mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-13 18:56:17 +03:00
245 lines
8.7 KiB
Python
245 lines
8.7 KiB
Python
from PIL import Image, ImageMath, ImageMode
|
|
|
|
from .helper import PillowTestCase, convert_to_comparable
|
|
|
|
|
|
class TestImageReduce(PillowTestCase):
|
|
# There are several internal implementations
|
|
remarkable_factors = [
|
|
# special implementations
|
|
1,
|
|
2,
|
|
3,
|
|
4,
|
|
5,
|
|
6,
|
|
# 1xN implementation
|
|
(1, 2),
|
|
(1, 3),
|
|
(1, 4),
|
|
(1, 7),
|
|
# Nx1 implementation
|
|
(2, 1),
|
|
(3, 1),
|
|
(4, 1),
|
|
(7, 1),
|
|
# general implementation with different paths
|
|
(4, 6),
|
|
(5, 6),
|
|
(4, 7),
|
|
(5, 7),
|
|
(19, 17),
|
|
]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.gradients_image = Image.open("Tests/images/radial_gradients.png")
|
|
cls.gradients_image.load()
|
|
|
|
def test_args_factor(self):
|
|
im = Image.new("L", (10, 10))
|
|
|
|
self.assertEqual((4, 4), im.reduce(3).size)
|
|
self.assertEqual((4, 10), im.reduce((3, 1)).size)
|
|
self.assertEqual((10, 4), im.reduce((1, 3)).size)
|
|
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(0)
|
|
with self.assertRaises(TypeError):
|
|
im.reduce(2.0)
|
|
with self.assertRaises(ValueError):
|
|
im.reduce((0, 10))
|
|
|
|
def test_args_box(self):
|
|
im = Image.new("L", (10, 10))
|
|
|
|
self.assertEqual((5, 5), im.reduce(2, (0, 0, 10, 10)).size)
|
|
self.assertEqual((1, 1), im.reduce(2, (5, 5, 6, 6)).size)
|
|
|
|
with self.assertRaises(TypeError):
|
|
im.reduce(2, "stri")
|
|
with self.assertRaises(TypeError):
|
|
im.reduce(2, 2)
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(2, (0, 0, 11, 10))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(2, (0, 0, 10, 11))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(2, (-1, 0, 10, 10))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(2, (0, -1, 10, 10))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(2, (0, 5, 10, 5))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(2, (5, 0, 5, 10))
|
|
|
|
def test_unsupported_modes(self):
|
|
im = Image.new("P", (10, 10))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(3)
|
|
|
|
im = Image.new("1", (10, 10))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(3)
|
|
|
|
im = Image.new("I;16", (10, 10))
|
|
with self.assertRaises(ValueError):
|
|
im.reduce(3)
|
|
|
|
def get_image(self, mode):
|
|
mode_info = ImageMode.getmode(mode)
|
|
if mode_info.basetype == "L":
|
|
bands = [self.gradients_image]
|
|
for _ in mode_info.bands[1:]:
|
|
# rotate previous image
|
|
band = bands[-1].transpose(Image.ROTATE_90)
|
|
bands.append(band)
|
|
# Correct alpha channel by transforming completely transparent pixels.
|
|
# Low alpha values also emphasize error after alpha multiplication.
|
|
if mode.endswith("A"):
|
|
bands[-1] = bands[-1].point(lambda x: int(85 + x / 1.5))
|
|
im = Image.merge(mode, bands)
|
|
else:
|
|
assert len(mode_info.bands) == 1
|
|
im = self.gradients_image.convert(mode)
|
|
# change the height to make a not-square image
|
|
return im.crop((0, 0, im.width, im.height - 5))
|
|
|
|
def compare_reduce_with_box(self, im, factor):
|
|
box = (11, 13, 146, 164)
|
|
reduced = im.reduce(factor, box=box)
|
|
reference = im.crop(box).reduce(factor)
|
|
self.assertEqual(reduced, reference)
|
|
|
|
def compare_reduce_with_reference(self, im, factor, average_diff=0.4, max_diff=1):
|
|
"""Image.reduce() should look very similar to Image.resize(BOX).
|
|
|
|
A reference image is compiled from a large source area
|
|
and possible last column and last row.
|
|
+-----------+
|
|
|..........c|
|
|
|..........c|
|
|
|..........c|
|
|
|rrrrrrrrrrp|
|
|
+-----------+
|
|
"""
|
|
reduced = im.reduce(factor)
|
|
|
|
if not isinstance(factor, (list, tuple)):
|
|
factor = (factor, factor)
|
|
|
|
reference = Image.new(im.mode, reduced.size)
|
|
area_size = (im.size[0] // factor[0], im.size[1] // factor[1])
|
|
area_box = (0, 0, area_size[0] * factor[0], area_size[1] * factor[1])
|
|
area = im.resize(area_size, Image.BOX, area_box)
|
|
reference.paste(area, (0, 0))
|
|
|
|
if area_size[0] < reduced.size[0]:
|
|
self.assertEqual(reduced.size[0] - area_size[0], 1)
|
|
last_column_box = (area_box[2], 0, im.size[0], area_box[3])
|
|
last_column = im.resize((1, area_size[1]), Image.BOX, last_column_box)
|
|
reference.paste(last_column, (area_size[0], 0))
|
|
|
|
if area_size[1] < reduced.size[1]:
|
|
self.assertEqual(reduced.size[1] - area_size[1], 1)
|
|
last_row_box = (0, area_box[3], area_box[2], im.size[1])
|
|
last_row = im.resize((area_size[0], 1), Image.BOX, last_row_box)
|
|
reference.paste(last_row, (0, area_size[1]))
|
|
|
|
if area_size[0] < reduced.size[0] and area_size[1] < reduced.size[1]:
|
|
last_pixel_box = (area_box[2], area_box[3], im.size[0], im.size[1])
|
|
last_pixel = im.resize((1, 1), Image.BOX, last_pixel_box)
|
|
reference.paste(last_pixel, area_size)
|
|
|
|
self.assert_compare_images(reduced, reference, average_diff, max_diff)
|
|
|
|
def assert_compare_images(self, a, b, max_average_diff, max_diff=255):
|
|
self.assertEqual(a.mode, b.mode, "got mode %r, expected %r" % (a.mode, b.mode))
|
|
self.assertEqual(a.size, b.size, "got size %r, expected %r" % (a.size, b.size))
|
|
|
|
a, b = convert_to_comparable(a, b)
|
|
|
|
bands = ImageMode.getmode(a.mode).bands
|
|
for band, ach, bch in zip(bands, a.split(), b.split()):
|
|
ch_diff = ImageMath.eval("convert(abs(a - b), 'L')", a=ach, b=bch)
|
|
ch_hist = ch_diff.histogram()
|
|
|
|
average_diff = sum(i * num for i, num in enumerate(ch_hist)) / float(
|
|
a.size[0] * a.size[1]
|
|
)
|
|
self.assertGreaterEqual(
|
|
max_average_diff,
|
|
average_diff,
|
|
(
|
|
"average pixel value difference {:.4f} > expected {:.4f} "
|
|
"for '{}' band"
|
|
).format(average_diff, max_average_diff, band),
|
|
)
|
|
|
|
last_diff = [i for i, num in enumerate(ch_hist) if num > 0][-1]
|
|
self.assertGreaterEqual(
|
|
max_diff,
|
|
last_diff,
|
|
"max pixel value difference {} > expected {} for '{}' band".format(
|
|
last_diff, max_diff, band
|
|
),
|
|
)
|
|
|
|
def test_mode_L(self):
|
|
im = self.get_image("L")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor)
|
|
self.compare_reduce_with_box(im, factor)
|
|
|
|
def test_mode_LA(self):
|
|
im = self.get_image("LA")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor, 0.8, 5)
|
|
|
|
# With opaque alpha, an error should be way smaller.
|
|
im.putalpha(Image.new("L", im.size, 255))
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor)
|
|
self.compare_reduce_with_box(im, factor)
|
|
|
|
def test_mode_La(self):
|
|
im = self.get_image("La")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor)
|
|
self.compare_reduce_with_box(im, factor)
|
|
|
|
def test_mode_RGB(self):
|
|
im = self.get_image("RGB")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor)
|
|
self.compare_reduce_with_box(im, factor)
|
|
|
|
def test_mode_RGBA(self):
|
|
im = self.get_image("RGBA")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor, 0.8, 5)
|
|
|
|
# With opaque alpha, an error should be way smaller.
|
|
im.putalpha(Image.new("L", im.size, 255))
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor)
|
|
self.compare_reduce_with_box(im, factor)
|
|
|
|
def test_mode_RGBa(self):
|
|
im = self.get_image("RGBa")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor)
|
|
self.compare_reduce_with_box(im, factor)
|
|
|
|
def test_mode_I(self):
|
|
im = self.get_image("I")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor)
|
|
self.compare_reduce_with_box(im, factor)
|
|
|
|
def test_mode_F(self):
|
|
im = self.get_image("F")
|
|
for factor in self.remarkable_factors:
|
|
self.compare_reduce_with_reference(im, factor, 0, 0)
|
|
self.compare_reduce_with_box(im, factor)
|