mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 16:07:30 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			122 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| Tests for resize functionality.
 | |
| """
 | |
| from itertools import permutations
 | |
| 
 | |
| from helper import unittest, PillowTestCase, hopper
 | |
| 
 | |
| from PIL import Image
 | |
| 
 | |
| 
 | |
| class TestImagingCoreResize(PillowTestCase):
 | |
| 
 | |
|     def resize(self, im, size, f):
 | |
|         # Image class independent version of resize.
 | |
|         im.load()
 | |
|         return im._new(im.im.resize(size, f))
 | |
| 
 | |
|     def test_nearest_mode(self):
 | |
|         for mode in ["1", "P", "L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr",
 | |
|                      "I;16"]:  # exotic mode
 | |
|             im = hopper(mode)
 | |
|             r = self.resize(im, (15, 12), Image.NEAREST)
 | |
|             self.assertEqual(r.mode, mode)
 | |
|             self.assertEqual(r.size, (15, 12))
 | |
|             self.assertEqual(r.im.bands, im.im.bands)
 | |
| 
 | |
|     def test_convolution_modes(self):
 | |
|         self.assertRaises(ValueError, self.resize, hopper("1"),
 | |
|                           (15, 12), Image.BILINEAR)
 | |
|         self.assertRaises(ValueError, self.resize, hopper("P"),
 | |
|                           (15, 12), Image.BILINEAR)
 | |
|         self.assertRaises(ValueError, self.resize, hopper("I;16"),
 | |
|                           (15, 12), Image.BILINEAR)
 | |
|         for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]:
 | |
|             im = hopper(mode)
 | |
|             r = self.resize(im, (15, 12), Image.BILINEAR)
 | |
|             self.assertEqual(r.mode, mode)
 | |
|             self.assertEqual(r.size, (15, 12))
 | |
|             self.assertEqual(r.im.bands, im.im.bands)
 | |
| 
 | |
|     def test_reduce_filters(self):
 | |
|         for f in [Image.NEAREST, Image.BOX, Image.BILINEAR,
 | |
|                   Image.HAMMING, Image.BICUBIC, Image.LANCZOS]:
 | |
|             r = self.resize(hopper("RGB"), (15, 12), f)
 | |
|             self.assertEqual(r.mode, "RGB")
 | |
|             self.assertEqual(r.size, (15, 12))
 | |
| 
 | |
|     def test_enlarge_filters(self):
 | |
|         for f in [Image.NEAREST, Image.BOX, Image.BILINEAR,
 | |
|                   Image.HAMMING, Image.BICUBIC, Image.LANCZOS]:
 | |
|             r = self.resize(hopper("RGB"), (212, 195), f)
 | |
|             self.assertEqual(r.mode, "RGB")
 | |
|             self.assertEqual(r.size, (212, 195))
 | |
| 
 | |
|     def test_endianness(self):
 | |
|         # Make an image with one colored pixel, in one channel.
 | |
|         # When resized, that channel should be the same as a GS image.
 | |
|         # Other channels should be unaffected.
 | |
|         # The R and A channels should not swap, which is indicative of
 | |
|         # an endianness issues.
 | |
| 
 | |
|         samples = {
 | |
|             'blank': Image.new('L', (2, 2), 0),
 | |
|             'filled': Image.new('L', (2, 2), 255),
 | |
|             'dirty': Image.new('L', (2, 2), 0),
 | |
|         }
 | |
|         samples['dirty'].putpixel((1, 1), 128)
 | |
| 
 | |
|         for f in [Image.NEAREST, Image.BOX, Image.BILINEAR,
 | |
|                   Image.HAMMING, Image.BICUBIC, Image.LANCZOS]:
 | |
|             # samples resized with current filter
 | |
|             references = {
 | |
|                 name: self.resize(ch, (4, 4), f)
 | |
|                 for name, ch in samples.items()
 | |
|             }
 | |
| 
 | |
|             for mode, channels_set in [
 | |
|                 ('RGB', ('blank', 'filled', 'dirty')),
 | |
|                 ('RGBA', ('blank', 'blank', 'filled', 'dirty')),
 | |
|                 ('LA', ('filled', 'dirty')),
 | |
|             ]:
 | |
|                 for channels in set(permutations(channels_set)):
 | |
|                     # compile image from different channels permutations
 | |
|                     im = Image.merge(mode, [samples[ch] for ch in channels])
 | |
|                     resized = self.resize(im, (4, 4), f)
 | |
| 
 | |
|                     for i, ch in enumerate(resized.split()):
 | |
|                         # check what resized channel in image is the same
 | |
|                         # as separately resized channel
 | |
|                         self.assert_image_equal(ch, references[channels[i]])
 | |
| 
 | |
|     def test_enlarge_zero(self):
 | |
|         for f in [Image.NEAREST, Image.BOX, Image.BILINEAR,
 | |
|                   Image.HAMMING, Image.BICUBIC, Image.LANCZOS]:
 | |
|             r = self.resize(Image.new('RGB', (0, 0), "white"), (212, 195), f)
 | |
|             self.assertEqual(r.mode, "RGB")
 | |
|             self.assertEqual(r.size, (212, 195))
 | |
|             self.assertEqual(r.getdata()[0], (0, 0, 0))
 | |
| 
 | |
|     def test_unknown_filter(self):
 | |
|         self.assertRaises(ValueError, self.resize, hopper(), (10, 10), 9)
 | |
| 
 | |
| 
 | |
| class TestImageResize(PillowTestCase):
 | |
| 
 | |
|     def test_resize(self):
 | |
|         def resize(mode, size):
 | |
|             out = hopper(mode).resize(size)
 | |
|             self.assertEqual(out.mode, mode)
 | |
|             self.assertEqual(out.size, size)
 | |
|         for mode in "1", "P", "L", "RGB", "I", "F":
 | |
|             resize(mode, (112, 103))
 | |
|             resize(mode, (188, 214))
 | |
| 
 | |
|         # Test unknown resampling filter
 | |
|         im = hopper()
 | |
|         self.assertRaises(ValueError, im.resize, (10, 10), "unknown")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     unittest.main()
 |