Pillow/Tests/test_image_resample.py
Jon Dufresne 33dabf986f Import unittest from stdlib rather than helper.py
The unittest in helper.py has not offered an interesting abstraction
since dbe9f85c7d so import from the more
typical stdlib location.
2019-11-20 18:42:52 -08:00

567 lines
22 KiB
Python

import unittest
from contextlib import contextmanager
from PIL import Image, ImageDraw
from .helper import PillowTestCase, hopper
class TestImagingResampleVulnerability(PillowTestCase):
# see https://github.com/python-pillow/Pillow/issues/1710
def test_overflow(self):
im = hopper("L")
size_too_large = 0x100000008 // 4
size_normal = 1000 # unimportant
for xsize, ysize in (
(size_too_large, size_normal),
(size_normal, size_too_large),
):
with self.assertRaises(MemoryError):
# any resampling filter will do here
im.im.resize((xsize, ysize), Image.BILINEAR)
def test_invalid_size(self):
im = hopper()
# Should not crash
im.resize((100, 100))
with self.assertRaises(ValueError):
im.resize((-100, 100))
with self.assertRaises(ValueError):
im.resize((100, -100))
def test_modify_after_resizing(self):
im = hopper("RGB")
# get copy with same size
copy = im.resize(im.size)
# some in-place operation
copy.paste("black", (0, 0, im.width // 2, im.height // 2))
# image should be different
self.assertNotEqual(im.tobytes(), copy.tobytes())
class TestImagingCoreResampleAccuracy(PillowTestCase):
def make_case(self, mode, size, color):
"""Makes a sample image with two dark and two bright squares.
For example:
e0 e0 1f 1f
e0 e0 1f 1f
1f 1f e0 e0
1f 1f e0 e0
"""
case = Image.new("L", size, 255 - color)
rectangle = ImageDraw.Draw(case).rectangle
rectangle((0, 0, size[0] // 2 - 1, size[1] // 2 - 1), color)
rectangle((size[0] // 2, size[1] // 2, size[0], size[1]), color)
return Image.merge(mode, [case] * len(mode))
def make_sample(self, data, size):
"""Restores a sample image from given data string which contains
hex-encoded pixels from the top left fourth of a sample.
"""
data = data.replace(" ", "")
sample = Image.new("L", size)
s_px = sample.load()
w, h = size[0] // 2, size[1] // 2
for y in range(h):
for x in range(w):
val = int(data[(y * w + x) * 2 : (y * w + x + 1) * 2], 16)
s_px[x, y] = val
s_px[size[0] - x - 1, size[1] - y - 1] = val
s_px[x, size[1] - y - 1] = 255 - val
s_px[size[0] - x - 1, y] = 255 - val
return sample
def check_case(self, case, sample):
s_px = sample.load()
c_px = case.load()
for y in range(case.size[1]):
for x in range(case.size[0]):
if c_px[x, y] != s_px[x, y]:
message = "\nHave: \n{}\n\nExpected: \n{}".format(
self.serialize_image(case), self.serialize_image(sample)
)
self.assertEqual(s_px[x, y], c_px[x, y], message)
def serialize_image(self, image):
s_px = image.load()
return "\n".join(
" ".join("{:02x}".format(s_px[x, y]) for x in range(image.size[0]))
for y in range(image.size[1])
)
def test_reduce_box(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (8, 8), 0xE1)
case = case.resize((4, 4), Image.BOX)
# fmt: off
data = ("e1 e1"
"e1 e1")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (4, 4)))
def test_reduce_bilinear(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (8, 8), 0xE1)
case = case.resize((4, 4), Image.BILINEAR)
# fmt: off
data = ("e1 c9"
"c9 b7")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (4, 4)))
def test_reduce_hamming(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (8, 8), 0xE1)
case = case.resize((4, 4), Image.HAMMING)
# fmt: off
data = ("e1 da"
"da d3")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (4, 4)))
def test_reduce_bicubic(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (12, 12), 0xE1)
case = case.resize((6, 6), Image.BICUBIC)
# fmt: off
data = ("e1 e3 d4"
"e3 e5 d6"
"d4 d6 c9")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (6, 6)))
def test_reduce_lanczos(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (16, 16), 0xE1)
case = case.resize((8, 8), Image.LANCZOS)
# fmt: off
data = ("e1 e0 e4 d7"
"e0 df e3 d6"
"e4 e3 e7 da"
"d7 d6 d9 ce")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (8, 8)))
def test_enlarge_box(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (2, 2), 0xE1)
case = case.resize((4, 4), Image.BOX)
# fmt: off
data = ("e1 e1"
"e1 e1")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (4, 4)))
def test_enlarge_bilinear(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (2, 2), 0xE1)
case = case.resize((4, 4), Image.BILINEAR)
# fmt: off
data = ("e1 b0"
"b0 98")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (4, 4)))
def test_enlarge_hamming(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (2, 2), 0xE1)
case = case.resize((4, 4), Image.HAMMING)
# fmt: off
data = ("e1 d2"
"d2 c5")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (4, 4)))
def test_enlarge_bicubic(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (4, 4), 0xE1)
case = case.resize((8, 8), Image.BICUBIC)
# fmt: off
data = ("e1 e5 ee b9"
"e5 e9 f3 bc"
"ee f3 fd c1"
"b9 bc c1 a2")
# fmt: on
for channel in case.split():
self.check_case(channel, self.make_sample(data, (8, 8)))
def test_enlarge_lanczos(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (6, 6), 0xE1)
case = case.resize((12, 12), Image.LANCZOS)
data = (
"e1 e0 db ed f5 b8"
"e0 df da ec f3 b7"
"db db d6 e7 ee b5"
"ed ec e6 fb ff bf"
"f5 f4 ee ff ff c4"
"b8 b7 b4 bf c4 a0"
)
for channel in case.split():
self.check_case(channel, self.make_sample(data, (12, 12)))
class CoreResampleConsistencyTest(PillowTestCase):
def make_case(self, mode, fill):
im = Image.new(mode, (512, 9), fill)
return im.resize((9, 512), Image.LANCZOS), im.load()[0, 0]
def run_case(self, case):
channel, color = case
px = channel.load()
for x in range(channel.size[0]):
for y in range(channel.size[1]):
if px[x, y] != color:
message = "{} != {} for pixel {}".format(px[x, y], color, (x, y))
self.assertEqual(px[x, y], color, message)
def test_8u(self):
im, color = self.make_case("RGB", (0, 64, 255))
r, g, b = im.split()
self.run_case((r, color[0]))
self.run_case((g, color[1]))
self.run_case((b, color[2]))
self.run_case(self.make_case("L", 12))
def test_32i(self):
self.run_case(self.make_case("I", 12))
self.run_case(self.make_case("I", 0x7FFFFFFF))
self.run_case(self.make_case("I", -12))
self.run_case(self.make_case("I", -1 << 31))
def test_32f(self):
self.run_case(self.make_case("F", 1))
self.run_case(self.make_case("F", 3.40282306074e38))
self.run_case(self.make_case("F", 1.175494e-38))
self.run_case(self.make_case("F", 1.192093e-07))
class CoreResampleAlphaCorrectTest(PillowTestCase):
def make_levels_case(self, mode):
i = Image.new(mode, (256, 16))
px = i.load()
for y in range(i.size[1]):
for x in range(i.size[0]):
pix = [x] * len(mode)
pix[-1] = 255 - y * 16
px[x, y] = tuple(pix)
return i
def run_levels_case(self, i):
px = i.load()
for y in range(i.size[1]):
used_colors = {px[x, y][0] for x in range(i.size[0])}
self.assertEqual(
256,
len(used_colors),
"All colors should present in resized image. "
"Only {} on {} line.".format(len(used_colors), y),
)
@unittest.skip("current implementation isn't precise enough")
def test_levels_rgba(self):
case = self.make_levels_case("RGBA")
self.run_levels_case(case.resize((512, 32), Image.BOX))
self.run_levels_case(case.resize((512, 32), Image.BILINEAR))
self.run_levels_case(case.resize((512, 32), Image.HAMMING))
self.run_levels_case(case.resize((512, 32), Image.BICUBIC))
self.run_levels_case(case.resize((512, 32), Image.LANCZOS))
@unittest.skip("current implementation isn't precise enough")
def test_levels_la(self):
case = self.make_levels_case("LA")
self.run_levels_case(case.resize((512, 32), Image.BOX))
self.run_levels_case(case.resize((512, 32), Image.BILINEAR))
self.run_levels_case(case.resize((512, 32), Image.HAMMING))
self.run_levels_case(case.resize((512, 32), Image.BICUBIC))
self.run_levels_case(case.resize((512, 32), Image.LANCZOS))
def make_dirty_case(self, mode, clean_pixel, dirty_pixel):
i = Image.new(mode, (64, 64), dirty_pixel)
px = i.load()
xdiv4 = i.size[0] // 4
ydiv4 = i.size[1] // 4
for y in range(ydiv4 * 2):
for x in range(xdiv4 * 2):
px[x + xdiv4, y + ydiv4] = clean_pixel
return i
def run_dirty_case(self, i, clean_pixel):
px = i.load()
for y in range(i.size[1]):
for x in range(i.size[0]):
if px[x, y][-1] != 0 and px[x, y][:-1] != clean_pixel:
message = "pixel at ({}, {}) is differ:\n{}\n{}".format(
x, y, px[x, y], clean_pixel
)
self.assertEqual(px[x, y][:3], clean_pixel, message)
def test_dirty_pixels_rgba(self):
case = self.make_dirty_case("RGBA", (255, 255, 0, 128), (0, 0, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.BOX), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.BILINEAR), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.HAMMING), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.BICUBIC), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.LANCZOS), (255, 255, 0))
def test_dirty_pixels_la(self):
case = self.make_dirty_case("LA", (255, 128), (0, 0))
self.run_dirty_case(case.resize((20, 20), Image.BOX), (255,))
self.run_dirty_case(case.resize((20, 20), Image.BILINEAR), (255,))
self.run_dirty_case(case.resize((20, 20), Image.HAMMING), (255,))
self.run_dirty_case(case.resize((20, 20), Image.BICUBIC), (255,))
self.run_dirty_case(case.resize((20, 20), Image.LANCZOS), (255,))
class CoreResamplePassesTest(PillowTestCase):
@contextmanager
def count(self, diff):
count = Image.core.get_stats()["new_count"]
yield
self.assertEqual(Image.core.get_stats()["new_count"] - count, diff)
def test_horizontal(self):
im = hopper("L")
with self.count(1):
im.resize((im.size[0] - 10, im.size[1]), Image.BILINEAR)
def test_vertical(self):
im = hopper("L")
with self.count(1):
im.resize((im.size[0], im.size[1] - 10), Image.BILINEAR)
def test_both(self):
im = hopper("L")
with self.count(2):
im.resize((im.size[0] - 10, im.size[1] - 10), Image.BILINEAR)
def test_box_horizontal(self):
im = hopper("L")
box = (20, 0, im.size[0] - 20, im.size[1])
with self.count(1):
# the same size, but different box
with_box = im.resize(im.size, Image.BILINEAR, box)
with self.count(2):
cropped = im.crop(box).resize(im.size, Image.BILINEAR)
self.assert_image_similar(with_box, cropped, 0.1)
def test_box_vertical(self):
im = hopper("L")
box = (0, 20, im.size[0], im.size[1] - 20)
with self.count(1):
# the same size, but different box
with_box = im.resize(im.size, Image.BILINEAR, box)
with self.count(2):
cropped = im.crop(box).resize(im.size, Image.BILINEAR)
self.assert_image_similar(with_box, cropped, 0.1)
class CoreResampleCoefficientsTest(PillowTestCase):
def test_reduce(self):
test_color = 254
for size in range(400000, 400010, 2):
i = Image.new("L", (size, 1), 0)
draw = ImageDraw.Draw(i)
draw.rectangle((0, 0, i.size[0] // 2 - 1, 0), test_color)
px = i.resize((5, i.size[1]), Image.BICUBIC).load()
if px[2, 0] != test_color // 2:
self.assertEqual(test_color // 2, px[2, 0])
def test_nonzero_coefficients(self):
# regression test for the wrong coefficients calculation
# due to bug https://github.com/python-pillow/Pillow/issues/2161
im = Image.new("RGBA", (1280, 1280), (0x20, 0x40, 0x60, 0xFF))
histogram = im.resize((256, 256), Image.BICUBIC).histogram()
# first channel
self.assertEqual(histogram[0x100 * 0 + 0x20], 0x10000)
# second channel
self.assertEqual(histogram[0x100 * 1 + 0x40], 0x10000)
# third channel
self.assertEqual(histogram[0x100 * 2 + 0x60], 0x10000)
# fourth channel
self.assertEqual(histogram[0x100 * 3 + 0xFF], 0x10000)
class CoreResampleBoxTest(PillowTestCase):
def test_wrong_arguments(self):
im = hopper()
for resample in (
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
):
im.resize((32, 32), resample, (0, 0, im.width, im.height))
im.resize((32, 32), resample, (20, 20, im.width, im.height))
im.resize((32, 32), resample, (20, 20, 20, 100))
im.resize((32, 32), resample, (20, 20, 100, 20))
with self.assertRaisesRegex(TypeError, "must be sequence of length 4"):
im.resize((32, 32), resample, (im.width, im.height))
with self.assertRaisesRegex(ValueError, "can't be negative"):
im.resize((32, 32), resample, (-20, 20, 100, 100))
with self.assertRaisesRegex(ValueError, "can't be negative"):
im.resize((32, 32), resample, (20, -20, 100, 100))
with self.assertRaisesRegex(ValueError, "can't be empty"):
im.resize((32, 32), resample, (20.1, 20, 20, 100))
with self.assertRaisesRegex(ValueError, "can't be empty"):
im.resize((32, 32), resample, (20, 20.1, 100, 20))
with self.assertRaisesRegex(ValueError, "can't be empty"):
im.resize((32, 32), resample, (20.1, 20.1, 20, 20))
with self.assertRaisesRegex(ValueError, "can't exceed"):
im.resize((32, 32), resample, (0, 0, im.width + 1, im.height))
with self.assertRaisesRegex(ValueError, "can't exceed"):
im.resize((32, 32), resample, (0, 0, im.width, im.height + 1))
def resize_tiled(self, im, dst_size, xtiles, ytiles):
def split_range(size, tiles):
scale = size / tiles
for i in range(tiles):
yield (int(round(scale * i)), int(round(scale * (i + 1))))
tiled = Image.new(im.mode, dst_size)
scale = (im.size[0] / tiled.size[0], im.size[1] / tiled.size[1])
for y0, y1 in split_range(dst_size[1], ytiles):
for x0, x1 in split_range(dst_size[0], xtiles):
box = (x0 * scale[0], y0 * scale[1], x1 * scale[0], y1 * scale[1])
tile = im.resize((x1 - x0, y1 - y0), Image.BICUBIC, box)
tiled.paste(tile, (x0, y0))
return tiled
def test_tiles(self):
im = Image.open("Tests/images/flower.jpg")
self.assertEqual(im.size, (480, 360))
dst_size = (251, 188)
reference = im.resize(dst_size, Image.BICUBIC)
for tiles in [(1, 1), (3, 3), (9, 7), (100, 100)]:
tiled = self.resize_tiled(im, dst_size, *tiles)
self.assert_image_similar(reference, tiled, 0.01)
def test_subsample(self):
# This test shows advantages of the subpixel resizing
# after supersampling (e.g. during JPEG decoding).
im = Image.open("Tests/images/flower.jpg")
self.assertEqual(im.size, (480, 360))
dst_size = (48, 36)
# Reference is cropped image resized to destination
reference = im.crop((0, 0, 473, 353)).resize(dst_size, Image.BICUBIC)
# Image.BOX emulates supersampling (480 / 8 = 60, 360 / 8 = 45)
supersampled = im.resize((60, 45), Image.BOX)
with_box = supersampled.resize(dst_size, Image.BICUBIC, (0, 0, 59.125, 44.125))
without_box = supersampled.resize(dst_size, Image.BICUBIC)
# error with box should be much smaller than without
self.assert_image_similar(reference, with_box, 6)
with self.assertRaisesRegex(AssertionError, r"difference 29\."):
self.assert_image_similar(reference, without_box, 5)
def test_formats(self):
for resample in [Image.NEAREST, Image.BILINEAR]:
for mode in ["RGB", "L", "RGBA", "LA", "I", ""]:
im = hopper(mode)
box = (20, 20, im.size[0] - 20, im.size[1] - 20)
with_box = im.resize((32, 32), resample, box)
cropped = im.crop(box).resize((32, 32), resample)
self.assert_image_similar(cropped, with_box, 0.4)
def test_passthrough(self):
# When no resize is required
im = hopper()
for size, box in [
((40, 50), (0, 0, 40, 50)),
((40, 50), (0, 10, 40, 60)),
((40, 50), (10, 0, 50, 50)),
((40, 50), (10, 20, 50, 70)),
]:
try:
res = im.resize(size, Image.LANCZOS, box)
self.assertEqual(res.size, size)
self.assert_image_equal(res, im.crop(box))
except AssertionError:
print(">>>", size, box)
raise
def test_no_passthrough(self):
# When resize is required
im = hopper()
for size, box in [
((40, 50), (0.4, 0.4, 40.4, 50.4)),
((40, 50), (0.4, 10.4, 40.4, 60.4)),
((40, 50), (10.4, 0.4, 50.4, 50.4)),
((40, 50), (10.4, 20.4, 50.4, 70.4)),
]:
try:
res = im.resize(size, Image.LANCZOS, box)
self.assertEqual(res.size, size)
with self.assertRaisesRegex(AssertionError, r"difference \d"):
# check that the difference at least that much
self.assert_image_similar(res, im.crop(box), 20)
except AssertionError:
print(">>>", size, box)
raise
def test_skip_horizontal(self):
# Can skip resize for one dimension
im = hopper()
for flt in [Image.NEAREST, Image.BICUBIC]:
for size, box in [
((40, 50), (0, 0, 40, 90)),
((40, 50), (0, 20, 40, 90)),
((40, 50), (10, 0, 50, 90)),
((40, 50), (10, 20, 50, 90)),
]:
try:
res = im.resize(size, flt, box)
self.assertEqual(res.size, size)
# Borders should be slightly different
self.assert_image_similar(res, im.crop(box).resize(size, flt), 0.4)
except AssertionError:
print(">>>", size, box, flt)
raise
def test_skip_vertical(self):
# Can skip resize for one dimension
im = hopper()
for flt in [Image.NEAREST, Image.BICUBIC]:
for size, box in [
((40, 50), (0, 0, 90, 50)),
((40, 50), (20, 0, 90, 50)),
((40, 50), (0, 10, 90, 60)),
((40, 50), (20, 10, 90, 60)),
]:
try:
res = im.resize(size, flt, box)
self.assertEqual(res.size, size)
# Borders should be slightly different
self.assert_image_similar(res, im.crop(box).resize(size, flt), 0.4)
except AssertionError:
print(">>>", size, box, flt)
raise