Pillow/PIL/Image.py
wiredfool 5d2667efda Merge pull request #2022 from uploadcare/rotation-pixel-center
Respect pixel centers during transform
2016-08-25 11:40:09 +01:00

2528 lines
81 KiB
Python

#
# The Python Imaging Library.
# $Id$
#
# the Image class wrapper
#
# partial release history:
# 1995-09-09 fl Created
# 1996-03-11 fl PIL release 0.0 (proof of concept)
# 1996-04-30 fl PIL release 0.1b1
# 1999-07-28 fl PIL release 1.0 final
# 2000-06-07 fl PIL release 1.1
# 2000-10-20 fl PIL release 1.1.1
# 2001-05-07 fl PIL release 1.1.2
# 2002-03-15 fl PIL release 1.1.3
# 2003-05-10 fl PIL release 1.1.4
# 2005-03-28 fl PIL release 1.1.5
# 2006-12-02 fl PIL release 1.1.6
# 2009-11-15 fl PIL release 1.1.7
#
# Copyright (c) 1997-2009 by Secret Labs AB. All rights reserved.
# Copyright (c) 1995-2009 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#
from __future__ import print_function
from PIL import VERSION, PILLOW_VERSION, _plugins
import logging
import warnings
import math
logger = logging.getLogger(__name__)
class DecompressionBombWarning(RuntimeWarning):
pass
class _imaging_not_installed(object):
# module placeholder
def __getattr__(self, id):
raise ImportError("The _imaging C module is not installed")
# Limit to around a quarter gigabyte for a 24 bit (3 bpp) image
MAX_IMAGE_PIXELS = int(1024 * 1024 * 1024 / 4 / 3)
try:
# give Tk a chance to set up the environment, in case we're
# using an _imaging module linked against libtcl/libtk (use
# __import__ to hide this from naive packagers; we don't really
# depend on Tk unless ImageTk is used, and that module already
# imports Tkinter)
__import__("FixTk")
except ImportError:
pass
try:
# If the _imaging C module is not present, Pillow will not load.
# Note that other modules should not refer to _imaging directly;
# import Image and use the Image.core variable instead.
# Also note that Image.core is not a publicly documented interface,
# and should be considered private and subject to change.
from PIL import _imaging as core
if PILLOW_VERSION != getattr(core, 'PILLOW_VERSION', None):
raise ImportError("The _imaging extension was built for another "
" version of Pillow or PIL")
except ImportError as v:
core = _imaging_not_installed()
# Explanations for ways that we know we might have an import error
if str(v).startswith("Module use of python"):
# The _imaging C module is present, but not compiled for
# the right version (windows only). Print a warning, if
# possible.
warnings.warn(
"The _imaging extension was built for another version "
"of Python.",
RuntimeWarning
)
elif str(v).startswith("The _imaging extension"):
warnings.warn(str(v), RuntimeWarning)
elif "Symbol not found: _PyUnicodeUCS2_" in str(v):
# should match _PyUnicodeUCS2_FromString and
# _PyUnicodeUCS2_AsLatin1String
warnings.warn(
"The _imaging extension was built for Python with UCS2 support; "
"recompile Pillow or build Python --without-wide-unicode. ",
RuntimeWarning
)
elif "Symbol not found: _PyUnicodeUCS4_" in str(v):
# should match _PyUnicodeUCS4_FromString and
# _PyUnicodeUCS4_AsLatin1String
warnings.warn(
"The _imaging extension was built for Python with UCS4 support; "
"recompile Pillow or build Python --with-wide-unicode. ",
RuntimeWarning
)
# Fail here anyway. Don't let people run with a mostly broken Pillow.
# see docs/porting.rst
raise
try:
import builtins
except ImportError:
import __builtin__
builtins = __builtin__
from PIL import ImageMode
from PIL._binary import i8
from PIL._util import isPath
from PIL._util import isStringType
from PIL._util import deferred_error
import os
import sys
import io
import struct
# type stuff
import collections
import numbers
# works everywhere, win for pypy, not cpython
USE_CFFI_ACCESS = hasattr(sys, 'pypy_version_info')
try:
import cffi
HAS_CFFI = True
except ImportError:
HAS_CFFI = False
def isImageType(t):
"""
Checks if an object is an image object.
.. warning::
This function is for internal use only.
:param t: object to check if it's an image
:returns: True if the object is an image
"""
return hasattr(t, "im")
#
# Constants (also defined in _imagingmodule.c!)
NONE = 0
# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1
ROTATE_90 = 2
ROTATE_180 = 3
ROTATE_270 = 4
TRANSPOSE = 5
# transforms
AFFINE = 0
EXTENT = 1
PERSPECTIVE = 2
QUAD = 3
MESH = 4
# resampling filters
NEAREST = NONE = 0
BOX = 4
BILINEAR = LINEAR = 2
HAMMING = 5
BICUBIC = CUBIC = 3
LANCZOS = ANTIALIAS = 1
# dithers
NEAREST = NONE = 0
ORDERED = 1 # Not yet implemented
RASTERIZE = 2 # Not yet implemented
FLOYDSTEINBERG = 3 # default
# palettes/quantizers
WEB = 0
ADAPTIVE = 1
MEDIANCUT = 0
MAXCOVERAGE = 1
FASTOCTREE = 2
LIBIMAGEQUANT = 3
# categories
NORMAL = 0
SEQUENCE = 1
CONTAINER = 2
if hasattr(core, 'DEFAULT_STRATEGY'):
DEFAULT_STRATEGY = core.DEFAULT_STRATEGY
FILTERED = core.FILTERED
HUFFMAN_ONLY = core.HUFFMAN_ONLY
RLE = core.RLE
FIXED = core.FIXED
# --------------------------------------------------------------------
# Registries
ID = []
OPEN = {}
MIME = {}
SAVE = {}
SAVE_ALL = {}
EXTENSION = {}
# --------------------------------------------------------------------
# Modes supported by this version
_MODEINFO = {
# NOTE: this table will be removed in future versions. use
# getmode* functions or ImageMode descriptors instead.
# official modes
"1": ("L", "L", ("1",)),
"L": ("L", "L", ("L",)),
"I": ("L", "I", ("I",)),
"F": ("L", "F", ("F",)),
"P": ("RGB", "L", ("P",)),
"RGB": ("RGB", "L", ("R", "G", "B")),
"RGBX": ("RGB", "L", ("R", "G", "B", "X")),
"RGBA": ("RGB", "L", ("R", "G", "B", "A")),
"CMYK": ("RGB", "L", ("C", "M", "Y", "K")),
"YCbCr": ("RGB", "L", ("Y", "Cb", "Cr")),
"LAB": ("RGB", "L", ("L", "A", "B")),
"HSV": ("RGB", "L", ("H", "S", "V")),
# Experimental modes include I;16, I;16L, I;16B, RGBa, BGR;15, and
# BGR;24. Use these modes only if you know exactly what you're
# doing...
}
if sys.byteorder == 'little':
_ENDIAN = '<'
else:
_ENDIAN = '>'
_MODE_CONV = {
# official modes
"1": ('|b1', None), # Bits need to be extended to bytes
"L": ('|u1', None),
"LA": ('|u1', 2),
"I": (_ENDIAN + 'i4', None),
"F": (_ENDIAN + 'f4', None),
"P": ('|u1', None),
"RGB": ('|u1', 3),
"RGBX": ('|u1', 4),
"RGBA": ('|u1', 4),
"CMYK": ('|u1', 4),
"YCbCr": ('|u1', 3),
"LAB": ('|u1', 3), # UNDONE - unsigned |u1i1i1
"HSV": ('|u1', 3),
# I;16 == I;16L, and I;32 == I;32L
"I;16": ('<u2', None),
"I;16B": ('>u2', None),
"I;16L": ('<u2', None),
"I;16S": ('<i2', None),
"I;16BS": ('>i2', None),
"I;16LS": ('<i2', None),
"I;32": ('<u4', None),
"I;32B": ('>u4', None),
"I;32L": ('<u4', None),
"I;32S": ('<i4', None),
"I;32BS": ('>i4', None),
"I;32LS": ('<i4', None),
}
def _conv_type_shape(im):
shape = im.size[1], im.size[0]
typ, extra = _MODE_CONV[im.mode]
if extra is None:
return shape, typ
else:
return shape+(extra,), typ
MODES = sorted(_MODEINFO.keys())
# raw modes that may be memory mapped. NOTE: if you change this, you
# may have to modify the stride calculation in map.c too!
_MAPMODES = ("L", "P", "RGBX", "RGBA", "CMYK", "I;16", "I;16L", "I;16B")
def getmodebase(mode):
"""
Gets the "base" mode for given mode. This function returns "L" for
images that contain grayscale data, and "RGB" for images that
contain color data.
:param mode: Input mode.
:returns: "L" or "RGB".
:exception KeyError: If the input mode was not a standard mode.
"""
return ImageMode.getmode(mode).basemode
def getmodetype(mode):
"""
Gets the storage type mode. Given a mode, this function returns a
single-layer mode suitable for storing individual bands.
:param mode: Input mode.
:returns: "L", "I", or "F".
:exception KeyError: If the input mode was not a standard mode.
"""
return ImageMode.getmode(mode).basetype
def getmodebandnames(mode):
"""
Gets a list of individual band names. Given a mode, this function returns
a tuple containing the names of individual bands (use
:py:method:`~PIL.Image.getmodetype` to get the mode used to store each
individual band.
:param mode: Input mode.
:returns: A tuple containing band names. The length of the tuple
gives the number of bands in an image of the given mode.
:exception KeyError: If the input mode was not a standard mode.
"""
return ImageMode.getmode(mode).bands
def getmodebands(mode):
"""
Gets the number of individual bands for this mode.
:param mode: Input mode.
:returns: The number of bands in this mode.
:exception KeyError: If the input mode was not a standard mode.
"""
return len(ImageMode.getmode(mode).bands)
# --------------------------------------------------------------------
# Helpers
_initialized = 0
def preinit():
"Explicitly load standard file format drivers."
global _initialized
if _initialized >= 1:
return
try:
from PIL import BmpImagePlugin
except ImportError:
pass
try:
from PIL import GifImagePlugin
except ImportError:
pass
try:
from PIL import JpegImagePlugin
except ImportError:
pass
try:
from PIL import PpmImagePlugin
except ImportError:
pass
try:
from PIL import PngImagePlugin
except ImportError:
pass
# try:
# import TiffImagePlugin
# except ImportError:
# pass
_initialized = 1
def init():
"""
Explicitly initializes the Python Imaging Library. This function
loads all available file format drivers.
"""
global _initialized
if _initialized >= 2:
return 0
for plugin in _plugins:
try:
logger.debug("Importing %s", plugin)
__import__("PIL.%s" % plugin, globals(), locals(), [])
except ImportError as e:
logger.debug("Image: failed to import %s: %s", plugin, e)
if OPEN or SAVE:
_initialized = 2
return 1
# --------------------------------------------------------------------
# Codec factories (used by tobytes/frombytes and ImageFile.load)
def _getdecoder(mode, decoder_name, args, extra=()):
# tweak arguments
if args is None:
args = ()
elif not isinstance(args, tuple):
args = (args,)
try:
# get decoder
decoder = getattr(core, decoder_name + "_decoder")
# print(decoder, mode, args + extra)
return decoder(mode, *args + extra)
except AttributeError:
raise IOError("decoder %s not available" % decoder_name)
def _getencoder(mode, encoder_name, args, extra=()):
# tweak arguments
if args is None:
args = ()
elif not isinstance(args, tuple):
args = (args,)
try:
# get encoder
encoder = getattr(core, encoder_name + "_encoder")
# print(encoder, mode, args + extra)
return encoder(mode, *args + extra)
except AttributeError:
raise IOError("encoder %s not available" % encoder_name)
# --------------------------------------------------------------------
# Simple expression analyzer
def coerce_e(value):
return value if isinstance(value, _E) else _E(value)
class _E(object):
def __init__(self, data):
self.data = data
def __add__(self, other):
return _E((self.data, "__add__", coerce_e(other).data))
def __mul__(self, other):
return _E((self.data, "__mul__", coerce_e(other).data))
def _getscaleoffset(expr):
stub = ["stub"]
data = expr(_E(stub)).data
try:
(a, b, c) = data # simplified syntax
if (a is stub and b == "__mul__" and isinstance(c, numbers.Number)):
return c, 0.0
if a is stub and b == "__add__" and isinstance(c, numbers.Number):
return 1.0, c
except TypeError:
pass
try:
((a, b, c), d, e) = data # full syntax
if (a is stub and b == "__mul__" and isinstance(c, numbers.Number) and
d == "__add__" and isinstance(e, numbers.Number)):
return c, e
except TypeError:
pass
raise ValueError("illegal expression")
# --------------------------------------------------------------------
# Implementation wrapper
class Image(object):
"""
This class represents an image object. To create
:py:class:`~PIL.Image.Image` objects, use the appropriate factory
functions. There's hardly ever any reason to call the Image constructor
directly.
* :py:func:`~PIL.Image.open`
* :py:func:`~PIL.Image.new`
* :py:func:`~PIL.Image.frombytes`
"""
format = None
format_description = None
def __init__(self):
# FIXME: take "new" parameters / other image?
# FIXME: turn mode and size into delegating properties?
self.im = None
self.mode = ""
self.size = (0, 0)
self.palette = None
self.info = {}
self.category = NORMAL
self.readonly = 0
self.pyaccess = None
@property
def width(self):
return self.size[0]
@property
def height(self):
return self.size[1]
def _new(self, im):
new = Image()
new.im = im
new.mode = im.mode
new.size = im.size
if self.palette:
new.palette = self.palette.copy()
if im.mode == "P" and not new.palette:
from PIL import ImagePalette
new.palette = ImagePalette.ImagePalette()
new.info = self.info.copy()
return new
_makeself = _new # compatibility
# Context Manager Support
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
def close(self):
"""
Closes the file pointer, if possible.
This operation will destroy the image core and release its memory.
The image data will be unusable afterward.
This function is only required to close images that have not
had their file read and closed by the
:py:meth:`~PIL.Image.Image.load` method.
"""
try:
self.fp.close()
except Exception as msg:
logger.debug("Error closing: %s", msg)
# Instead of simply setting to None, we're setting up a
# deferred error that will better explain that the core image
# object is gone.
self.im = deferred_error(ValueError("Operation on closed image"))
def _copy(self):
self.load()
self.im = self.im.copy()
self.pyaccess = None
self.readonly = 0
def _dump(self, file=None, format=None):
import tempfile
suffix = ''
if format:
suffix = '.'+format
if not file:
f, file = tempfile.mkstemp(suffix)
os.close(f)
self.load()
if not format or format == "PPM":
self.im.save_ppm(file)
else:
if not file.endswith(format):
file = file + "." + format
self.save(file, format)
return file
def __eq__(self, other):
return (self.__class__.__name__ == other.__class__.__name__ and
self.mode == other.mode and
self.size == other.size and
self.info == other.info and
self.category == other.category and
self.readonly == other.readonly and
self.getpalette() == other.getpalette() and
self.tobytes() == other.tobytes())
def __ne__(self, other):
eq = (self == other)
return not eq
def __repr__(self):
return "<%s.%s image mode=%s size=%dx%d at 0x%X>" % (
self.__class__.__module__, self.__class__.__name__,
self.mode, self.size[0], self.size[1],
id(self)
)
def _repr_png_(self):
""" iPython display hook support
:returns: png version of the image as bytes
"""
from io import BytesIO
b = BytesIO()
self.save(b, 'PNG')
return b.getvalue()
@property
def __array_interface__(self):
# numpy array interface support
new = {}
shape, typestr = _conv_type_shape(self)
new['shape'] = shape
new['typestr'] = typestr
new['version'] = 3
if self.mode == '1':
# Binary images need to be extended from bits to bytes
# See: https://github.com/python-pillow/Pillow/issues/350
new['data'] = self.tobytes('raw', 'L')
else:
new['data'] = self.tobytes()
return new
def __getstate__(self):
return [
self.info,
self.mode,
self.size,
self.getpalette(),
self.tobytes()]
def __setstate__(self, state):
Image.__init__(self)
self.tile = []
info, mode, size, palette, data = state
self.info = info
self.mode = mode
self.size = size
self.im = core.new(mode, size)
if mode in ("L", "P") and palette:
self.putpalette(palette)
self.frombytes(data)
def tobytes(self, encoder_name="raw", *args):
"""
Return image as a bytes object.
.. warning::
This method returns the raw image data from the internal
storage. For compressed image data (e.g. PNG, JPEG) use
:meth:`~.save`, with a BytesIO parameter for in-memory
data.
:param encoder_name: What encoder to use. The default is to
use the standard "raw" encoder.
:param args: Extra arguments to the encoder.
:rtype: A bytes object.
"""
# may pass tuple instead of argument list
if len(args) == 1 and isinstance(args[0], tuple):
args = args[0]
if encoder_name == "raw" and args == ():
args = self.mode
self.load()
# unpack data
e = _getencoder(self.mode, encoder_name, args)
e.setimage(self.im)
bufsize = max(65536, self.size[0] * 4) # see RawEncode.c
data = []
while True:
l, s, d = e.encode(bufsize)
data.append(d)
if s:
break
if s < 0:
raise RuntimeError("encoder error %d in tobytes" % s)
return b"".join(data)
def tostring(self, *args, **kw):
raise NotImplementedError("tostring() has been removed. " +
"Please call tobytes() instead.")
def tobitmap(self, name="image"):
"""
Returns the image converted to an X11 bitmap.
.. note:: This method only works for mode "1" images.
:param name: The name prefix to use for the bitmap variables.
:returns: A string containing an X11 bitmap.
:raises ValueError: If the mode is not "1"
"""
self.load()
if self.mode != "1":
raise ValueError("not a bitmap")
data = self.tobytes("xbm")
return b"".join([
("#define %s_width %d\n" % (name, self.size[0])).encode('ascii'),
("#define %s_height %d\n" % (name, self.size[1])).encode('ascii'),
("static char %s_bits[] = {\n" % name).encode('ascii'), data, b"};"
])
def frombytes(self, data, decoder_name="raw", *args):
"""
Loads this image with pixel data from a bytes object.
This method is similar to the :py:func:`~PIL.Image.frombytes` function,
but loads data into this image instead of creating a new image object.
"""
# may pass tuple instead of argument list
if len(args) == 1 and isinstance(args[0], tuple):
args = args[0]
# default format
if decoder_name == "raw" and args == ():
args = self.mode
# unpack data
d = _getdecoder(self.mode, decoder_name, args)
d.setimage(self.im)
s = d.decode(data)
if s[0] >= 0:
raise ValueError("not enough image data")
if s[1] != 0:
raise ValueError("cannot decode image data")
def fromstring(self, *args, **kw):
raise NotImplementedError("fromstring() has been removed. " +
"Please call frombytes() instead.")
def load(self):
"""
Allocates storage for the image and loads the pixel data. In
normal cases, you don't need to call this method, since the
Image class automatically loads an opened image when it is
accessed for the first time. This method will close the file
associated with the image.
:returns: An image access object.
:rtype: :ref:`PixelAccess` or :py:class:`PIL.PyAccess`
"""
if self.im and self.palette and self.palette.dirty:
# realize palette
self.im.putpalette(*self.palette.getdata())
self.palette.dirty = 0
self.palette.mode = "RGB"
self.palette.rawmode = None
if "transparency" in self.info:
if isinstance(self.info["transparency"], int):
self.im.putpalettealpha(self.info["transparency"], 0)
else:
self.im.putpalettealphas(self.info["transparency"])
self.palette.mode = "RGBA"
if self.im:
if HAS_CFFI and USE_CFFI_ACCESS:
if self.pyaccess:
return self.pyaccess
from PIL import PyAccess
self.pyaccess = PyAccess.new(self, self.readonly)
if self.pyaccess:
return self.pyaccess
return self.im.pixel_access(self.readonly)
def verify(self):
"""
Verifies the contents of a file. For data read from a file, this
method attempts to determine if the file is broken, without
actually decoding the image data. If this method finds any
problems, it raises suitable exceptions. If you need to load
the image after using this method, you must reopen the image
file.
"""
pass
def convert(self, mode=None, matrix=None, dither=None,
palette=WEB, colors=256):
"""
Returns a converted copy of this image. For the "P" mode, this
method translates pixels through the palette. If mode is
omitted, a mode is chosen so that all information in the image
and the palette can be represented without a palette.
The current version supports all possible conversions between
"L", "RGB" and "CMYK." The **matrix** argument only supports "L"
and "RGB".
When translating a color image to black and white (mode "L"),
the library uses the ITU-R 601-2 luma transform::
L = R * 299/1000 + G * 587/1000 + B * 114/1000
The default method of converting a greyscale ("L") or "RGB"
image into a bilevel (mode "1") image uses Floyd-Steinberg
dither to approximate the original image luminosity levels. If
dither is NONE, all non-zero values are set to 255 (white). To
use other thresholds, use the :py:meth:`~PIL.Image.Image.point`
method.
:param mode: The requested mode. See: :ref:`concept-modes`.
:param matrix: An optional conversion matrix. If given, this
should be 4- or 12-tuple containing floating point values.
:param dither: Dithering method, used when converting from
mode "RGB" to "P" or from "RGB" or "L" to "1".
Available methods are NONE or FLOYDSTEINBERG (default).
:param palette: Palette to use when converting from mode "RGB"
to "P". Available palettes are WEB or ADAPTIVE.
:param colors: Number of colors to use for the ADAPTIVE palette.
Defaults to 256.
:rtype: :py:class:`~PIL.Image.Image`
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if not mode:
# determine default mode
if self.mode == "P":
self.load()
if self.palette:
mode = self.palette.mode
else:
mode = "RGB"
else:
return self.copy()
self.load()
if matrix:
# matrix conversion
if mode not in ("L", "RGB"):
raise ValueError("illegal conversion")
im = self.im.convert_matrix(mode, matrix)
return self._new(im)
if mode == "P" and self.mode == "RGBA":
return self.quantize(colors)
trns = None
delete_trns = False
# transparency handling
if "transparency" in self.info and \
self.info['transparency'] is not None:
if self.mode in ('L', 'RGB') and mode == 'RGBA':
# Use transparent conversion to promote from transparent
# color to an alpha channel.
return self._new(self.im.convert_transparent(
mode, self.info['transparency']))
elif self.mode in ('L', 'RGB', 'P') and mode in ('L', 'RGB', 'P'):
t = self.info['transparency']
if isinstance(t, bytes):
# Dragons. This can't be represented by a single color
warnings.warn('Palette images with Transparency ' +
' expressed in bytes should be converted ' +
'to RGBA images')
delete_trns = True
else:
# get the new transparency color.
# use existing conversions
trns_im = Image()._new(core.new(self.mode, (1, 1)))
if self.mode == 'P':
trns_im.putpalette(self.palette)
if type(t) == tuple:
try:
t = trns_im.palette.getcolor(t)
except:
raise ValueError("Couldn't allocate a palette "+
"color for transparency")
trns_im.putpixel((0, 0), t)
if mode in ('L', 'RGB'):
trns_im = trns_im.convert(mode)
else:
# can't just retrieve the palette number, got to do it
# after quantization.
trns_im = trns_im.convert('RGB')
trns = trns_im.getpixel((0, 0))
elif self.mode == 'P' and mode == 'RGBA':
t = self.info['transparency']
delete_trns = True
if isinstance(t, bytes):
self.im.putpalettealphas(t)
elif isinstance(t, int):
self.im.putpalettealpha(t, 0)
else:
raise ValueError("Transparency for P mode should" +
" be bytes or int")
if mode == "P" and palette == ADAPTIVE:
im = self.im.quantize(colors)
new = self._new(im)
from PIL import ImagePalette
new.palette = ImagePalette.raw("RGB", new.im.getpalette("RGB"))
if delete_trns:
# This could possibly happen if we requantize to fewer colors.
# The transparency would be totally off in that case.
del(new.info['transparency'])
if trns is not None:
try:
new.info['transparency'] = new.palette.getcolor(trns)
except:
# if we can't make a transparent color, don't leave the old
# transparency hanging around to mess us up.
del(new.info['transparency'])
warnings.warn("Couldn't allocate palette entry " +
"for transparency")
return new
# colorspace conversion
if dither is None:
dither = FLOYDSTEINBERG
try:
im = self.im.convert(mode, dither)
except ValueError:
try:
# normalize source image and try again
im = self.im.convert(getmodebase(self.mode))
im = im.convert(mode, dither)
except KeyError:
raise ValueError("illegal conversion")
new_im = self._new(im)
if delete_trns:
# crash fail if we leave a bytes transparency in an rgb/l mode.
del(new_im.info['transparency'])
if trns is not None:
if new_im.mode == 'P':
try:
new_im.info['transparency'] = new_im.palette.getcolor(trns)
except:
del(new_im.info['transparency'])
warnings.warn("Couldn't allocate palette entry " +
"for transparency")
else:
new_im.info['transparency'] = trns
return new_im
def quantize(self, colors=256, method=None, kmeans=0, palette=None):
"""
Convert the image to 'P' mode with the specified number
of colors.
:param colors: The desired number of colors, <= 256
:param method: 0 = median cut
1 = maximum coverage
2 = fast octree
3 = libimagequant
:param kmeans: Integer
:param palette: Quantize to the :py:class:`PIL.ImagingPalette` palette.
:returns: A new image
"""
self.load()
if method is None:
# defaults:
method = 0
if self.mode == 'RGBA':
method = 2
if self.mode == 'RGBA' and method not in (2, 3):
# Caller specified an invalid mode.
raise ValueError(
'Fast Octree (method == 2) and libimagequant (method == 3) ' +
'are the only valid methods for quantizing RGBA images')
if palette:
# use palette from reference image
palette.load()
if palette.mode != "P":
raise ValueError("bad mode for palette image")
if self.mode != "RGB" and self.mode != "L":
raise ValueError(
"only RGB or L mode images can be quantized to a palette"
)
im = self.im.convert("P", 1, palette.im)
return self._makeself(im)
return self._new(self.im.quantize(colors, method, kmeans))
def copy(self):
"""
Copies this image. Use this method if you wish to paste things
into an image, but still retain the original.
:rtype: :py:class:`~PIL.Image.Image`
:returns: An :py:class:`~PIL.Image.Image` object.
"""
self.load()
return self._new(self.im.copy())
__copy__ = copy
def crop(self, box=None):
"""
Returns a rectangular region from this image. The box is a
4-tuple defining the left, upper, right, and lower pixel
coordinate.
This is a lazy operation. Changes to the source image may or
may not be reflected in the cropped image. To break the
connection, call the :py:meth:`~PIL.Image.Image.load` method on
the cropped copy.
:param box: The crop rectangle, as a (left, upper, right, lower)-tuple.
:rtype: :py:class:`~PIL.Image.Image`
:returns: An :py:class:`~PIL.Image.Image` object.
"""
self.load()
if box is None:
return self.copy()
# lazy operation
return _ImageCrop(self, box)
def draft(self, mode, size):
"""
Configures the image file loader so it returns a version of the
image that as closely as possible matches the given mode and
size. For example, you can use this method to convert a color
JPEG to greyscale while loading it, or to extract a 128x192
version from a PCD file.
Note that this method modifies the :py:class:`~PIL.Image.Image` object
in place. If the image has already been loaded, this method has no
effect.
:param mode: The requested mode.
:param size: The requested size.
"""
pass
def _expand(self, xmargin, ymargin=None):
if ymargin is None:
ymargin = xmargin
self.load()
return self._new(self.im.expand(xmargin, ymargin, 0))
def filter(self, filter):
"""
Filters this image using the given filter. For a list of
available filters, see the :py:mod:`~PIL.ImageFilter` module.
:param filter: Filter kernel.
:returns: An :py:class:`~PIL.Image.Image` object. """
self.load()
if isinstance(filter, collections.Callable):
filter = filter()
if not hasattr(filter, "filter"):
raise TypeError("filter argument should be ImageFilter.Filter " +
"instance or class")
if self.im.bands == 1:
return self._new(filter.filter(self.im))
# fix to handle multiband images since _imaging doesn't
ims = []
for c in range(self.im.bands):
ims.append(self._new(filter.filter(self.im.getband(c))))
return merge(self.mode, ims)
def getbands(self):
"""
Returns a tuple containing the name of each band in this image.
For example, **getbands** on an RGB image returns ("R", "G", "B").
:returns: A tuple containing band names.
:rtype: tuple
"""
return ImageMode.getmode(self.mode).bands
def getbbox(self):
"""
Calculates the bounding box of the non-zero regions in the
image.
:returns: The bounding box is returned as a 4-tuple defining the
left, upper, right, and lower pixel coordinate. If the image
is completely empty, this method returns None.
"""
self.load()
return self.im.getbbox()
def getcolors(self, maxcolors=256):
"""
Returns a list of colors used in this image.
:param maxcolors: Maximum number of colors. If this number is
exceeded, this method returns None. The default limit is
256 colors.
:returns: An unsorted list of (count, pixel) values.
"""
self.load()
if self.mode in ("1", "L", "P"):
h = self.im.histogram()
out = []
for i in range(256):
if h[i]:
out.append((h[i], i))
if len(out) > maxcolors:
return None
return out
return self.im.getcolors(maxcolors)
def getdata(self, band=None):
"""
Returns the contents of this image as a sequence object
containing pixel values. The sequence object is flattened, so
that values for line one follow directly after the values of
line zero, and so on.
Note that the sequence object returned by this method is an
internal PIL data type, which only supports certain sequence
operations. To convert it to an ordinary sequence (e.g. for
printing), use **list(im.getdata())**.
:param band: What band to return. The default is to return
all bands. To return a single band, pass in the index
value (e.g. 0 to get the "R" band from an "RGB" image).
:returns: A sequence-like object.
"""
self.load()
if band is not None:
return self.im.getband(band)
return self.im # could be abused
def getextrema(self):
"""
Gets the the minimum and maximum pixel values for each band in
the image.
:returns: For a single-band image, a 2-tuple containing the
minimum and maximum pixel value. For a multi-band image,
a tuple containing one 2-tuple for each band.
"""
self.load()
if self.im.bands > 1:
extrema = []
for i in range(self.im.bands):
extrema.append(self.im.getband(i).getextrema())
return tuple(extrema)
return self.im.getextrema()
def getim(self):
"""
Returns a capsule that points to the internal image memory.
:returns: A capsule object.
"""
self.load()
return self.im.ptr
def getpalette(self):
"""
Returns the image palette as a list.
:returns: A list of color values [r, g, b, ...], or None if the
image has no palette.
"""
self.load()
try:
if bytes is str:
return [i8(c) for c in self.im.getpalette()]
else:
return list(self.im.getpalette())
except ValueError:
return None # no palette
def getpixel(self, xy):
"""
Returns the pixel value at a given position.
:param xy: The coordinate, given as (x, y).
:returns: The pixel value. If the image is a multi-layer image,
this method returns a tuple.
"""
self.load()
if self.pyaccess:
return self.pyaccess.getpixel(xy)
return self.im.getpixel(xy)
def getprojection(self):
"""
Get projection to x and y axes
:returns: Two sequences, indicating where there are non-zero
pixels along the X-axis and the Y-axis, respectively.
"""
self.load()
x, y = self.im.getprojection()
return [i8(c) for c in x], [i8(c) for c in y]
def histogram(self, mask=None, extrema=None):
"""
Returns a histogram for the image. The histogram is returned as
a list of pixel counts, one for each pixel value in the source
image. If the image has more than one band, the histograms for
all bands are concatenated (for example, the histogram for an
"RGB" image contains 768 values).
A bilevel image (mode "1") is treated as a greyscale ("L") image
by this method.
If a mask is provided, the method returns a histogram for those
parts of the image where the mask image is non-zero. The mask
image must have the same size as the image, and be either a
bi-level image (mode "1") or a greyscale image ("L").
:param mask: An optional mask.
:returns: A list containing pixel counts.
"""
self.load()
if mask:
mask.load()
return self.im.histogram((0, 0), mask.im)
if self.mode in ("I", "F"):
if extrema is None:
extrema = self.getextrema()
return self.im.histogram(extrema)
return self.im.histogram()
def offset(self, xoffset, yoffset=None):
raise NotImplementedError("offset() has been removed. " +
"Please call ImageChops.offset() instead.")
def paste(self, im, box=None, mask=None):
"""
Pastes another image into this image. The box argument is either
a 2-tuple giving the upper left corner, a 4-tuple defining the
left, upper, right, and lower pixel coordinate, or None (same as
(0, 0)). If a 4-tuple is given, the size of the pasted image
must match the size of the region.
If the modes don't match, the pasted image is converted to the mode of
this image (see the :py:meth:`~PIL.Image.Image.convert` method for
details).
Instead of an image, the source can be a integer or tuple
containing pixel values. The method then fills the region
with the given color. When creating RGB images, you can
also use color strings as supported by the ImageColor module.
If a mask is given, this method updates only the regions
indicated by the mask. You can use either "1", "L" or "RGBA"
images (in the latter case, the alpha band is used as mask).
Where the mask is 255, the given image is copied as is. Where
the mask is 0, the current value is preserved. Intermediate
values will mix the two images together, including their alpha
channels if they have them.
See :py:meth:`~PIL.Image.Image.alpha_composite` if you want to
combine images with respect to their alpha channels.
:param im: Source image or pixel value (integer or tuple).
:param box: An optional 4-tuple giving the region to paste into.
If a 2-tuple is used instead, it's treated as the upper left
corner. If omitted or None, the source is pasted into the
upper left corner.
If an image is given as the second argument and there is no
third, the box defaults to (0, 0), and the second argument
is interpreted as a mask image.
:param mask: An optional mask image.
"""
if isImageType(box) and mask is None:
# abbreviated paste(im, mask) syntax
mask = box
box = None
if box is None:
# cover all of self
box = (0, 0) + self.size
if len(box) == 2:
# upper left corner given; get size from image or mask
if isImageType(im):
size = im.size
elif isImageType(mask):
size = mask.size
else:
# FIXME: use self.size here?
raise ValueError(
"cannot determine region size; use 4-item box"
)
box = box + (box[0]+size[0], box[1]+size[1])
if isStringType(im):
from PIL import ImageColor
im = ImageColor.getcolor(im, self.mode)
elif isImageType(im):
im.load()
if self.mode != im.mode:
if self.mode != "RGB" or im.mode not in ("RGBA", "RGBa"):
# should use an adapter for this!
im = im.convert(self.mode)
im = im.im
self.load()
if self.readonly:
self._copy()
if mask:
mask.load()
self.im.paste(im, box, mask.im)
else:
self.im.paste(im, box)
def point(self, lut, mode=None):
"""
Maps this image through a lookup table or function.
:param lut: A lookup table, containing 256 (or 65336 if
self.mode=="I" and mode == "L") values per band in the
image. A function can be used instead, it should take a
single argument. The function is called once for each
possible pixel value, and the resulting table is applied to
all bands of the image.
:param mode: Output mode (default is same as input). In the
current version, this can only be used if the source image
has mode "L" or "P", and the output has mode "1" or the
source image mode is "I" and the output mode is "L".
:returns: An :py:class:`~PIL.Image.Image` object.
"""
self.load()
if isinstance(lut, ImagePointHandler):
return lut.point(self)
if callable(lut):
# if it isn't a list, it should be a function
if self.mode in ("I", "I;16", "F"):
# check if the function can be used with point_transform
# UNDONE wiredfool -- I think this prevents us from ever doing
# a gamma function point transform on > 8bit images.
scale, offset = _getscaleoffset(lut)
return self._new(self.im.point_transform(scale, offset))
# for other modes, convert the function to a table
lut = [lut(i) for i in range(256)] * self.im.bands
if self.mode == "F":
# FIXME: _imaging returns a confusing error message for this case
raise ValueError("point operation not supported for this mode")
return self._new(self.im.point(lut, mode))
def putalpha(self, alpha):
"""
Adds or replaces the alpha layer in this image. If the image
does not have an alpha layer, it's converted to "LA" or "RGBA".
The new layer must be either "L" or "1".
:param alpha: The new alpha layer. This can either be an "L" or "1"
image having the same size as this image, or an integer or
other color value.
"""
self.load()
if self.readonly:
self._copy()
if self.mode not in ("LA", "RGBA"):
# attempt to promote self to a matching alpha mode
try:
mode = getmodebase(self.mode) + "A"
try:
self.im.setmode(mode)
self.pyaccess = None
except (AttributeError, ValueError):
# do things the hard way
im = self.im.convert(mode)
if im.mode not in ("LA", "RGBA"):
raise ValueError # sanity check
self.im = im
self.pyaccess = None
self.mode = self.im.mode
except (KeyError, ValueError):
raise ValueError("illegal image mode")
if self.mode == "LA":
band = 1
else:
band = 3
if isImageType(alpha):
# alpha layer
if alpha.mode not in ("1", "L"):
raise ValueError("illegal image mode")
alpha.load()
if alpha.mode == "1":
alpha = alpha.convert("L")
else:
# constant alpha
try:
self.im.fillband(band, alpha)
except (AttributeError, ValueError):
# do things the hard way
alpha = new("L", self.size, alpha)
else:
return
self.im.putband(alpha.im, band)
def putdata(self, data, scale=1.0, offset=0.0):
"""
Copies pixel data to this image. This method copies data from a
sequence object into the image, starting at the upper left
corner (0, 0), and continuing until either the image or the
sequence ends. The scale and offset values are used to adjust
the sequence values: **pixel = value*scale + offset**.
:param data: A sequence object.
:param scale: An optional scale value. The default is 1.0.
:param offset: An optional offset value. The default is 0.0.
"""
self.load()
if self.readonly:
self._copy()
self.im.putdata(data, scale, offset)
def putpalette(self, data, rawmode="RGB"):
"""
Attaches a palette to this image. The image must be a "P" or
"L" image, and the palette sequence must contain 768 integer
values, where each group of three values represent the red,
green, and blue values for the corresponding pixel
index. Instead of an integer sequence, you can use an 8-bit
string.
:param data: A palette sequence (either a list or a string).
"""
from PIL import ImagePalette
if self.mode not in ("L", "P"):
raise ValueError("illegal image mode")
self.load()
if isinstance(data, ImagePalette.ImagePalette):
palette = ImagePalette.raw(data.rawmode, data.palette)
else:
if not isinstance(data, bytes):
if bytes is str:
data = "".join(chr(x) for x in data)
else:
data = bytes(data)
palette = ImagePalette.raw(rawmode, data)
self.mode = "P"
self.palette = palette
self.palette.mode = "RGB"
self.load() # install new palette
def putpixel(self, xy, value):
"""
Modifies the pixel at the given position. The color is given as
a single numerical value for single-band images, and a tuple for
multi-band images.
Note that this method is relatively slow. For more extensive changes,
use :py:meth:`~PIL.Image.Image.paste` or the :py:mod:`~PIL.ImageDraw`
module instead.
See:
* :py:meth:`~PIL.Image.Image.paste`
* :py:meth:`~PIL.Image.Image.putdata`
* :py:mod:`~PIL.ImageDraw`
:param xy: The pixel coordinate, given as (x, y).
:param value: The pixel value.
"""
self.load()
if self.readonly:
self._copy()
self.pyaccess = None
self.load()
if self.pyaccess:
return self.pyaccess.putpixel(xy, value)
return self.im.putpixel(xy, value)
def resize(self, size, resample=NEAREST):
"""
Returns a resized copy of this image.
:param size: The requested size in pixels, as a 2-tuple:
(width, height).
:param resample: An optional resampling filter. This can be
one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BOX`,
:py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.HAMMING`,
:py:attr:`PIL.Image.BICUBIC` or :py:attr:`PIL.Image.LANCZOS`.
If omitted, or if the image has mode "1" or "P", it is
set :py:attr:`PIL.Image.NEAREST`.
See: :ref:`concept-filters`.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if resample not in (
NEAREST, BILINEAR, BICUBIC, LANCZOS, BOX, HAMMING,
):
raise ValueError("unknown resampling filter")
self.load()
size = tuple(size)
if self.size == size:
return self._new(self.im)
if self.mode in ("1", "P"):
resample = NEAREST
if self.mode == 'LA':
return self.convert('La').resize(size, resample).convert('LA')
if self.mode == 'RGBA':
return self.convert('RGBa').resize(size, resample).convert('RGBA')
return self._new(self.im.resize(size, resample))
def rotate(self, angle, resample=NEAREST, expand=0):
"""
Returns a rotated copy of this image. This method returns a
copy of this image, rotated the given number of degrees counter
clockwise around its centre.
:param angle: In degrees counter clockwise.
:param resample: An optional resampling filter. This can be
one of :py:attr:`PIL.Image.NEAREST` (use nearest neighbour),
:py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
environment), or :py:attr:`PIL.Image.BICUBIC`
(cubic spline interpolation in a 4x4 environment).
If omitted, or if the image has mode "1" or "P", it is
set :py:attr:`PIL.Image.NEAREST`. See :ref:`concept-filters`.
:param expand: Optional expansion flag. If true, expands the output
image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the
input image.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
angle = angle % 360.0
# Fast paths regardless of filter
if angle == 0:
return self.copy()
if angle == 180:
return self.transpose(ROTATE_180)
if angle == 90 and expand:
return self.transpose(ROTATE_90)
if angle == 270 and expand:
return self.transpose(ROTATE_270)
angle = - math.radians(angle)
matrix = [
round(math.cos(angle), 15), round(math.sin(angle), 15), 0.0,
round(-math.sin(angle), 15), round(math.cos(angle), 15), 0.0
]
def transform(x, y, matrix=matrix):
(a, b, c, d, e, f) = matrix
return a*x + b*y + c, d*x + e*y + f
w, h = self.size
if expand:
# calculate output size
xx = []
yy = []
for x, y in ((0, 0), (w, 0), (w, h), (0, h)):
x, y = transform(x, y)
xx.append(x)
yy.append(y)
w = int(math.ceil(max(xx)) - math.floor(min(xx)))
h = int(math.ceil(max(yy)) - math.floor(min(yy)))
# adjust center
x, y = transform(w / 2.0, h / 2.0)
matrix[2] = self.size[0] / 2.0 - x
matrix[5] = self.size[1] / 2.0 - y
return self.transform((w, h), AFFINE, matrix, resample)
def save(self, fp, format=None, **params):
"""
Saves this image under the given filename. If no format is
specified, the format to use is determined from the filename
extension, if possible.
Keyword options can be used to provide additional instructions
to the writer. If a writer doesn't recognise an option, it is
silently ignored. The available options are described in the
:doc:`image format documentation
<../handbook/image-file-formats>` for each writer.
You can use a file object instead of a filename. In this case,
you must always specify the format. The file object must
implement the ``seek``, ``tell``, and ``write``
methods, and be opened in binary mode.
:param fp: A filename (string), pathlib.Path object or file object.
:param format: Optional format override. If omitted, the
format to use is determined from the filename extension.
If a file object was used instead of a filename, this
parameter should always be used.
:param options: Extra parameters to the image writer.
:returns: None
:exception KeyError: If the output format could not be determined
from the file name. Use the format option to solve this.
:exception IOError: If the file could not be written. The file
may have been created, and may contain partial data.
"""
filename = ""
open_fp = False
if isPath(fp):
filename = fp
open_fp = True
elif sys.version_info >= (3, 4):
from pathlib import Path
if isinstance(fp, Path):
filename = str(fp)
open_fp = True
elif hasattr(fp, "name") and isPath(fp.name):
# only set the name for metadata purposes
filename = fp.name
# may mutate self!
self.load()
save_all = False
if 'save_all' in params:
save_all = params.pop('save_all')
self.encoderinfo = params
self.encoderconfig = ()
preinit()
ext = os.path.splitext(filename)[1].lower()
if not format:
if ext not in EXTENSION:
init()
format = EXTENSION[ext]
if format.upper() not in SAVE:
init()
if save_all:
save_handler = SAVE_ALL[format.upper()]
else:
save_handler = SAVE[format.upper()]
if open_fp:
fp = builtins.open(filename, "wb")
try:
save_handler(self, fp, filename)
finally:
# do what we can to clean up
if open_fp:
fp.close()
def seek(self, frame):
"""
Seeks to the given frame in this sequence file. If you seek
beyond the end of the sequence, the method raises an
**EOFError** exception. When a sequence file is opened, the
library automatically seeks to frame 0.
Note that in the current version of the library, most sequence
formats only allows you to seek to the next frame.
See :py:meth:`~PIL.Image.Image.tell`.
:param frame: Frame number, starting at 0.
:exception EOFError: If the call attempts to seek beyond the end
of the sequence.
"""
# overridden by file handlers
if frame != 0:
raise EOFError
def show(self, title=None, command=None):
"""
Displays this image. This method is mainly intended for
debugging purposes.
On Unix platforms, this method saves the image to a temporary
PPM file, and calls either the **xv** utility or the **display**
utility, depending on which one can be found.
On OS X, this method saves the image to a temporary BMP file, and opens
it with the native Preview application.
On Windows, it saves the image to a temporary BMP file, and uses
the standard BMP display utility to show it (usually Paint).
:param title: Optional title to use for the image window,
where possible.
:param command: command used to show the image
"""
_show(self, title=title, command=command)
def split(self):
"""
Split this image into individual bands. This method returns a
tuple of individual image bands from an image. For example,
splitting an "RGB" image creates three new images each
containing a copy of one of the original bands (red, green,
blue).
:returns: A tuple containing bands.
"""
self.load()
if self.im.bands == 1:
ims = [self.copy()]
else:
ims = []
for i in range(self.im.bands):
ims.append(self._new(self.im.getband(i)))
return tuple(ims)
def tell(self):
"""
Returns the current frame number. See :py:meth:`~PIL.Image.Image.seek`.
:returns: Frame number, starting with 0.
"""
return 0
def thumbnail(self, size, resample=BICUBIC):
"""
Make this image into a thumbnail. This method modifies the
image to contain a thumbnail version of itself, no larger than
the given size. This method calculates an appropriate thumbnail
size to preserve the aspect of the image, calls the
:py:meth:`~PIL.Image.Image.draft` method to configure the file reader
(where applicable), and finally resizes the image.
Note that this function modifies the :py:class:`~PIL.Image.Image`
object in place. If you need to use the full resolution image as well,
apply this method to a :py:meth:`~PIL.Image.Image.copy` of the original
image.
:param size: Requested size.
:param resample: Optional resampling filter. This can be one
of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BILINEAR`,
:py:attr:`PIL.Image.BICUBIC`, or :py:attr:`PIL.Image.LANCZOS`.
If omitted, it defaults to :py:attr:`PIL.Image.BICUBIC`.
(was :py:attr:`PIL.Image.NEAREST` prior to version 2.5.0)
:returns: None
"""
# preserve aspect ratio
x, y = self.size
if x > size[0]:
y = int(max(y * size[0] / x, 1))
x = int(size[0])
if y > size[1]:
x = int(max(x * size[1] / y, 1))
y = int(size[1])
size = x, y
if size == self.size:
return
self.draft(None, size)
im = self.resize(size, resample)
self.im = im.im
self.mode = im.mode
self.size = size
self.readonly = 0
self.pyaccess = None
# FIXME: the different transform methods need further explanation
# instead of bloating the method docs, add a separate chapter.
def transform(self, size, method, data=None, resample=NEAREST, fill=1):
"""
Transforms this image. This method creates a new image with the
given size, and the same mode as the original, and copies data
to the new image using the given transform.
:param size: The output size.
:param method: The transformation method. This is one of
:py:attr:`PIL.Image.EXTENT` (cut out a rectangular subregion),
:py:attr:`PIL.Image.AFFINE` (affine transform),
:py:attr:`PIL.Image.PERSPECTIVE` (perspective transform),
:py:attr:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or
:py:attr:`PIL.Image.MESH` (map a number of source quadrilaterals
in one operation).
:param data: Extra data to the transformation method.
:param resample: Optional resampling filter. It can be one of
:py:attr:`PIL.Image.NEAREST` (use nearest neighbour),
:py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
environment), or :py:attr:`PIL.Image.BICUBIC` (cubic spline
interpolation in a 4x4 environment). If omitted, or if the image
has mode "1" or "P", it is set to :py:attr:`PIL.Image.NEAREST`.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if self.mode == 'LA':
return self.convert('La').transform(
size, method, data, resample, fill).convert('LA')
if self.mode == 'RGBA':
return self.convert('RGBa').transform(
size, method, data, resample, fill).convert('RGBA')
if isinstance(method, ImageTransformHandler):
return method.transform(size, self, resample=resample, fill=fill)
if hasattr(method, "getdata"):
# compatibility w. old-style transform objects
method, data = method.getdata()
if data is None:
raise ValueError("missing method data")
im = new(self.mode, size, None)
if method == MESH:
# list of quads
for box, quad in data:
im.__transformer(box, self, QUAD, quad, resample, fill)
else:
im.__transformer((0, 0)+size, self, method, data, resample, fill)
return im
def __transformer(self, box, image, method, data,
resample=NEAREST, fill=1):
w = box[2] - box[0]
h = box[3] - box[1]
if method == AFFINE:
data = data[0:6]
elif method == EXTENT:
# convert extent to an affine transform
x0, y0, x1, y1 = data
xs = float(x1 - x0) / w
ys = float(y1 - y0) / h
method = AFFINE
data = (xs, 0, x0, 0, ys, y0)
elif method == PERSPECTIVE:
data = data[0:8]
elif method == QUAD:
# quadrilateral warp. data specifies the four corners
# given as NW, SW, SE, and NE.
nw = data[0:2]
sw = data[2:4]
se = data[4:6]
ne = data[6:8]
x0, y0 = nw
As = 1.0 / w
At = 1.0 / h
data = (x0, (ne[0]-x0)*As, (sw[0]-x0)*At,
(se[0]-sw[0]-ne[0]+x0)*As*At,
y0, (ne[1]-y0)*As, (sw[1]-y0)*At,
(se[1]-sw[1]-ne[1]+y0)*As*At)
else:
raise ValueError("unknown transformation method")
if resample not in (NEAREST, BILINEAR, BICUBIC):
raise ValueError("unknown resampling filter")
image.load()
self.load()
if image.mode in ("1", "P"):
resample = NEAREST
self.im.transform2(box, image.im, method, data, resample, fill)
def transpose(self, method):
"""
Transpose image (flip or rotate in 90 degree steps)
:param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`,
:py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`,
:py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270` or
:py:attr:`PIL.Image.TRANSPOSE`.
:returns: Returns a flipped or rotated copy of this image.
"""
self.load()
return self._new(self.im.transpose(method))
def effect_spread(self, distance):
"""
Randomly spread pixels in an image.
:param distance: Distance to spread pixels.
"""
self.load()
return self._new(self.im.effect_spread(distance))
def toqimage(self):
"""Returns a QImage copy of this image"""
from PIL import ImageQt
if not ImageQt.qt_is_installed:
raise ImportError("Qt bindings are not installed")
return ImageQt.toqimage(self)
def toqpixmap(self):
"""Returns a QPixmap copy of this image"""
from PIL import ImageQt
if not ImageQt.qt_is_installed:
raise ImportError("Qt bindings are not installed")
return ImageQt.toqpixmap(self)
# --------------------------------------------------------------------
# Lazy operations
class _ImageCrop(Image):
def __init__(self, im, box):
Image.__init__(self)
# Round to nearest integer, runs int(round(x)) when unpacking
x0, y0, x1, y1 = map(int, map(round, box))
if x1 < x0:
x1 = x0
if y1 < y0:
y1 = y0
self.mode = im.mode
self.size = x1-x0, y1-y0
self.__crop = x0, y0, x1, y1
self.im = im.im
def load(self):
# lazy evaluation!
if self.__crop:
self.im = self.im.crop(self.__crop)
self.__crop = None
if self.im:
return self.im.pixel_access(self.readonly)
# FIXME: future versions should optimize crop/paste
# sequences!
# --------------------------------------------------------------------
# Abstract handlers.
class ImagePointHandler(object):
# used as a mixin by point transforms (for use with im.point)
pass
class ImageTransformHandler(object):
# used as a mixin by geometry transforms (for use with im.transform)
pass
# --------------------------------------------------------------------
# Factories
#
# Debugging
def _wedge():
"Create greyscale wedge (for debugging only)"
return Image()._new(core.wedge("L"))
def new(mode, size, color=0):
"""
Creates a new image with the given mode and size.
:param mode: The mode to use for the new image. See:
:ref:`concept-modes`.
:param size: A 2-tuple, containing (width, height) in pixels.
:param color: What color to use for the image. Default is black.
If given, this should be a single integer or floating point value
for single-band modes, and a tuple for multi-band modes (one value
per band). When creating RGB images, you can also use color
strings as supported by the ImageColor module. If the color is
None, the image is not initialised.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if color is None:
# don't initialize
return Image()._new(core.new(mode, size))
if isStringType(color):
# css3-style specifier
from PIL import ImageColor
color = ImageColor.getcolor(color, mode)
return Image()._new(core.fill(mode, size, color))
def frombytes(mode, size, data, decoder_name="raw", *args):
"""
Creates a copy of an image memory from pixel data in a buffer.
In its simplest form, this function takes three arguments
(mode, size, and unpacked pixel data).
You can also use any pixel decoder supported by PIL. For more
information on available decoders, see the section
:ref:`Writing Your Own File Decoder <file-decoders>`.
Note that this function decodes pixel data only, not entire images.
If you have an entire image in a string, wrap it in a
:py:class:`~io.BytesIO` object, and use :py:func:`~PIL.Image.open` to load
it.
:param mode: The image mode. See: :ref:`concept-modes`.
:param size: The image size.
:param data: A byte buffer containing raw data for the given mode.
:param decoder_name: What decoder to use.
:param args: Additional parameters for the given decoder.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
# may pass tuple instead of argument list
if len(args) == 1 and isinstance(args[0], tuple):
args = args[0]
if decoder_name == "raw" and args == ():
args = mode
im = new(mode, size)
im.frombytes(data, decoder_name, args)
return im
def fromstring(*args, **kw):
raise NotImplementedError("fromstring() has been removed. " +
"Please call frombytes() instead.")
def frombuffer(mode, size, data, decoder_name="raw", *args):
"""
Creates an image memory referencing pixel data in a byte buffer.
This function is similar to :py:func:`~PIL.Image.frombytes`, but uses data
in the byte buffer, where possible. This means that changes to the
original buffer object are reflected in this image). Not all modes can
share memory; supported modes include "L", "RGBX", "RGBA", and "CMYK".
Note that this function decodes pixel data only, not entire images.
If you have an entire image file in a string, wrap it in a
**BytesIO** object, and use :py:func:`~PIL.Image.open` to load it.
In the current version, the default parameters used for the "raw" decoder
differs from that used for :py:func:`~PIL.Image.frombytes`. This is a
bug, and will probably be fixed in a future release. The current release
issues a warning if you do this; to disable the warning, you should provide
the full set of parameters. See below for details.
:param mode: The image mode. See: :ref:`concept-modes`.
:param size: The image size.
:param data: A bytes or other buffer object containing raw
data for the given mode.
:param decoder_name: What decoder to use.
:param args: Additional parameters for the given decoder. For the
default encoder ("raw"), it's recommended that you provide the
full set of parameters::
frombuffer(mode, size, data, "raw", mode, 0, 1)
:returns: An :py:class:`~PIL.Image.Image` object.
.. versionadded:: 1.1.4
"""
# may pass tuple instead of argument list
if len(args) == 1 and isinstance(args[0], tuple):
args = args[0]
if decoder_name == "raw":
if args == ():
warnings.warn(
"the frombuffer defaults may change in a future release; "
"for portability, change the call to read:\n"
" frombuffer(mode, size, data, 'raw', mode, 0, 1)",
RuntimeWarning, stacklevel=2
)
args = mode, 0, -1 # may change to (mode, 0, 1) post-1.1.6
if args[0] in _MAPMODES:
im = new(mode, (1, 1))
im = im._new(
core.map_buffer(data, size, decoder_name, None, 0, args)
)
im.readonly = 1
return im
return frombytes(mode, size, data, decoder_name, args)
def fromarray(obj, mode=None):
"""
Creates an image memory from an object exporting the array interface
(using the buffer protocol).
If obj is not contiguous, then the tobytes method is called
and :py:func:`~PIL.Image.frombuffer` is used.
:param obj: Object with array interface
:param mode: Mode to use (will be determined from type if None)
See: :ref:`concept-modes`.
:returns: An image object.
.. versionadded:: 1.1.6
"""
arr = obj.__array_interface__
shape = arr['shape']
ndim = len(shape)
try:
strides = arr['strides']
except KeyError:
strides = None
if mode is None:
try:
typekey = (1, 1) + shape[2:], arr['typestr']
mode, rawmode = _fromarray_typemap[typekey]
except KeyError:
# print typekey
raise TypeError("Cannot handle this data type")
else:
rawmode = mode
if mode in ["1", "L", "I", "P", "F"]:
ndmax = 2
elif mode == "RGB":
ndmax = 3
else:
ndmax = 4
if ndim > ndmax:
raise ValueError("Too many dimensions: %d > %d." % (ndim, ndmax))
size = shape[1], shape[0]
if strides is not None:
if hasattr(obj, 'tobytes'):
obj = obj.tobytes()
else:
obj = obj.tostring()
return frombuffer(mode, size, obj, "raw", rawmode, 0, 1)
def fromqimage(im):
"""Creates an image instance from a QImage image"""
from PIL import ImageQt
if not ImageQt.qt_is_installed:
raise ImportError("Qt bindings are not installed")
return ImageQt.fromqimage(im)
def fromqpixmap(im):
"""Creates an image instance from a QPixmap image"""
from PIL import ImageQt
if not ImageQt.qt_is_installed:
raise ImportError("Qt bindings are not installed")
return ImageQt.fromqpixmap(im)
_fromarray_typemap = {
# (shape, typestr) => mode, rawmode
# first two members of shape are set to one
# ((1, 1), "|b1"): ("1", "1"), # broken
((1, 1), "|u1"): ("L", "L"),
((1, 1), "|i1"): ("I", "I;8"),
((1, 1), "<u2"): ("I", "I;16"),
((1, 1), ">u2"): ("I", "I;16B"),
((1, 1), "<i2"): ("I", "I;16S"),
((1, 1), ">i2"): ("I", "I;16BS"),
((1, 1), "<u4"): ("I", "I;32"),
((1, 1), ">u4"): ("I", "I;32B"),
((1, 1), "<i4"): ("I", "I;32S"),
((1, 1), ">i4"): ("I", "I;32BS"),
((1, 1), "<f4"): ("F", "F;32F"),
((1, 1), ">f4"): ("F", "F;32BF"),
((1, 1), "<f8"): ("F", "F;64F"),
((1, 1), ">f8"): ("F", "F;64BF"),
((1, 1, 2), "|u1"): ("LA", "LA"),
((1, 1, 3), "|u1"): ("RGB", "RGB"),
((1, 1, 4), "|u1"): ("RGBA", "RGBA"),
}
# shortcuts
_fromarray_typemap[((1, 1), _ENDIAN + "i4")] = ("I", "I")
_fromarray_typemap[((1, 1), _ENDIAN + "f4")] = ("F", "F")
def _decompression_bomb_check(size):
if MAX_IMAGE_PIXELS is None:
return
pixels = size[0] * size[1]
if pixels > MAX_IMAGE_PIXELS:
warnings.warn(
"Image size (%d pixels) exceeds limit of %d pixels, "
"could be decompression bomb DOS attack." %
(pixels, MAX_IMAGE_PIXELS),
DecompressionBombWarning)
def open(fp, mode="r"):
"""
Opens and identifies the given image file.
This is a lazy operation; this function identifies the file, but
the file remains open and the actual image data is not read from
the file until you try to process the data (or call the
:py:meth:`~PIL.Image.Image.load` method). See
:py:func:`~PIL.Image.new`.
:param fp: A filename (string), pathlib.Path object or a file object.
The file object must implement :py:meth:`~file.read`,
:py:meth:`~file.seek`, and :py:meth:`~file.tell` methods,
and be opened in binary mode.
:param mode: The mode. If given, this argument must be "r".
:returns: An :py:class:`~PIL.Image.Image` object.
:exception IOError: If the file cannot be found, or the image cannot be
opened and identified.
"""
if mode != "r":
raise ValueError("bad mode %r" % mode)
filename = ""
if isPath(fp):
filename = fp
elif sys.version_info >= (3, 4):
from pathlib import Path
if isinstance(fp, Path):
filename = str(fp.resolve())
if filename:
fp = builtins.open(filename, "rb")
try:
fp.seek(0)
except (AttributeError, io.UnsupportedOperation):
fp = io.BytesIO(fp.read())
prefix = fp.read(16)
preinit()
def _open_core(fp, filename, prefix):
for i in ID:
try:
factory, accept = OPEN[i]
if not accept or accept(prefix):
fp.seek(0)
im = factory(fp, filename)
_decompression_bomb_check(im.size)
return im
except (SyntaxError, IndexError, TypeError, struct.error):
# Leave disabled by default, spams the logs with image
# opening failures that are entirely expected.
# logger.debug("", exc_info=True)
continue
return None
im = _open_core(fp, filename, prefix)
if im is None:
if init():
im = _open_core(fp, filename, prefix)
if im:
return im
raise IOError("cannot identify image file %r"
% (filename if filename else fp))
#
# Image processing.
def alpha_composite(im1, im2):
"""
Alpha composite im2 over im1.
:param im1: The first image. Must have mode RGBA.
:param im2: The second image. Must have mode RGBA, and the same size as
the first image.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
im1.load()
im2.load()
return im1._new(core.alpha_composite(im1.im, im2.im))
def blend(im1, im2, alpha):
"""
Creates a new image by interpolating between two input images, using
a constant alpha.::
out = image1 * (1.0 - alpha) + image2 * alpha
:param im1: The first image.
:param im2: The second image. Must have the same mode and size as
the first image.
:param alpha: The interpolation alpha factor. If alpha is 0.0, a
copy of the first image is returned. If alpha is 1.0, a copy of
the second image is returned. There are no restrictions on the
alpha value. If necessary, the result is clipped to fit into
the allowed output range.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
im1.load()
im2.load()
return im1._new(core.blend(im1.im, im2.im, alpha))
def composite(image1, image2, mask):
"""
Create composite image by blending images using a transparency mask.
:param image1: The first image.
:param image2: The second image. Must have the same mode and
size as the first image.
:param mask: A mask image. This image can have mode
"1", "L", or "RGBA", and must have the same size as the
other two images.
"""
image = image2.copy()
image.paste(image1, None, mask)
return image
def eval(image, *args):
"""
Applies the function (which should take one argument) to each pixel
in the given image. If the image has more than one band, the same
function is applied to each band. Note that the function is
evaluated once for each possible pixel value, so you cannot use
random components or other generators.
:param image: The input image.
:param function: A function object, taking one integer argument.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
return image.point(args[0])
def merge(mode, bands):
"""
Merge a set of single band images into a new multiband image.
:param mode: The mode to use for the output image. See:
:ref:`concept-modes`.
:param bands: A sequence containing one single-band image for
each band in the output image. All bands must have the
same size.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if getmodebands(mode) != len(bands) or "*" in mode:
raise ValueError("wrong number of bands")
for im in bands[1:]:
if im.mode != getmodetype(mode):
raise ValueError("mode mismatch")
if im.size != bands[0].size:
raise ValueError("size mismatch")
im = core.new(mode, bands[0].size)
for i in range(getmodebands(mode)):
bands[i].load()
im.putband(bands[i].im, i)
return bands[0]._new(im)
# --------------------------------------------------------------------
# Plugin registry
def register_open(id, factory, accept=None):
"""
Register an image file plugin. This function should not be used
in application code.
:param id: An image format identifier.
:param factory: An image file factory method.
:param accept: An optional function that can be used to quickly
reject images having another format.
"""
id = id.upper()
ID.append(id)
OPEN[id] = factory, accept
def register_mime(id, mimetype):
"""
Registers an image MIME type. This function should not be used
in application code.
:param id: An image format identifier.
:param mimetype: The image MIME type for this format.
"""
MIME[id.upper()] = mimetype
def register_save(id, driver):
"""
Registers an image save function. This function should not be
used in application code.
:param id: An image format identifier.
:param driver: A function to save images in this format.
"""
SAVE[id.upper()] = driver
def register_save_all(id, driver):
"""
Registers an image function to save all the frames
of a multiframe format. This function should not be
used in application code.
:param id: An image format identifier.
:param driver: A function to save images in this format.
"""
SAVE_ALL[id.upper()] = driver
def register_extension(id, extension):
"""
Registers an image extension. This function should not be
used in application code.
:param id: An image format identifier.
:param extension: An extension used for this format.
"""
EXTENSION[extension.lower()] = id.upper()
# --------------------------------------------------------------------
# Simple display support. User code may override this.
def _show(image, **options):
# override me, as necessary
_showxv(image, **options)
def _showxv(image, title=None, **options):
from PIL import ImageShow
ImageShow.show(image, title, **options)
# --------------------------------------------------------------------
# Effects
def effect_mandelbrot(size, extent, quality):
"""
Generate a Mandelbrot set covering the given extent.
:param size: The requested size in pixels, as a 2-tuple:
(width, height).
:param extent: The extent to cover, as a 4-tuple:
(x0, y0, x1, y2).
:param quality: Quality.
"""
return Image()._new(core.effect_mandelbrot(size, extent, quality))
def effect_noise(size, sigma):
"""
Generate Gaussian noise centered around 128.
:param size: The requested size in pixels, as a 2-tuple:
(width, height).
:param sigma: Standard deviation of noise.
"""
return Image()._new(core.effect_noise(size, sigma))