mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-11-04 09:57:43 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			441 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			441 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# The Python Imaging Library.
 | 
						|
# $Id$
 | 
						|
#
 | 
						|
# standard image operations
 | 
						|
#
 | 
						|
# History:
 | 
						|
# 2001-10-20 fl   Created
 | 
						|
# 2001-10-23 fl   Added autocontrast operator
 | 
						|
# 2001-12-18 fl   Added Kevin's fit operator
 | 
						|
# 2004-03-14 fl   Fixed potential division by zero in equalize
 | 
						|
# 2005-05-05 fl   Fixed equalize for low number of values
 | 
						|
#
 | 
						|
# Copyright (c) 2001-2004 by Secret Labs AB
 | 
						|
# Copyright (c) 2001-2004 by Fredrik Lundh
 | 
						|
#
 | 
						|
# See the README file for information on usage and redistribution.
 | 
						|
#
 | 
						|
 | 
						|
from PIL import Image
 | 
						|
import operator
 | 
						|
from functools import reduce
 | 
						|
 | 
						|
##
 | 
						|
# (New in 1.1.3) The <b>ImageOps</b> module contains a number of
 | 
						|
# 'ready-made' image processing operations.  This module is somewhat
 | 
						|
# experimental, and most operators only work on L and RGB images.
 | 
						|
#
 | 
						|
# @since 1.1.3
 | 
						|
##
 | 
						|
 | 
						|
#
 | 
						|
# helpers
 | 
						|
 | 
						|
def _border(border):
 | 
						|
    if isinstance(border, tuple):
 | 
						|
        if len(border) == 2:
 | 
						|
            left, top = right, bottom = border
 | 
						|
        elif len(border) == 4:
 | 
						|
            left, top, right, bottom = border
 | 
						|
    else:
 | 
						|
        left = top = right = bottom = border
 | 
						|
    return left, top, right, bottom
 | 
						|
 | 
						|
def _color(color, mode):
 | 
						|
    if Image.isStringType(color):
 | 
						|
        from PIL import ImageColor
 | 
						|
        color = ImageColor.getcolor(color, mode)
 | 
						|
    return color
 | 
						|
 | 
						|
def _lut(image, lut):
 | 
						|
    if image.mode == "P":
 | 
						|
        # FIXME: apply to lookup table, not image data
 | 
						|
        raise NotImplementedError("mode P support coming soon")
 | 
						|
    elif image.mode in ("L", "RGB"):
 | 
						|
        if image.mode == "RGB" and len(lut) == 256:
 | 
						|
            lut = lut + lut + lut
 | 
						|
        return image.point(lut)
 | 
						|
    else:
 | 
						|
        raise IOError("not supported for this image mode")
 | 
						|
 | 
						|
#
 | 
						|
# actions
 | 
						|
 | 
						|
##
 | 
						|
# Maximize (normalize) image contrast.  This function calculates a
 | 
						|
# histogram of the input image, removes <i>cutoff</i> percent of the
 | 
						|
# lightest and darkest pixels from the histogram, and remaps the image
 | 
						|
# so that the darkest pixel becomes black (0), and the lightest
 | 
						|
# becomes white (255).
 | 
						|
#
 | 
						|
# @param image The image to process.
 | 
						|
# @param cutoff How many percent to cut off from the histogram.
 | 
						|
# @param ignore The background pixel value (use None for no background).
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def autocontrast(image, cutoff=0, ignore=None):
 | 
						|
    "Maximize image contrast, based on histogram"
 | 
						|
    histogram = image.histogram()
 | 
						|
    lut = []
 | 
						|
    for layer in range(0, len(histogram), 256):
 | 
						|
        h = histogram[layer:layer+256]
 | 
						|
        if ignore is not None:
 | 
						|
            # get rid of outliers
 | 
						|
            try:
 | 
						|
                h[ignore] = 0
 | 
						|
            except TypeError:
 | 
						|
                # assume sequence
 | 
						|
                for ix in ignore:
 | 
						|
                    h[ix] = 0
 | 
						|
        if cutoff:
 | 
						|
            # cut off pixels from both ends of the histogram
 | 
						|
            # get number of pixels
 | 
						|
            n = 0
 | 
						|
            for ix in range(256):
 | 
						|
                n = n + h[ix]
 | 
						|
            # remove cutoff% pixels from the low end
 | 
						|
            cut = n * cutoff // 100
 | 
						|
            for lo in range(256):
 | 
						|
                if cut > h[lo]:
 | 
						|
                    cut = cut - h[lo]
 | 
						|
                    h[lo] = 0
 | 
						|
                else:
 | 
						|
                    h[lo] = h[lo] - cut
 | 
						|
                    cut = 0
 | 
						|
                if cut <= 0:
 | 
						|
                    break
 | 
						|
            # remove cutoff% samples from the hi end
 | 
						|
            cut = n * cutoff // 100
 | 
						|
            for hi in range(255, -1, -1):
 | 
						|
                if cut > h[hi]:
 | 
						|
                    cut = cut - h[hi]
 | 
						|
                    h[hi] = 0
 | 
						|
                else:
 | 
						|
                    h[hi] = h[hi] - cut
 | 
						|
                    cut = 0
 | 
						|
                if cut <= 0:
 | 
						|
                    break
 | 
						|
        # find lowest/highest samples after preprocessing
 | 
						|
        for lo in range(256):
 | 
						|
            if h[lo]:
 | 
						|
                break
 | 
						|
        for hi in range(255, -1, -1):
 | 
						|
            if h[hi]:
 | 
						|
                break
 | 
						|
        if hi <= lo:
 | 
						|
            # don't bother
 | 
						|
            lut.extend(list(range(256)))
 | 
						|
        else:
 | 
						|
            scale = 255.0 / (hi - lo)
 | 
						|
            offset = -lo * scale
 | 
						|
            for ix in range(256):
 | 
						|
                ix = int(ix * scale + offset)
 | 
						|
                if ix < 0:
 | 
						|
                    ix = 0
 | 
						|
                elif ix > 255:
 | 
						|
                    ix = 255
 | 
						|
                lut.append(ix)
 | 
						|
    return _lut(image, lut)
 | 
						|
 | 
						|
##
 | 
						|
# Colorize grayscale image.  The <i>black</i> and <i>white</i>
 | 
						|
# arguments should be RGB tuples; this function calculates a colour
 | 
						|
# wedge mapping all black pixels in the source image to the first
 | 
						|
# colour, and all white pixels to the second colour.
 | 
						|
#
 | 
						|
# @param image The image to colourize.
 | 
						|
# @param black The colour to use for black input pixels.
 | 
						|
# @param white The colour to use for white input pixels.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def colorize(image, black, white):
 | 
						|
    "Colorize a grayscale image"
 | 
						|
    assert image.mode == "L"
 | 
						|
    black = _color(black, "RGB")
 | 
						|
    white = _color(white, "RGB")
 | 
						|
    red = []; green = []; blue = []
 | 
						|
    for i in range(256):
 | 
						|
        red.append(black[0]+i*(white[0]-black[0])//255)
 | 
						|
        green.append(black[1]+i*(white[1]-black[1])//255)
 | 
						|
        blue.append(black[2]+i*(white[2]-black[2])//255)
 | 
						|
    image = image.convert("RGB")
 | 
						|
    return _lut(image, red + green + blue)
 | 
						|
 | 
						|
##
 | 
						|
# Remove border from image.  The same amount of pixels are removed
 | 
						|
# from all four sides.  This function works on all image modes.
 | 
						|
#
 | 
						|
# @param image The image to crop.
 | 
						|
# @param border The number of pixels to remove.
 | 
						|
# @return An image.
 | 
						|
# @see Image#Image.crop
 | 
						|
 | 
						|
def crop(image, border=0):
 | 
						|
    "Crop border off image"
 | 
						|
    left, top, right, bottom = _border(border)
 | 
						|
    return image.crop(
 | 
						|
        (left, top, image.size[0]-right, image.size[1]-bottom)
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Deform the image.
 | 
						|
#
 | 
						|
# @param image The image to deform.
 | 
						|
# @param deformer A deformer object.  Any object that implements a
 | 
						|
#     <b>getmesh</b> method can be used.
 | 
						|
# @param resample What resampling filter to use.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def deform(image, deformer, resample=Image.BILINEAR):
 | 
						|
    "Deform image using the given deformer"
 | 
						|
    return image.transform(
 | 
						|
        image.size, Image.MESH, deformer.getmesh(image), resample
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Equalize the image histogram.  This function applies a non-linear
 | 
						|
# mapping to the input image, in order to create a uniform
 | 
						|
# distribution of grayscale values in the output image.
 | 
						|
#
 | 
						|
# @param image The image to equalize.
 | 
						|
# @param mask An optional mask.  If given, only the pixels selected by
 | 
						|
#     the mask are included in the analysis.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def equalize(image, mask=None):
 | 
						|
    "Equalize image histogram"
 | 
						|
    if image.mode == "P":
 | 
						|
        image = image.convert("RGB")
 | 
						|
    h = image.histogram(mask)
 | 
						|
    lut = []
 | 
						|
    for b in range(0, len(h), 256):
 | 
						|
        histo = [_f for _f in h[b:b+256] if _f]
 | 
						|
        if len(histo) <= 1:
 | 
						|
            lut.extend(list(range(256)))
 | 
						|
        else:
 | 
						|
            step = (reduce(operator.add, histo) - histo[-1]) // 255
 | 
						|
            if not step:
 | 
						|
                lut.extend(list(range(256)))
 | 
						|
            else:
 | 
						|
                n = step // 2
 | 
						|
                for i in range(256):
 | 
						|
                    lut.append(n // step)
 | 
						|
                    n = n + h[i+b]
 | 
						|
    return _lut(image, lut)
 | 
						|
 | 
						|
##
 | 
						|
# Add border to the image
 | 
						|
#
 | 
						|
# @param image The image to expand.
 | 
						|
# @param border Border width, in pixels.
 | 
						|
# @param fill Pixel fill value (a colour value).  Default is 0 (black).
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def expand(image, border=0, fill=0):
 | 
						|
    "Add border to image"
 | 
						|
    left, top, right, bottom = _border(border)
 | 
						|
    width = left + image.size[0] + right
 | 
						|
    height = top + image.size[1] + bottom
 | 
						|
    out = Image.new(image.mode, (width, height), _color(fill, image.mode))
 | 
						|
    out.paste(image, (left, top))
 | 
						|
    return out
 | 
						|
 | 
						|
##
 | 
						|
# Returns a sized and cropped version of the image, cropped to the
 | 
						|
# requested aspect ratio and size.
 | 
						|
# <p>
 | 
						|
# The <b>fit</b> function was contributed by Kevin Cazabon.
 | 
						|
#
 | 
						|
# @param size The requested output size in pixels, given as a
 | 
						|
#     (width, height) tuple.
 | 
						|
# @param method What resampling method to use.  Default is Image.NEAREST.
 | 
						|
# @param bleed Remove a border around the outside of the image (from all
 | 
						|
#     four edges.  The value is a decimal percentage (use 0.01 for one
 | 
						|
#     percent).  The default value is 0 (no border).
 | 
						|
# @param centering Control the cropping position.  Use (0.5, 0.5) for
 | 
						|
#     center cropping (e.g. if cropping the width, take 50% off of the
 | 
						|
#     left side, and therefore 50% off the right side).  (0.0, 0.0)
 | 
						|
#     will crop from the top left corner (i.e. if cropping the width,
 | 
						|
#     take all of the crop off of the right side, and if cropping the
 | 
						|
#     height, take all of it off the bottom).  (1.0, 0.0) will crop
 | 
						|
#     from the bottom left corner, etc. (i.e. if cropping the width,
 | 
						|
#     take all of the crop off the left side, and if cropping the height
 | 
						|
#     take none from the top, and therefore all off the bottom).
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
 | 
						|
    """
 | 
						|
    This method returns a sized and cropped version of the image,
 | 
						|
    cropped to the aspect ratio and size that you request.
 | 
						|
    """
 | 
						|
 | 
						|
    # by Kevin Cazabon, Feb 17/2000
 | 
						|
    # kevin@cazabon.com
 | 
						|
    # http://www.cazabon.com
 | 
						|
 | 
						|
    # ensure inputs are valid
 | 
						|
    if not isinstance(centering, list):
 | 
						|
        centering = [centering[0], centering[1]]
 | 
						|
 | 
						|
    if centering[0] > 1.0 or centering[0] < 0.0:
 | 
						|
        centering [0] = 0.50
 | 
						|
    if centering[1] > 1.0 or centering[1] < 0.0:
 | 
						|
        centering[1] = 0.50
 | 
						|
 | 
						|
    if bleed > 0.49999 or bleed < 0.0:
 | 
						|
        bleed = 0.0
 | 
						|
 | 
						|
    # calculate the area to use for resizing and cropping, subtracting
 | 
						|
    # the 'bleed' around the edges
 | 
						|
 | 
						|
    # number of pixels to trim off on Top and Bottom, Left and Right
 | 
						|
    bleedPixels = (
 | 
						|
        int((float(bleed) * float(image.size[0])) + 0.5),
 | 
						|
        int((float(bleed) * float(image.size[1])) + 0.5)
 | 
						|
        )
 | 
						|
 | 
						|
    liveArea = (
 | 
						|
        bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1,
 | 
						|
        image.size[1] - bleedPixels[1] - 1
 | 
						|
        )
 | 
						|
 | 
						|
    liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1])
 | 
						|
 | 
						|
    # calculate the aspect ratio of the liveArea
 | 
						|
    liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1])
 | 
						|
 | 
						|
    # calculate the aspect ratio of the output image
 | 
						|
    aspectRatio = float(size[0]) / float(size[1])
 | 
						|
 | 
						|
    # figure out if the sides or top/bottom will be cropped off
 | 
						|
    if liveAreaAspectRatio >= aspectRatio:
 | 
						|
        # liveArea is wider than what's needed, crop the sides
 | 
						|
        cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5)
 | 
						|
        cropHeight = liveSize[1]
 | 
						|
    else:
 | 
						|
        # liveArea is taller than what's needed, crop the top and bottom
 | 
						|
        cropWidth = liveSize[0]
 | 
						|
        cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5)
 | 
						|
 | 
						|
    # make the crop
 | 
						|
    leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0]))
 | 
						|
    if leftSide < 0:
 | 
						|
        leftSide = 0
 | 
						|
    topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1]))
 | 
						|
    if topSide < 0:
 | 
						|
        topSide = 0
 | 
						|
 | 
						|
    out = image.crop(
 | 
						|
        (leftSide, topSide, leftSide + cropWidth, topSide + cropHeight)
 | 
						|
        )
 | 
						|
 | 
						|
    # resize the image and return it
 | 
						|
    return out.resize(size, method)
 | 
						|
 | 
						|
##
 | 
						|
# Flip the image vertically (top to bottom).
 | 
						|
#
 | 
						|
# @param image The image to flip.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def flip(image):
 | 
						|
    "Flip image vertically"
 | 
						|
    return image.transpose(Image.FLIP_TOP_BOTTOM)
 | 
						|
 | 
						|
##
 | 
						|
# Convert the image to grayscale.
 | 
						|
#
 | 
						|
# @param image The image to convert.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def grayscale(image):
 | 
						|
    "Convert to grayscale"
 | 
						|
    return image.convert("L")
 | 
						|
 | 
						|
##
 | 
						|
# Invert (negate) the image.
 | 
						|
#
 | 
						|
# @param image The image to invert.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def invert(image):
 | 
						|
    "Invert image (negate)"
 | 
						|
    lut = []
 | 
						|
    for i in range(256):
 | 
						|
        lut.append(255-i)
 | 
						|
    return _lut(image, lut)
 | 
						|
 | 
						|
##
 | 
						|
# Flip image horizontally (left to right).
 | 
						|
#
 | 
						|
# @param image The image to mirror.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def mirror(image):
 | 
						|
    "Flip image horizontally"
 | 
						|
    return image.transpose(Image.FLIP_LEFT_RIGHT)
 | 
						|
 | 
						|
##
 | 
						|
# Reduce the number of bits for each colour channel.
 | 
						|
#
 | 
						|
# @param image The image to posterize.
 | 
						|
# @param bits The number of bits to keep for each channel (1-8).
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def posterize(image, bits):
 | 
						|
    "Reduce the number of bits per color channel"
 | 
						|
    lut = []
 | 
						|
    mask = ~(2**(8-bits)-1)
 | 
						|
    for i in range(256):
 | 
						|
        lut.append(i & mask)
 | 
						|
    return _lut(image, lut)
 | 
						|
 | 
						|
##
 | 
						|
# Invert all pixel values above a threshold.
 | 
						|
#
 | 
						|
# @param image The image to posterize.
 | 
						|
# @param threshold All pixels above this greyscale level are inverted.
 | 
						|
# @return An image.
 | 
						|
 | 
						|
def solarize(image, threshold=128):
 | 
						|
    "Invert all values above threshold"
 | 
						|
    lut = []
 | 
						|
    for i in range(256):
 | 
						|
        if i < threshold:
 | 
						|
            lut.append(i)
 | 
						|
        else:
 | 
						|
            lut.append(255-i)
 | 
						|
    return _lut(image, lut)
 | 
						|
 | 
						|
# --------------------------------------------------------------------
 | 
						|
# PIL USM components, from Kevin Cazabon.
 | 
						|
 | 
						|
def gaussian_blur(im, radius=None):
 | 
						|
    """ PIL_usm.gblur(im, [radius])"""
 | 
						|
 | 
						|
    if radius is None:
 | 
						|
        radius = 5.0
 | 
						|
 | 
						|
    im.load()
 | 
						|
 | 
						|
    return im.im.gaussian_blur(radius)
 | 
						|
 | 
						|
gblur = gaussian_blur
 | 
						|
 | 
						|
def unsharp_mask(im, radius=None, percent=None, threshold=None):
 | 
						|
    """ PIL_usm.usm(im, [radius, percent, threshold])"""
 | 
						|
 | 
						|
    if radius is None:
 | 
						|
        radius = 5.0
 | 
						|
    if percent is None:
 | 
						|
        percent = 150
 | 
						|
    if threshold is None:
 | 
						|
        threshold = 3
 | 
						|
 | 
						|
    im.load()
 | 
						|
 | 
						|
    return im.im.unsharp_mask(radius, percent, threshold)
 | 
						|
 | 
						|
usm = unsharp_mask
 |