mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 16:07:30 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			331 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			331 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| Tests for resize functionality.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| from collections.abc import Generator
 | |
| from itertools import permutations
 | |
| from pathlib import Path
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from PIL import Image, ImageFile
 | |
| 
 | |
| from .helper import (
 | |
|     assert_image_equal,
 | |
|     assert_image_equal_tofile,
 | |
|     assert_image_similar,
 | |
|     hopper,
 | |
|     skip_unless_feature,
 | |
| )
 | |
| 
 | |
| 
 | |
| class TestImagingCoreResize:
 | |
|     def resize(
 | |
|         self, im: Image.Image, size: tuple[int, int], f: Image.Resampling
 | |
|     ) -> Image.Image:
 | |
|         # Image class independent version of resize.
 | |
|         im.load()
 | |
|         return im._new(im.im.resize(size, f))
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "mode", ("1", "P", "L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr", "I;16")
 | |
|     )
 | |
|     def test_nearest_mode(self, mode: str) -> None:
 | |
|         im = hopper(mode)
 | |
|         r = self.resize(im, (15, 12), Image.Resampling.NEAREST)
 | |
|         assert r.mode == mode
 | |
|         assert r.size == (15, 12)
 | |
|         assert r.im.bands == im.im.bands
 | |
| 
 | |
|     def test_convolution_modes(self) -> None:
 | |
|         with pytest.raises(ValueError):
 | |
|             self.resize(hopper("1"), (15, 12), Image.Resampling.BILINEAR)
 | |
|         with pytest.raises(ValueError):
 | |
|             self.resize(hopper("P"), (15, 12), Image.Resampling.BILINEAR)
 | |
|         for mode in [
 | |
|             "L",
 | |
|             "I",
 | |
|             "I;16",
 | |
|             "I;16L",
 | |
|             "I;16B",
 | |
|             "I;16N",
 | |
|             "F",
 | |
|             "RGB",
 | |
|             "RGBA",
 | |
|             "CMYK",
 | |
|             "YCbCr",
 | |
|         ]:
 | |
|             im = hopper(mode)
 | |
|             r = self.resize(im, (15, 12), Image.Resampling.BILINEAR)
 | |
|             assert r.mode == mode
 | |
|             assert r.size == (15, 12)
 | |
|             assert r.im.bands == im.im.bands
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "resample",
 | |
|         (
 | |
|             Image.Resampling.NEAREST,
 | |
|             Image.Resampling.BOX,
 | |
|             Image.Resampling.BILINEAR,
 | |
|             Image.Resampling.HAMMING,
 | |
|             Image.Resampling.BICUBIC,
 | |
|             Image.Resampling.LANCZOS,
 | |
|         ),
 | |
|     )
 | |
|     def test_reduce_filters(self, resample: Image.Resampling) -> None:
 | |
|         r = self.resize(hopper("RGB"), (15, 12), resample)
 | |
|         assert r.mode == "RGB"
 | |
|         assert r.size == (15, 12)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "resample",
 | |
|         (
 | |
|             Image.Resampling.NEAREST,
 | |
|             Image.Resampling.BOX,
 | |
|             Image.Resampling.BILINEAR,
 | |
|             Image.Resampling.HAMMING,
 | |
|             Image.Resampling.BICUBIC,
 | |
|             Image.Resampling.LANCZOS,
 | |
|         ),
 | |
|     )
 | |
|     def test_enlarge_filters(self, resample: Image.Resampling) -> None:
 | |
|         r = self.resize(hopper("RGB"), (212, 195), resample)
 | |
|         assert r.mode == "RGB"
 | |
|         assert r.size == (212, 195)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "resample",
 | |
|         (
 | |
|             Image.Resampling.NEAREST,
 | |
|             Image.Resampling.BOX,
 | |
|             Image.Resampling.BILINEAR,
 | |
|             Image.Resampling.HAMMING,
 | |
|             Image.Resampling.BICUBIC,
 | |
|             Image.Resampling.LANCZOS,
 | |
|         ),
 | |
|     )
 | |
|     @pytest.mark.parametrize(
 | |
|         "mode, channels_set",
 | |
|         (
 | |
|             ("RGB", ("blank", "filled", "dirty")),
 | |
|             ("RGBA", ("blank", "blank", "filled", "dirty")),
 | |
|             ("LA", ("filled", "dirty")),
 | |
|         ),
 | |
|     )
 | |
|     def test_endianness(
 | |
|         self, resample: Image.Resampling, mode: str, channels_set: tuple[str, ...]
 | |
|     ) -> None:
 | |
|         # Make an image with one colored pixel, in one channel.
 | |
|         # When resized, that channel should be the same as a GS image.
 | |
|         # Other channels should be unaffected.
 | |
|         # The R and A channels should not swap, which is indicative of
 | |
|         # an endianness issues.
 | |
| 
 | |
|         samples = {
 | |
|             "blank": Image.new("L", (2, 2), 0),
 | |
|             "filled": Image.new("L", (2, 2), 255),
 | |
|             "dirty": Image.new("L", (2, 2), 0),
 | |
|         }
 | |
|         samples["dirty"].putpixel((1, 1), 128)
 | |
| 
 | |
|         # samples resized with current filter
 | |
|         references = {
 | |
|             name: self.resize(ch, (4, 4), resample) for name, ch in samples.items()
 | |
|         }
 | |
| 
 | |
|         for channels in set(permutations(channels_set)):
 | |
|             # compile image from different channels permutations
 | |
|             im = Image.merge(mode, [samples[ch] for ch in channels])
 | |
|             resized = self.resize(im, (4, 4), resample)
 | |
| 
 | |
|             for i, ch in enumerate(resized.split()):
 | |
|                 # check what resized channel in image is the same
 | |
|                 # as separately resized channel
 | |
|                 assert_image_equal(ch, references[channels[i]])
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "resample",
 | |
|         (
 | |
|             Image.Resampling.NEAREST,
 | |
|             Image.Resampling.BOX,
 | |
|             Image.Resampling.BILINEAR,
 | |
|             Image.Resampling.HAMMING,
 | |
|             Image.Resampling.BICUBIC,
 | |
|             Image.Resampling.LANCZOS,
 | |
|         ),
 | |
|     )
 | |
|     def test_enlarge_zero(self, resample: Image.Resampling) -> None:
 | |
|         r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), resample)
 | |
|         assert r.mode == "RGB"
 | |
|         assert r.size == (212, 195)
 | |
|         assert r.getdata()[0] == (0, 0, 0)
 | |
| 
 | |
|     def test_unknown_filter(self) -> None:
 | |
|         with pytest.raises(ValueError):
 | |
|             self.resize(hopper(), (10, 10), 9)  # type: ignore[arg-type]
 | |
| 
 | |
|     def test_cross_platform(self, tmp_path: Path) -> None:
 | |
|         # This test is intended for only check for consistent behaviour across
 | |
|         # platforms. So if a future Pillow change requires that the test file
 | |
|         # be updated, that is okay.
 | |
|         im = hopper().resize((64, 64))
 | |
|         temp_file = tmp_path / "temp.gif"
 | |
|         im.save(temp_file)
 | |
| 
 | |
|         with Image.open(temp_file) as reloaded:
 | |
|             assert_image_equal_tofile(reloaded, "Tests/images/hopper_resized.gif")
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def gradients_image() -> Generator[ImageFile.ImageFile, None, None]:
 | |
|     with Image.open("Tests/images/radial_gradients.png") as im:
 | |
|         im.load()
 | |
|     try:
 | |
|         yield im
 | |
|     finally:
 | |
|         im.close()
 | |
| 
 | |
| 
 | |
| class TestReducingGapResize:
 | |
|     def test_reducing_gap_values(self, gradients_image: ImageFile.ImageFile) -> None:
 | |
|         ref = gradients_image.resize(
 | |
|             (52, 34), Image.Resampling.BICUBIC, reducing_gap=None
 | |
|         )
 | |
|         im = gradients_image.resize((52, 34), Image.Resampling.BICUBIC)
 | |
|         assert_image_equal(ref, im)
 | |
| 
 | |
|         with pytest.raises(ValueError):
 | |
|             gradients_image.resize((52, 34), Image.Resampling.BICUBIC, reducing_gap=0)
 | |
| 
 | |
|         with pytest.raises(ValueError):
 | |
|             gradients_image.resize(
 | |
|                 (52, 34), Image.Resampling.BICUBIC, reducing_gap=0.99
 | |
|             )
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "box, epsilon",
 | |
|         ((None, 4), ((1.1, 2.2, 510.8, 510.9), 4), ((3, 10, 410, 256), 10)),
 | |
|     )
 | |
|     def test_reducing_gap_1(
 | |
|         self,
 | |
|         gradients_image: ImageFile.ImageFile,
 | |
|         box: tuple[float, float, float, float],
 | |
|         epsilon: float,
 | |
|     ) -> None:
 | |
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | |
|         im = gradients_image.resize(
 | |
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0
 | |
|         )
 | |
| 
 | |
|         with pytest.raises(pytest.fail.Exception):
 | |
|             assert_image_equal(ref, im)
 | |
| 
 | |
|         assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "box, epsilon",
 | |
|         ((None, 1.5), ((1.1, 2.2, 510.8, 510.9), 1.5), ((3, 10, 410, 256), 1)),
 | |
|     )
 | |
|     def test_reducing_gap_2(
 | |
|         self,
 | |
|         gradients_image: ImageFile.ImageFile,
 | |
|         box: tuple[float, float, float, float],
 | |
|         epsilon: float,
 | |
|     ) -> None:
 | |
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | |
|         im = gradients_image.resize(
 | |
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0
 | |
|         )
 | |
| 
 | |
|         with pytest.raises(pytest.fail.Exception):
 | |
|             assert_image_equal(ref, im)
 | |
| 
 | |
|         assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "box, epsilon",
 | |
|         ((None, 1), ((1.1, 2.2, 510.8, 510.9), 1), ((3, 10, 410, 256), 0.5)),
 | |
|     )
 | |
|     def test_reducing_gap_3(
 | |
|         self,
 | |
|         gradients_image: ImageFile.ImageFile,
 | |
|         box: tuple[float, float, float, float],
 | |
|         epsilon: float,
 | |
|     ) -> None:
 | |
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | |
|         im = gradients_image.resize(
 | |
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0
 | |
|         )
 | |
| 
 | |
|         with pytest.raises(pytest.fail.Exception):
 | |
|             assert_image_equal(ref, im)
 | |
| 
 | |
|         assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
|     @pytest.mark.parametrize("box", (None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)))
 | |
|     def test_reducing_gap_8(
 | |
|         self,
 | |
|         gradients_image: ImageFile.ImageFile,
 | |
|         box: tuple[float, float, float, float],
 | |
|     ) -> None:
 | |
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
 | |
|         im = gradients_image.resize(
 | |
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0
 | |
|         )
 | |
| 
 | |
|         assert_image_equal(ref, im)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "box, epsilon",
 | |
|         (((0, 0, 512, 512), 5.5), ((0.9, 1.7, 128, 128), 9.5)),
 | |
|     )
 | |
|     def test_box_filter(
 | |
|         self,
 | |
|         gradients_image: ImageFile.ImageFile,
 | |
|         box: tuple[float, float, float, float],
 | |
|         epsilon: float,
 | |
|     ) -> None:
 | |
|         ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box)
 | |
|         im = gradients_image.resize(
 | |
|             (52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0
 | |
|         )
 | |
| 
 | |
|         assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
| 
 | |
| class TestImageResize:
 | |
|     def test_resize(self) -> None:
 | |
|         def resize(mode: str, size: tuple[int, int] | list[int]) -> None:
 | |
|             out = hopper(mode).resize(size)
 | |
|             assert out.mode == mode
 | |
|             assert out.size == tuple(size)
 | |
| 
 | |
|         for mode in "1", "P", "L", "RGB", "I", "F":
 | |
|             resize(mode, (112, 103))
 | |
|             resize(mode, [188, 214])
 | |
| 
 | |
|         # Test unknown resampling filter
 | |
|         with hopper() as im:
 | |
|             with pytest.raises(ValueError):
 | |
|                 im.resize((10, 10), -1)
 | |
| 
 | |
|     @skip_unless_feature("libtiff")
 | |
|     def test_transposed(self) -> None:
 | |
|         with Image.open("Tests/images/g4_orientation_5.tif") as im:
 | |
|             im = im.resize((64, 64))
 | |
|             assert im.size == (64, 64)
 | |
| 
 | |
|     @pytest.mark.parametrize(
 | |
|         "mode", ("L", "RGB", "I", "I;16", "I;16L", "I;16B", "I;16N", "F")
 | |
|     )
 | |
|     def test_default_filter_bicubic(self, mode: str) -> None:
 | |
|         im = hopper(mode)
 | |
|         assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20))
 | |
| 
 | |
|     @pytest.mark.parametrize("mode", ("1", "P"))
 | |
|     def test_default_filter_nearest(self, mode: str) -> None:
 | |
|         im = hopper(mode)
 | |
|         assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20))
 |