mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-12-26 09:56:17 +03:00
591 lines
18 KiB
C
591 lines
18 KiB
C
#include "Imaging.h"
|
|
|
|
#include <math.h>
|
|
|
|
|
|
#define ROUND_UP(f) ((int) ((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F))
|
|
|
|
struct filter {
|
|
double (*filter)(double x);
|
|
double support;
|
|
};
|
|
|
|
static inline double box_filter(double x)
|
|
{
|
|
if (x >= -0.5 && x < 0.5)
|
|
return 1.0;
|
|
return 0.0;
|
|
}
|
|
|
|
static inline double bilinear_filter(double x)
|
|
{
|
|
if (x < 0.0)
|
|
x = -x;
|
|
if (x < 1.0)
|
|
return 1.0-x;
|
|
return 0.0;
|
|
}
|
|
|
|
static inline double hamming_filter(double x)
|
|
{
|
|
if (x < 0.0)
|
|
x = -x;
|
|
if (x == 0.0)
|
|
return 1.0;
|
|
x = x * M_PI;
|
|
return sin(x) / x * (0.54f + 0.46f * cos(x));
|
|
}
|
|
|
|
static inline double bicubic_filter(double x)
|
|
{
|
|
/* https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm */
|
|
#define a -0.5
|
|
if (x < 0.0)
|
|
x = -x;
|
|
if (x < 1.0)
|
|
return ((a + 2.0) * x - (a + 3.0)) * x*x + 1;
|
|
if (x < 2.0)
|
|
return (((x - 5) * x + 8) * x - 4) * a;
|
|
return 0.0;
|
|
#undef a
|
|
}
|
|
|
|
static inline double sinc_filter(double x)
|
|
{
|
|
if (x == 0.0)
|
|
return 1.0;
|
|
x = x * M_PI;
|
|
return sin(x) / x;
|
|
}
|
|
|
|
static inline double lanczos_filter(double x)
|
|
{
|
|
/* truncated sinc */
|
|
if (-3.0 <= x && x < 3.0)
|
|
return sinc_filter(x) * sinc_filter(x/3);
|
|
return 0.0;
|
|
}
|
|
|
|
static struct filter BOX = { box_filter, 0.5 };
|
|
static struct filter BILINEAR = { bilinear_filter, 1.0 };
|
|
static struct filter HAMMING = { hamming_filter, 1.0 };
|
|
static struct filter BICUBIC = { bicubic_filter, 2.0 };
|
|
static struct filter LANCZOS = { lanczos_filter, 3.0 };
|
|
|
|
|
|
/* 8 bits for result. Filter can have negative areas.
|
|
In one cases the sum of the coefficients will be negative,
|
|
in the other it will be more than 1.0. That is why we need
|
|
two extra bits for overflow and int type. */
|
|
#define PRECISION_BITS (32 - 8 - 2)
|
|
|
|
|
|
static inline UINT8 clip8(int in)
|
|
{
|
|
if (in >= (1 << PRECISION_BITS << 8))
|
|
return 255;
|
|
if (in <= 0)
|
|
return 0;
|
|
return (UINT8) (in >> PRECISION_BITS);
|
|
}
|
|
|
|
|
|
int
|
|
ImagingPrecompute(int inSize, int outSize, struct filter *filterp,
|
|
int **xboundsp, double **kkp) {
|
|
double support, scale, filterscale;
|
|
double center, ww, ss;
|
|
int xx, x, kmax, xmin, xmax;
|
|
int *xbounds;
|
|
double *kk, *k;
|
|
|
|
/* prepare for horizontal stretch */
|
|
filterscale = scale = (double) inSize / outSize;
|
|
if (filterscale < 1.0) {
|
|
filterscale = 1.0;
|
|
}
|
|
|
|
/* determine support size (length of resampling filter) */
|
|
support = filterp->support * filterscale;
|
|
|
|
/* maximum number of coeffs */
|
|
kmax = (int) ceil(support) * 2 + 1;
|
|
|
|
// check for overflow
|
|
if (outSize > INT_MAX / (kmax * sizeof(double)))
|
|
return 0;
|
|
|
|
/* coefficient buffer */
|
|
/* malloc check ok, overflow checked above */
|
|
kk = malloc(outSize * kmax * sizeof(double));
|
|
if ( ! kk)
|
|
return 0;
|
|
|
|
/* malloc check ok, kmax*sizeof(double) > 2*sizeof(int) */
|
|
xbounds = malloc(outSize * 2 * sizeof(int));
|
|
if ( ! xbounds) {
|
|
free(kk);
|
|
return 0;
|
|
}
|
|
|
|
for (xx = 0; xx < outSize; xx++) {
|
|
center = (xx + 0.5) * scale;
|
|
ww = 0.0;
|
|
ss = 1.0 / filterscale;
|
|
xmin = (int) floor(center - support);
|
|
if (xmin < 0)
|
|
xmin = 0;
|
|
xmax = (int) ceil(center + support);
|
|
if (xmax > inSize)
|
|
xmax = inSize;
|
|
xmax -= xmin;
|
|
k = &kk[xx * kmax];
|
|
for (x = 0; x < xmax; x++) {
|
|
double w = filterp->filter((x + xmin - center + 0.5) * ss);
|
|
k[x] = w;
|
|
ww += w;
|
|
}
|
|
for (x = 0; x < xmax; x++) {
|
|
if (ww != 0.0)
|
|
k[x] /= ww;
|
|
}
|
|
// Remaining values should stay empty if they are used despite of xmax.
|
|
for (; x < kmax; x++) {
|
|
k[x] = 0;
|
|
}
|
|
xbounds[xx * 2 + 0] = xmin;
|
|
xbounds[xx * 2 + 1] = xmax;
|
|
}
|
|
*xboundsp = xbounds;
|
|
*kkp = kk;
|
|
return kmax;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingResampleHorizontal_8bpc(Imaging imIn, int xsize, struct filter *filterp)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
Imaging imOut;
|
|
int ss0, ss1, ss2, ss3;
|
|
int xx, yy, x, kmax, xmin, xmax;
|
|
int *xbounds;
|
|
int *k, *kk;
|
|
double *prekk;
|
|
|
|
|
|
kmax = ImagingPrecompute(imIn->xsize, xsize, filterp, &xbounds, &prekk);
|
|
if ( ! kmax) {
|
|
return (Imaging) ImagingError_MemoryError();
|
|
}
|
|
|
|
kk = malloc(xsize * kmax * sizeof(int));
|
|
if ( ! kk) {
|
|
free(xbounds);
|
|
free(prekk);
|
|
return (Imaging) ImagingError_MemoryError();
|
|
}
|
|
|
|
for (x = 0; x < xsize * kmax; x++) {
|
|
kk[x] = (int) (0.5 + prekk[x] * (1 << PRECISION_BITS));
|
|
}
|
|
|
|
free(prekk);
|
|
|
|
imOut = ImagingNew(imIn->mode, xsize, imIn->ysize);
|
|
if ( ! imOut) {
|
|
free(kk);
|
|
free(xbounds);
|
|
return NULL;
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
if (imIn->image8) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < xsize; xx++) {
|
|
xmin = xbounds[xx * 2 + 0];
|
|
xmax = xbounds[xx * 2 + 1];
|
|
k = &kk[xx * kmax];
|
|
ss0 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++)
|
|
ss0 += ((UINT8) imIn->image8[yy][x + xmin]) * k[x];
|
|
imOut->image8[yy][xx] = clip8(ss0);
|
|
}
|
|
}
|
|
} else if (imIn->type == IMAGING_TYPE_UINT8) {
|
|
if (imIn->bands == 2) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < xsize; xx++) {
|
|
xmin = xbounds[xx * 2 + 0];
|
|
xmax = xbounds[xx * 2 + 1];
|
|
k = &kk[xx * kmax];
|
|
ss0 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++) {
|
|
ss0 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 0]) * k[x];
|
|
ss3 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 3]) * k[x];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
} else if (imIn->bands == 3) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < xsize; xx++) {
|
|
xmin = xbounds[xx * 2 + 0];
|
|
xmax = xbounds[xx * 2 + 1];
|
|
k = &kk[xx * kmax];
|
|
ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++) {
|
|
ss0 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 0]) * k[x];
|
|
ss1 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 1]) * k[x];
|
|
ss2 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 2]) * k[x];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
}
|
|
}
|
|
} else {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < xsize; xx++) {
|
|
xmin = xbounds[xx * 2 + 0];
|
|
xmax = xbounds[xx * 2 + 1];
|
|
k = &kk[xx * kmax];
|
|
ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++) {
|
|
ss0 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 0]) * k[x];
|
|
ss1 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 1]) * k[x];
|
|
ss2 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 2]) * k[x];
|
|
ss3 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 3]) * k[x];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
free(kk);
|
|
free(xbounds);
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingResampleVertical_8bpc(Imaging imIn, int ysize, struct filter *filterp)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
Imaging imOut;
|
|
int ss0, ss1, ss2, ss3;
|
|
int xx, yy, y, kmax, ymin, ymax;
|
|
int *xbounds;
|
|
int *k, *kk;
|
|
double *prekk;
|
|
|
|
|
|
kmax = ImagingPrecompute(imIn->ysize, ysize, filterp, &xbounds, &prekk);
|
|
if ( ! kmax) {
|
|
return (Imaging) ImagingError_MemoryError();
|
|
}
|
|
|
|
kk = malloc(ysize * kmax * sizeof(int));
|
|
if ( ! kk) {
|
|
free(xbounds);
|
|
free(prekk);
|
|
return (Imaging) ImagingError_MemoryError();
|
|
}
|
|
|
|
for (y = 0; y < ysize * kmax; y++) {
|
|
kk[y] = (int) (0.5 + prekk[y] * (1 << PRECISION_BITS));
|
|
}
|
|
|
|
free(prekk);
|
|
|
|
imOut = ImagingNew(imIn->mode, imIn->xsize, ysize);
|
|
if ( ! imOut) {
|
|
free(kk);
|
|
free(xbounds);
|
|
return NULL;
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
if (imIn->image8) {
|
|
for (yy = 0; yy < ysize; yy++) {
|
|
k = &kk[yy * kmax];
|
|
ymin = xbounds[yy * 2 + 0];
|
|
ymax = xbounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++)
|
|
ss0 += ((UINT8) imIn->image8[y + ymin][xx]) * k[y];
|
|
imOut->image8[yy][xx] = clip8(ss0);
|
|
}
|
|
}
|
|
} else if (imIn->type == IMAGING_TYPE_UINT8) {
|
|
if (imIn->bands == 2) {
|
|
for (yy = 0; yy < ysize; yy++) {
|
|
k = &kk[yy * kmax];
|
|
ymin = xbounds[yy * 2 + 0];
|
|
ymax = xbounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++) {
|
|
ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
|
|
ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
} else if (imIn->bands == 3) {
|
|
for (yy = 0; yy < ysize; yy++) {
|
|
k = &kk[yy * kmax];
|
|
ymin = xbounds[yy * 2 + 0];
|
|
ymax = xbounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++) {
|
|
ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
|
|
ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y];
|
|
ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
}
|
|
}
|
|
} else {
|
|
for (yy = 0; yy < ysize; yy++) {
|
|
k = &kk[yy * kmax];
|
|
ymin = xbounds[yy * 2 + 0];
|
|
ymax = xbounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++) {
|
|
ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
|
|
ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y];
|
|
ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y];
|
|
ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
free(kk);
|
|
free(xbounds);
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingResampleHorizontal_32bpc(Imaging imIn, int xsize, struct filter *filterp)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
Imaging imOut;
|
|
double ss;
|
|
int xx, yy, x, kmax, xmin, xmax;
|
|
int *xbounds;
|
|
double *k, *kk;
|
|
|
|
kmax = ImagingPrecompute(imIn->xsize, xsize, filterp, &xbounds, &kk);
|
|
if ( ! kmax) {
|
|
return (Imaging) ImagingError_MemoryError();
|
|
}
|
|
|
|
imOut = ImagingNew(imIn->mode, xsize, imIn->ysize);
|
|
if ( ! imOut) {
|
|
free(kk);
|
|
free(xbounds);
|
|
return NULL;
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
switch(imIn->type) {
|
|
case IMAGING_TYPE_INT32:
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < xsize; xx++) {
|
|
xmin = xbounds[xx * 2 + 0];
|
|
xmax = xbounds[xx * 2 + 1];
|
|
k = &kk[xx * kmax];
|
|
ss = 0.0;
|
|
for (x = 0; x < xmax; x++)
|
|
ss += IMAGING_PIXEL_I(imIn, x + xmin, yy) * k[x];
|
|
IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IMAGING_TYPE_FLOAT32:
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < xsize; xx++) {
|
|
xmin = xbounds[xx * 2 + 0];
|
|
xmax = xbounds[xx * 2 + 1];
|
|
k = &kk[xx * kmax];
|
|
ss = 0.0;
|
|
for (x = 0; x < xmax; x++)
|
|
ss += IMAGING_PIXEL_F(imIn, x + xmin, yy) * k[x];
|
|
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
free(kk);
|
|
free(xbounds);
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingResampleVertical_32bpc(Imaging imIn, int ysize, struct filter *filterp)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
Imaging imOut;
|
|
double ss;
|
|
int xx, yy, y, kmax, ymin, ymax;
|
|
int *xbounds;
|
|
double *k, *kk;
|
|
|
|
kmax = ImagingPrecompute(imIn->ysize, ysize, filterp, &xbounds, &kk);
|
|
if ( ! kmax) {
|
|
return (Imaging) ImagingError_MemoryError();
|
|
}
|
|
|
|
imOut = ImagingNew(imIn->mode, imIn->xsize, ysize);
|
|
if ( ! imOut) {
|
|
free(kk);
|
|
free(xbounds);
|
|
return NULL;
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
switch(imIn->type) {
|
|
case IMAGING_TYPE_INT32:
|
|
for (yy = 0; yy < ysize; yy++) {
|
|
ymin = xbounds[yy * 2 + 0];
|
|
ymax = xbounds[yy * 2 + 1];
|
|
k = &kk[yy * kmax];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss = 0.0;
|
|
for (y = 0; y < ymax; y++)
|
|
ss += IMAGING_PIXEL_I(imIn, xx, y + ymin) * k[y];
|
|
IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IMAGING_TYPE_FLOAT32:
|
|
for (yy = 0; yy < ysize; yy++) {
|
|
ymin = xbounds[yy * 2 + 0];
|
|
ymax = xbounds[yy * 2 + 1];
|
|
k = &kk[yy * kmax];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss = 0.0;
|
|
for (y = 0; y < ymax; y++)
|
|
ss += IMAGING_PIXEL_F(imIn, xx, y + ymin) * k[y];
|
|
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
free(kk);
|
|
free(xbounds);
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingResample(Imaging imIn, int xsize, int ysize, int filter)
|
|
{
|
|
Imaging imTemp = NULL;
|
|
Imaging imOut = NULL;
|
|
struct filter *filterp;
|
|
Imaging (*ResampleHorizontal)(Imaging imIn, int xsize, struct filter *filterp);
|
|
Imaging (*ResampleVertical)(Imaging imIn, int xsize, struct filter *filterp);
|
|
|
|
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
|
|
if (imIn->type == IMAGING_TYPE_SPECIAL) {
|
|
return (Imaging) ImagingError_ModeError();
|
|
} else if (imIn->image8) {
|
|
ResampleHorizontal = ImagingResampleHorizontal_8bpc;
|
|
ResampleVertical = ImagingResampleVertical_8bpc;
|
|
} else {
|
|
switch(imIn->type) {
|
|
case IMAGING_TYPE_UINT8:
|
|
ResampleHorizontal = ImagingResampleHorizontal_8bpc;
|
|
ResampleVertical = ImagingResampleVertical_8bpc;
|
|
break;
|
|
case IMAGING_TYPE_INT32:
|
|
case IMAGING_TYPE_FLOAT32:
|
|
ResampleHorizontal = ImagingResampleHorizontal_32bpc;
|
|
ResampleVertical = ImagingResampleVertical_32bpc;
|
|
break;
|
|
default:
|
|
return (Imaging) ImagingError_ModeError();
|
|
}
|
|
}
|
|
|
|
/* check filter */
|
|
switch (filter) {
|
|
case IMAGING_TRANSFORM_BOX:
|
|
filterp = &BOX;
|
|
break;
|
|
case IMAGING_TRANSFORM_BILINEAR:
|
|
filterp = &BILINEAR;
|
|
break;
|
|
case IMAGING_TRANSFORM_HAMMING:
|
|
filterp = &HAMMING;
|
|
break;
|
|
case IMAGING_TRANSFORM_BICUBIC:
|
|
filterp = &BICUBIC;
|
|
break;
|
|
case IMAGING_TRANSFORM_LANCZOS:
|
|
filterp = &LANCZOS;
|
|
break;
|
|
default:
|
|
return (Imaging) ImagingError_ValueError(
|
|
"unsupported resampling filter"
|
|
);
|
|
}
|
|
|
|
/* two-pass resize, first pass */
|
|
if (imIn->xsize != xsize) {
|
|
imTemp = ResampleHorizontal(imIn, xsize, filterp);
|
|
if ( ! imTemp)
|
|
return NULL;
|
|
imOut = imIn = imTemp;
|
|
}
|
|
|
|
/* second pass */
|
|
if (imIn->ysize != ysize) {
|
|
/* imIn can be the original image or horizontally resampled one */
|
|
imOut = ResampleVertical(imIn, ysize, filterp);
|
|
/* it's safe to call ImagingDelete with empty value
|
|
if there was no previous step. */
|
|
ImagingDelete(imTemp);
|
|
if ( ! imOut)
|
|
return NULL;
|
|
}
|
|
|
|
/* none of the previous steps are performed, copying */
|
|
if ( ! imOut) {
|
|
imOut = ImagingCopy(imIn);
|
|
}
|
|
|
|
return imOut;
|
|
}
|