |
| 
 | |
| 
 | |
| def test_1pxfit() -> None:
 | |
|     # Division by zero in equalize if image is 1 pixel high
 | |
|     newimg = ImageOps.fit(hopper("RGB").resize((1, 1)), (35, 35))
 | |
|     assert newimg.size == (35, 35)
 | |
| 
 | |
|     newimg = ImageOps.fit(hopper("RGB").resize((1, 100)), (35, 35))
 | |
|     assert newimg.size == (35, 35)
 | |
| 
 | |
|     newimg = ImageOps.fit(hopper("RGB").resize((100, 1)), (35, 35))
 | |
|     assert newimg.size == (35, 35)
 | |
| 
 | |
| 
 | |
| def test_fit_same_ratio() -> None:
 | |
|     # The ratio for this image is 1000.0 / 755 = 1.3245033112582782
 | |
|     # If the ratios are not acknowledged to be the same,
 | |
|     # and Pillow attempts to adjust the width to
 | |
|     # 1.3245033112582782 * 755 = 1000.0000000000001
 | |
|     # then centering this greater width causes a negative x offset when cropping
 | |
|     with Image.new("RGB", (1000, 755)) as im:
 | |
|         new_im = ImageOps.fit(im, (1000, 755))
 | |
|         assert new_im.size == (1000, 755)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("new_size", ((256, 256), (512, 256), (256, 512)))
 | |
| def test_contain(new_size: tuple[int, int]) -> None:
 | |
|     im = hopper()
 | |
|     new_im = ImageOps.contain(im, new_size)
 | |
|     assert new_im.size == (256, 256)
 | |
| 
 | |
| 
 | |
| def test_contain_round() -> None:
 | |
|     im = Image.new("1", (43, 63), 1)
 | |
|     new_im = ImageOps.contain(im, (5, 7))
 | |
|     assert new_im.width == 5
 | |
| 
 | |
|     im = Image.new("1", (63, 43), 1)
 | |
|     new_im = ImageOps.contain(im, (7, 5))
 | |
|     assert new_im.height == 5
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "image_name, expected_size",
 | |
|     (
 | |
|         ("colr_bungee.png", (1024, 256)),  # landscape
 | |
|         ("imagedraw_stroke_multiline.png", (256, 640)),  # portrait
 | |
|         ("hopper.png", (256, 256)),  # square
 | |
|     ),
 | |
| )
 | |
| def test_cover(image_name: str, expected_size: tuple[int, int]) -> None:
 | |
|     with Image.open("Tests/images/" + image_name) as im:
 | |
|         new_im = ImageOps.cover(im, (256, 256))
 | |
|         assert new_im.size == expected_size
 | |
| 
 | |
| 
 | |
| def test_pad() -> None:
 | |
|     # Same ratio
 | |
|     im = hopper()
 | |
|     new_size = (im.width * 2, im.height * 2)
 | |
|     new_im = ImageOps.pad(im, new_size)
 | |
|     assert new_im.size == new_size
 | |
| 
 | |
|     for label, color, new_size in [
 | |
|         ("h", None, (im.width * 4, im.height * 2)),
 | |
|         ("v", "#f00", (im.width * 2, im.height * 4)),
 | |
|     ]:
 | |
|         for i, centering in enumerate([(0, 0), (0.5, 0.5), (1, 1)]):
 | |
|             new_im = ImageOps.pad(im, new_size, color=color, centering=centering)
 | |
|             assert new_im.size == new_size
 | |
| 
 | |
|             assert_image_similar_tofile(
 | |
|                 new_im, "Tests/images/imageops_pad_" + label + "_" + str(i) + ".jpg", 6
 | |
|             )
 | |
| 
 | |
| 
 | |
| def test_pad_round() -> None:
 | |
|     im = Image.new("1", (1, 1), 1)
 | |
|     new_im = ImageOps.pad(im, (4, 1))
 | |
|     assert new_im.getpixel((2, 0)) == 1
 | |
| 
 | |
|     new_im = ImageOps.pad(im, (1, 4))
 | |
|     assert new_im.getpixel((0, 2)) == 1
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("mode", ("P", "PA"))
 | |
| def test_palette(mode: str) -> None:
 | |
|     im = hopper(mode)
 | |
| 
 | |
|     # Expand
 | |
|     expanded_im = ImageOps.expand(im)
 | |
|     assert_image_equal(im.convert("RGB"), expanded_im.convert("RGB"))
 | |
| 
 | |
|     # Pad
 | |
|     padded_im = ImageOps.pad(im, (256, 128), centering=(0, 0))
 | |
|     assert_image_equal(
 | |
|         im.convert("RGB"), padded_im.convert("RGB").crop((0, 0, 128, 128))
 | |
|     )
 | |
| 
 | |
| 
 | |
| def test_pil163() -> None:
 | |
|     # Division by zero in equalize if < 255 pixels in image (@PIL163)
 | |
| 
 | |
|     i = hopper("RGB").resize((15, 16))
 | |
| 
 | |
|     ImageOps.equalize(i.convert("L"))
 | |
|     ImageOps.equalize(i.convert("P"))
 | |
|     ImageOps.equalize(i.convert("RGB"))
 | |
| 
 | |
| 
 | |
| def test_scale() -> None:
 | |
|     # Test the scaling function
 | |
|     i = hopper("L").resize((50, 50))
 | |
| 
 | |
|     with pytest.raises(ValueError):
 | |
|         ImageOps.scale(i, -1)
 | |
| 
 | |
|     newimg = ImageOps.scale(i, 1)
 | |
|     assert newimg.size == (50, 50)
 | |
| 
 | |
|     newimg = ImageOps.scale(i, 2)
 | |
|     assert newimg.size == (100, 100)
 | |
| 
 | |
|     newimg = ImageOps.scale(i, 0.5)
 | |
|     assert newimg.size == (25, 25)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("border", (10, (1, 2, 3, 4)))
 | |
| def test_expand_palette(border: int | tuple[int, int, int, int]) -> None:
 | |
|     with Image.open("Tests/images/p_16.tga") as im:
 | |
|         im_expanded = ImageOps.expand(im, border, (255, 0, 0))
 | |
| 
 | |
|         if isinstance(border, int):
 | |
|             left = top = right = bottom = border
 | |
|         else:
 | |
|             left, top, right, bottom = border
 | |
|         px = im_expanded.convert("RGB").load()
 | |
|         assert px is not None
 | |
|         for x in range(im_expanded.width):
 | |
|             for b in range(top):
 | |
|                 assert px[x, b] == (255, 0, 0)
 | |
|             for b in range(bottom):
 | |
|                 assert px[x, im_expanded.height - 1 - b] == (255, 0, 0)
 | |
|         for y in range(im_expanded.height):
 | |
|             for b in range(left):
 | |
|                 assert px[b, y] == (255, 0, 0)
 | |
|             for b in range(right):
 | |
|                 assert px[im_expanded.width - 1 - b, y] == (255, 0, 0)
 | |
| 
 | |
|         im_cropped = im_expanded.crop(
 | |
|             (left, top, im_expanded.width - right, im_expanded.height - bottom)
 | |
|         )
 | |
|         assert_image_equal(im_cropped, im)
 | |
| 
 | |
| 
 | |
| def test_colorize_2color() -> None:
 | |
|     # Test the colorizing function with 2-color functionality
 | |
| 
 | |
|     # Open test image (256px by 10px, black to white)
 | |
|     with Image.open("Tests/images/bw_gradient.png") as im:
 | |
|         im = im.convert("L")
 | |
| 
 | |
|     # Create image with original 2-color functionality
 | |
|     im_test = ImageOps.colorize(im, "red", "green")
 | |
| 
 | |
|     # Test output image (2-color)
 | |
|     left = (0, 1)
 | |
|     middle = (127, 1)
 | |
|     right = (255, 1)
 | |
|     value = im_test.getpixel(left)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (255, 0, 0),
 | |
|         threshold=1,
 | |
|         msg="black test pixel incorrect",
 | |
|     )
 | |
|     value = im_test.getpixel(middle)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (127, 63, 0),
 | |
|         threshold=1,
 | |
|         msg="mid test pixel incorrect",
 | |
|     )
 | |
|     value = im_test.getpixel(right)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (0, 127, 0),
 | |
|         threshold=1,
 | |
|         msg="white test pixel incorrect",
 | |
|     )
 | |
| 
 | |
| 
 | |
| def test_colorize_2color_offset() -> None:
 | |
|     # Test the colorizing function with 2-color functionality and offset
 | |
| 
 | |
|     # Open test image (256px by 10px, black to white)
 | |
|     with Image.open("Tests/images/bw_gradient.png") as im:
 | |
|         im = im.convert("L")
 | |
| 
 | |
|     # Create image with original 2-color functionality with offsets
 | |
|     im_test = ImageOps.colorize(
 | |
|         im, black="red", white="green", blackpoint=50, whitepoint=100
 | |
|     )
 | |
| 
 | |
|     # Test output image (2-color) with offsets
 | |
|     left = (25, 1)
 | |
|     middle = (75, 1)
 | |
|     right = (125, 1)
 | |
|     value = im_test.getpixel(left)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (255, 0, 0),
 | |
|         threshold=1,
 | |
|         msg="black test pixel incorrect",
 | |
|     )
 | |
|     value = im_test.getpixel(middle)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (127, 63, 0),
 | |
|         threshold=1,
 | |
|         msg="mid test pixel incorrect",
 | |
|     )
 | |
|     value = im_test.getpixel(right)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (0, 127, 0),
 | |
|         threshold=1,
 | |
|         msg="white test pixel incorrect",
 | |
|     )
 | |
| 
 | |
| 
 | |
| def test_colorize_3color_offset() -> None:
 | |
|     # Test the colorizing function with 3-color functionality and offset
 | |
| 
 | |
|     # Open test image (256px by 10px, black to white)
 | |
|     with Image.open("Tests/images/bw_gradient.png") as im:
 | |
|         im = im.convert("L")
 | |
| 
 | |
|     # Create image with new three color functionality with offsets
 | |
|     im_test = ImageOps.colorize(
 | |
|         im,
 | |
|         black="red",
 | |
|         white="green",
 | |
|         mid="blue",
 | |
|         blackpoint=50,
 | |
|         whitepoint=200,
 | |
|         midpoint=100,
 | |
|     )
 | |
| 
 | |
|     # Test output image (3-color) with offsets
 | |
|     left = (25, 1)
 | |
|     left_middle = (75, 1)
 | |
|     middle = (100, 1)
 | |
|     right_middle = (150, 1)
 | |
|     right = (225, 1)
 | |
|     value = im_test.getpixel(left)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (255, 0, 0),
 | |
|         threshold=1,
 | |
|         msg="black test pixel incorrect",
 | |
|     )
 | |
|     value = im_test.getpixel(left_middle)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (127, 0, 127),
 | |
|         threshold=1,
 | |
|         msg="low-mid test pixel incorrect",
 | |
|     )
 | |
|     value = im_test.getpixel(middle)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(value, (0, 0, 255), threshold=1, msg="mid incorrect")
 | |
|     value = im_test.getpixel(right_middle)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (0, 63, 127),
 | |
|         threshold=1,
 | |
|         msg="high-mid test pixel incorrect",
 | |
|     )
 | |
|     value = im_test.getpixel(right)
 | |
|     assert isinstance(value, tuple)
 | |
|     assert_tuple_approx_equal(
 | |
|         value,
 | |
|         (0, 127, 0),
 | |
|         threshold=1,
 | |
|         msg="white test pixel incorrect",
 | |
|     )
 | |
| 
 | |
| 
 | |
| def test_exif_transpose() -> None:
 | |
|     exts = [".jpg"]
 | |
|     if features.check("webp"):
 | |
|         exts.append(".webp")
 | |
|     for ext in exts:
 | |
|         with Image.open("Tests/images/hopper" + ext) as base_im:
 | |
| 
 | |
|             def check(orientation_im: Image.Image) -> None:
 | |
|                 for im in [
 | |
|                     orientation_im,
 | |
|                     orientation_im.copy(),
 | |
|                 ]:  # ImageFile  # Image
 | |
|                     if orientation_im is base_im:
 | |
|                         assert "exif" not in im.info
 | |
|                     else:
 | |
|                         original_exif = im.info["exif"]
 | |
|                     transposed_im = ImageOps.exif_transpose(im)
 | |
|                     assert_image_similar(base_im, transposed_im, 17)
 | |
|                     if orientation_im is base_im:
 | |
|                         assert "exif" not in im.info
 | |
|                     else:
 | |
|                         assert transposed_im.info["exif"] != original_exif
 | |
| 
 | |
|                         assert 0x0112 in im.getexif()
 | |
|                         assert 0x0112 not in transposed_im.getexif()
 | |
| 
 | |
|                     # Repeat the operation to test that it does not keep transposing
 | |
|                     transposed_im2 = ImageOps.exif_transpose(transposed_im)
 | |
|                     assert_image_equal(transposed_im2, transposed_im)
 | |
| 
 | |
|             check(base_im)
 | |
|             for i in range(2, 9):
 | |
|                 with Image.open(
 | |
|                     "Tests/images/hopper_orientation_" + str(i) + ext
 | |
|                 ) as orientation_im:
 | |
|                     check(orientation_im)
 | |
| 
 | |
|     # Orientation from "XML:com.adobe.xmp" info key
 | |
|     for suffix in ("", "_exiftool"):
 | |
|         with Image.open("Tests/images/xmp_tags_orientation" + suffix + ".png") as im:
 | |
|             assert im.getexif()[0x0112] == 3
 | |
| 
 | |
|             transposed_im = ImageOps.exif_transpose(im)
 | |
|             assert 0x0112 not in transposed_im.getexif()
 | |
| 
 | |
|             transposed_im._reload_exif()
 | |
|             assert 0x0112 not in transposed_im.getexif()
 | |
| 
 | |
|     # Orientation from "Raw profile type exif" info key
 | |
|     # This test image has been manually hexedited from exif_imagemagick.png
 | |
|     # to have a different orientation
 | |
|     with Image.open("Tests/images/exif_imagemagick_orientation.png") as im:
 | |
|         assert im.getexif()[0x0112] == 3
 | |
| 
 | |
|         transposed_im = ImageOps.exif_transpose(im)
 | |
|         assert 0x0112 not in transposed_im.getexif()
 | |
| 
 | |
|     # Orientation set directly on Image.Exif
 | |
|     im = hopper()
 | |
|     im.getexif()[0x0112] = 3
 | |
|     transposed_im = ImageOps.exif_transpose(im)
 | |
|     assert 0x0112 not in transposed_im.getexif()
 | |
| 
 | |
| 
 | |
| def test_exif_transpose_with_xmp_tuple() -> None:
 | |
|     with Image.open("Tests/images/xmp_tags_orientation.png") as im:
 | |
|         assert im.getexif()[0x0112] == 3
 | |
| 
 | |
|         im.info["xmp"] = (b"test",)
 | |
|         transposed_im = ImageOps.exif_transpose(im)
 | |
|         assert 0x0112 not in transposed_im.getexif()
 | |
| 
 | |
| 
 | |
| def test_exif_transpose_xml_without_xmp() -> None:
 | |
|     with Image.open("Tests/images/xmp_tags_orientation.png") as im:
 | |
|         assert im.getexif()[0x0112] == 3
 | |
|         assert "XML:com.adobe.xmp" in im.info
 | |
| 
 | |
|         del im.info["xmp"]
 | |
|         transposed_im = ImageOps.exif_transpose(im)
 | |
|         assert 0x0112 not in transposed_im.getexif()
 | |
| 
 | |
| 
 | |
| def test_exif_transpose_in_place() -> None:
 | |
|     with Image.open("Tests/images/orientation_rectangle.jpg") as im:
 | |
|         assert im.size == (2, 1)
 | |
|         assert im.getexif()[0x0112] == 8
 | |
|         expected = im.rotate(90, expand=True)
 | |
| 
 | |
|         ImageOps.exif_transpose(im, in_place=True)
 | |
|         assert im.size == (1, 2)
 | |
|         assert 0x0112 not in im.getexif()
 | |
|         assert_image_equal(im, expected)
 | |
| 
 | |
| 
 | |
| def test_autocontrast_unsupported_mode() -> None:
 | |
|     im = Image.new("RGBA", (1, 1))
 | |
|     with pytest.raises(OSError):
 | |
|         ImageOps.autocontrast(im)
 | |
| 
 | |
| 
 | |
| def test_autocontrast_cutoff() -> None:
 | |
|     # Test the cutoff argument of autocontrast
 | |
|     with Image.open("Tests/images/bw_gradient.png") as img:
 | |
| 
 | |
|         def autocontrast(cutoff: int | tuple[int, int]) -> list[int]:
 | |
|             return ImageOps.autocontrast(img, cutoff).histogram()
 | |
| 
 | |
|         assert autocontrast(10) == autocontrast((10, 10))
 | |
|         assert autocontrast(10) != autocontrast((1, 10))
 | |
| 
 | |
| 
 | |
| def test_autocontrast_mask_toy_input() -> None:
 | |
|     # Test the mask argument of autocontrast
 | |
|     with Image.open("Tests/images/bw_gradient.png") as img:
 | |
|         rect_mask = Image.new("L", img.size, 0)
 | |
|         draw = ImageDraw.Draw(rect_mask)
 | |
|         x0 = img.size[0] // 4
 | |
|         y0 = img.size[1] // 4
 | |
|         x1 = 3 * img.size[0] // 4
 | |
|         y1 = 3 * img.size[1] // 4
 | |
|         draw.rectangle((x0, y0, x1, y1), fill=255)
 | |
| 
 | |
|         result = ImageOps.autocontrast(img, mask=rect_mask)
 | |
|         result_nomask = ImageOps.autocontrast(img)
 | |
| 
 | |
|         assert result != result_nomask
 | |
|         assert ImageStat.Stat(result, mask=rect_mask).median == [127]
 | |
|         assert ImageStat.Stat(result_nomask).median == [128]
 | |
| 
 | |
| 
 | |
| def test_autocontrast_mask_real_input() -> None:
 | |
|     # Test the autocontrast with a rectangular mask
 | |
|     with Image.open("Tests/images/iptc.jpg") as img:
 | |
|         rect_mask = Image.new("L", img.size, 0)
 | |
|         draw = ImageDraw.Draw(rect_mask)
 | |
|         x0, y0 = img.size[0] // 2, img.size[1] // 2
 | |
|         x1, y1 = img.size[0] - 40, img.size[1]
 | |
|         draw.rectangle((x0, y0, x1, y1), fill=255)
 | |
| 
 | |
|         result = ImageOps.autocontrast(img, mask=rect_mask)
 | |
|         result_nomask = ImageOps.autocontrast(img)
 | |
| 
 | |
|         assert result_nomask != result
 | |
|         assert_tuple_approx_equal(
 | |
|             ImageStat.Stat(result, mask=rect_mask).median,
 | |
|             (195, 202, 184),
 | |
|             threshold=2,
 | |
|             msg="autocontrast with mask pixel incorrect",
 | |
|         )
 | |
|         assert_tuple_approx_equal(
 | |
|             ImageStat.Stat(result_nomask).median,
 | |
|             (119, 106, 79),
 | |
|             threshold=2,
 | |
|             msg="autocontrast without mask pixel incorrect",
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_autocontrast_preserve_tone() -> None:
 | |
|     def autocontrast(mode: str, preserve_tone: bool) -> list[int]:
 | |
|         im = hopper(mode)
 | |
|         return ImageOps.autocontrast(im, preserve_tone=preserve_tone).histogram()
 | |
| 
 | |
|     assert autocontrast("RGB", True) != autocontrast("RGB", False)
 | |
|     assert autocontrast("L", True) == autocontrast("L", False)
 | |
| 
 | |
| 
 | |
| def test_autocontrast_preserve_gradient() -> None:
 | |
|     gradient = Image.linear_gradient("L")
 | |
| 
 | |
|     # test with a grayscale gradient that extends to 0,255.
 | |
|     # Should be a noop.
 | |
|     out = ImageOps.autocontrast(gradient, cutoff=0, preserve_tone=True)
 | |
| 
 | |
|     assert_image_equal(gradient, out)
 | |
| 
 | |
|     # cutoff the top and bottom
 | |
|     # autocontrast should make the first and last histogram entries equal
 | |
|     # and, with rounding, should be 10% of the image pixels
 | |
|     out = ImageOps.autocontrast(gradient, cutoff=10, preserve_tone=True)
 | |
|     hist = out.histogram()
 | |
|     assert hist[0] == hist[-1]
 | |
|     assert hist[-1] == 256 * round(256 * 0.10)
 | |
| 
 | |
|     # in rgb
 | |
|     img = gradient.convert("RGB")
 | |
|     out = ImageOps.autocontrast(img, cutoff=0, preserve_tone=True)
 | |
|     assert_image_equal(img, out)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "color", ((255, 255, 255), (127, 255, 0), (127, 127, 127), (0, 0, 0))
 | |
| )
 | |
| def test_autocontrast_preserve_one_color(color: tuple[int, int, int]) -> None:
 | |
|     img = Image.new("RGB", (10, 10), color)
 | |
| 
 | |
|     # single color images shouldn't change
 | |
|     out = ImageOps.autocontrast(img, cutoff=0, preserve_tone=True)
 | |
|     assert_image_equal(img, out)  # single color, no cutoff
 | |
| 
 | |
|     # even if there is a cutoff
 | |
|     out = ImageOps.autocontrast(
 | |
|         img, cutoff=10, preserve_tone=True
 | |
|     )  # single color 10 cutoff
 | |
|     assert_image_equal(img, out)
 |