mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-25 05:01:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			640 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			640 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "Imaging.h"
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| 
 | |
| #define ROUND_UP(f) ((int) ((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F))
 | |
| 
 | |
| 
 | |
| struct filter {
 | |
|     double (*filter)(double x);
 | |
|     double support;
 | |
| };
 | |
| 
 | |
| static inline double box_filter(double x)
 | |
| {
 | |
|     if (x >= -0.5 && x < 0.5)
 | |
|         return 1.0;
 | |
|     return 0.0;
 | |
| }
 | |
| 
 | |
| static inline double bilinear_filter(double x)
 | |
| {
 | |
|     if (x < 0.0)
 | |
|         x = -x;
 | |
|     if (x < 1.0)
 | |
|         return 1.0-x;
 | |
|     return 0.0;
 | |
| }
 | |
| 
 | |
| static inline double hamming_filter(double x)
 | |
| {
 | |
|     if (x < 0.0)
 | |
|         x = -x;
 | |
|     if (x == 0.0)
 | |
|         return 1.0;
 | |
|     if (x >= 1.0)
 | |
|         return 0.0;
 | |
|     x = x * M_PI;
 | |
|     return sin(x) / x * (0.54f + 0.46f * cos(x));
 | |
| }
 | |
| 
 | |
| static inline double bicubic_filter(double x)
 | |
| {
 | |
|     /* https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm */
 | |
| #define a -0.5
 | |
|     if (x < 0.0)
 | |
|         x = -x;
 | |
|     if (x < 1.0)
 | |
|         return ((a + 2.0) * x - (a + 3.0)) * x*x + 1;
 | |
|     if (x < 2.0)
 | |
|         return (((x - 5) * x + 8) * x - 4) * a;
 | |
|     return 0.0;
 | |
| #undef a
 | |
| }
 | |
| 
 | |
| static inline double sinc_filter(double x)
 | |
| {
 | |
|     if (x == 0.0)
 | |
|         return 1.0;
 | |
|     x = x * M_PI;
 | |
|     return sin(x) / x;
 | |
| }
 | |
| 
 | |
| static inline double lanczos_filter(double x)
 | |
| {
 | |
|     /* truncated sinc */
 | |
|     if (-3.0 <= x && x < 3.0)
 | |
|         return sinc_filter(x) * sinc_filter(x/3);
 | |
|     return 0.0;
 | |
| }
 | |
| 
 | |
| static struct filter BOX = { box_filter, 0.5 };
 | |
| static struct filter BILINEAR = { bilinear_filter, 1.0 };
 | |
| static struct filter HAMMING = { hamming_filter, 1.0 };
 | |
| static struct filter BICUBIC = { bicubic_filter, 2.0 };
 | |
| static struct filter LANCZOS = { lanczos_filter, 3.0 };
 | |
| 
 | |
| 
 | |
| /* 8 bits for result. Filter can have negative areas.
 | |
|    In one cases the sum of the coefficients will be negative,
 | |
|    in the other it will be more than 1.0. That is why we need
 | |
|    two extra bits for overflow and int type. */
 | |
| #define PRECISION_BITS (32 - 8 - 2)
 | |
| 
 | |
| 
 | |
| UINT8 _lookups[512] = {
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
 | |
|     16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
 | |
|     32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
 | |
|     48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 | |
|     64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
 | |
|     80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
 | |
|     96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
 | |
|     112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
 | |
|     128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
 | |
|     144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
 | |
|     160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
 | |
|     176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
 | |
|     192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
 | |
|     208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
 | |
|     224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
 | |
|     240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
|     255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255
 | |
| };
 | |
| 
 | |
| UINT8 *lookups = &_lookups[128];
 | |
| 
 | |
| 
 | |
| static inline UINT8 clip8(int in)
 | |
| {
 | |
|     return lookups[in >> PRECISION_BITS];
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| precompute_coeffs(int inSize, float in0, float in1, int outSize,
 | |
|                   struct filter *filterp, int **boundsp, double **kkp) {
 | |
|     double support, scale, filterscale;
 | |
|     double center, ww, ss;
 | |
|     int xx, x, ksize, xmin, xmax;
 | |
|     int *bounds;
 | |
|     double *kk, *k;
 | |
| 
 | |
|     /* prepare for horizontal stretch */
 | |
|     filterscale = scale = (double) (in1 - in0) / outSize;
 | |
|     if (filterscale < 1.0) {
 | |
|         filterscale = 1.0;
 | |
|     }
 | |
| 
 | |
|     /* determine support size (length of resampling filter) */
 | |
|     support = filterp->support * filterscale;
 | |
| 
 | |
|     /* maximum number of coeffs */
 | |
|     ksize = (int) ceil(support) * 2 + 1;
 | |
| 
 | |
|     // check for overflow
 | |
|     if (outSize > INT_MAX / (ksize * sizeof(double))) {
 | |
|         ImagingError_MemoryError();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* coefficient buffer */
 | |
|     /* malloc check ok, overflow checked above */
 | |
|     kk = malloc(outSize * ksize * sizeof(double));
 | |
|     if ( ! kk) {
 | |
|         ImagingError_MemoryError();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* malloc check ok, ksize*sizeof(double) > 2*sizeof(int) */
 | |
|     bounds = malloc(outSize * 2 * sizeof(int));
 | |
|     if ( ! bounds) {
 | |
|         free(kk);
 | |
|         ImagingError_MemoryError();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for (xx = 0; xx < outSize; xx++) {
 | |
|         center = in0 + (xx + 0.5) * scale;
 | |
|         ww = 0.0;
 | |
|         ss = 1.0 / filterscale;
 | |
|         // Round the value
 | |
|         xmin = (int) (center - support + 0.5);
 | |
|         if (xmin < 0)
 | |
|             xmin = 0;
 | |
|         // Round the value
 | |
|         xmax = (int) (center + support + 0.5);
 | |
|         if (xmax > inSize)
 | |
|             xmax = inSize;
 | |
|         xmax -= xmin;
 | |
|         k = &kk[xx * ksize];
 | |
|         for (x = 0; x < xmax; x++) {
 | |
|             double w = filterp->filter((x + xmin - center + 0.5) * ss);
 | |
|             k[x] = w;
 | |
|             ww += w;
 | |
|         }
 | |
|         for (x = 0; x < xmax; x++) {
 | |
|             if (ww != 0.0)
 | |
|                 k[x] /= ww;
 | |
|         }
 | |
|         // Remaining values should stay empty if they are used despite of xmax.
 | |
|         for (; x < ksize; x++) {
 | |
|             k[x] = 0;
 | |
|         }
 | |
|         bounds[xx * 2 + 0] = xmin;
 | |
|         bounds[xx * 2 + 1] = xmax;
 | |
|     }
 | |
|     *boundsp = bounds;
 | |
|     *kkp = kk;
 | |
|     return ksize;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| normalize_coeffs_8bpc(int outSize, int ksize, double *prekk)
 | |
| {
 | |
|     int x;
 | |
|     INT32 *kk;
 | |
| 
 | |
|     // use the same buffer for normalized coefficients
 | |
|     kk = (INT32 *) prekk;
 | |
| 
 | |
|     for (x = 0; x < outSize * ksize; x++) {
 | |
|         if (prekk[x] < 0) {
 | |
|             kk[x] = (int) (-0.5 + prekk[x] * (1 << PRECISION_BITS));
 | |
|         } else {
 | |
|             kk[x] = (int) (0.5 + prekk[x] * (1 << PRECISION_BITS));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void    
 | |
| ImagingResampleHorizontal_8bpc(Imaging imOut, Imaging imIn, int offset,
 | |
|                                int ksize, int *bounds, double *prekk)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     int ss0, ss1, ss2, ss3;
 | |
|     int xx, yy, x, xmin, xmax;
 | |
|     INT32 *k, *kk;
 | |
| 
 | |
|     // use the same buffer for normalized coefficients
 | |
|     kk = (INT32 *) prekk;
 | |
|     normalize_coeffs_8bpc(imOut->xsize, ksize, prekk);
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
|     if (imIn->image8) {
 | |
|         for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|             for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                 xmin = bounds[xx * 2 + 0];
 | |
|                 xmax = bounds[xx * 2 + 1];
 | |
|                 k = &kk[xx * ksize];
 | |
|                 ss0 = 1 << (PRECISION_BITS -1);
 | |
|                 for (x = 0; x < xmax; x++)
 | |
|                     ss0 += ((UINT8) imIn->image8[yy + offset][x + xmin]) * k[x];
 | |
|                 imOut->image8[yy][xx] = clip8(ss0);
 | |
|             }
 | |
|         }
 | |
|     } else if (imIn->type == IMAGING_TYPE_UINT8) {
 | |
|         if (imIn->bands == 2) {
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     xmin = bounds[xx * 2 + 0];
 | |
|                     xmax = bounds[xx * 2 + 1];
 | |
|                     k = &kk[xx * ksize];
 | |
|                     ss0 = ss3 = 1 << (PRECISION_BITS -1);
 | |
|                     for (x = 0; x < xmax; x++) {
 | |
|                         ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x];
 | |
|                         ss3 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 3]) * k[x];
 | |
|                     }
 | |
|                     ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32(
 | |
|                         clip8(ss0), 0, 0, clip8(ss3));
 | |
|                 }
 | |
|             }
 | |
|         } else if (imIn->bands == 3) {
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     xmin = bounds[xx * 2 + 0];
 | |
|                     xmax = bounds[xx * 2 + 1];
 | |
|                     k = &kk[xx * ksize];
 | |
|                     ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1);
 | |
|                     for (x = 0; x < xmax; x++) {
 | |
|                         ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x];
 | |
|                         ss1 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 1]) * k[x];
 | |
|                         ss2 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 2]) * k[x];
 | |
|                     }
 | |
|                     ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32(
 | |
|                         clip8(ss0), clip8(ss1), clip8(ss2), 0);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     xmin = bounds[xx * 2 + 0];
 | |
|                     xmax = bounds[xx * 2 + 1];
 | |
|                     k = &kk[xx * ksize];
 | |
|                     ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1);
 | |
|                     for (x = 0; x < xmax; x++) {
 | |
|                         ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x];
 | |
|                         ss1 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 1]) * k[x];
 | |
|                         ss2 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 2]) * k[x];
 | |
|                         ss3 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 3]) * k[x];
 | |
|                     }
 | |
|                     ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32(
 | |
|                         clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ImagingSectionLeave(&cookie);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| ImagingResampleVertical_8bpc(Imaging imOut, Imaging imIn, int offset,
 | |
|                              int ksize, int *bounds, double *prekk)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     int ss0, ss1, ss2, ss3;
 | |
|     int xx, yy, y, ymin, ymax;
 | |
|     INT32 *k, *kk;
 | |
| 
 | |
|     // use the same buffer for normalized coefficients
 | |
|     kk = (INT32 *) prekk;
 | |
|     normalize_coeffs_8bpc(imOut->ysize, ksize, prekk);
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
|     if (imIn->image8) {
 | |
|         for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|             k = &kk[yy * ksize];
 | |
|             ymin = bounds[yy * 2 + 0];
 | |
|             ymax = bounds[yy * 2 + 1];
 | |
|             for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                 ss0 = 1 << (PRECISION_BITS -1);
 | |
|                 for (y = 0; y < ymax; y++)
 | |
|                     ss0 += ((UINT8) imIn->image8[y + ymin][xx]) * k[y];
 | |
|                 imOut->image8[yy][xx] = clip8(ss0);
 | |
|             }
 | |
|         }
 | |
|     } else if (imIn->type == IMAGING_TYPE_UINT8) {
 | |
|         if (imIn->bands == 2) {
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 k = &kk[yy * ksize];
 | |
|                 ymin = bounds[yy * 2 + 0];
 | |
|                 ymax = bounds[yy * 2 + 1];
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     ss0 = ss3 = 1 << (PRECISION_BITS -1);
 | |
|                     for (y = 0; y < ymax; y++) {
 | |
|                         ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
 | |
|                         ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y];
 | |
|                     }
 | |
|                     ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32(
 | |
|                         clip8(ss0), 0, 0, clip8(ss3));
 | |
|                 }
 | |
|             }
 | |
|         } else if (imIn->bands == 3) {
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 k = &kk[yy * ksize];
 | |
|                 ymin = bounds[yy * 2 + 0];
 | |
|                 ymax = bounds[yy * 2 + 1];
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1);
 | |
|                     for (y = 0; y < ymax; y++) {
 | |
|                         ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
 | |
|                         ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y];
 | |
|                         ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y];
 | |
|                     }
 | |
|                     ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32(
 | |
|                         clip8(ss0), clip8(ss1), clip8(ss2), 0);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 k = &kk[yy * ksize];
 | |
|                 ymin = bounds[yy * 2 + 0];
 | |
|                 ymax = bounds[yy * 2 + 1];
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1);
 | |
|                     for (y = 0; y < ymax; y++) {
 | |
|                         ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
 | |
|                         ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y];
 | |
|                         ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y];
 | |
|                         ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y];
 | |
|                     }
 | |
|                     ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32(
 | |
|                         clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ImagingSectionLeave(&cookie);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| ImagingResampleHorizontal_32bpc(Imaging imOut, Imaging imIn, int offset,
 | |
|                                 int ksize, int *bounds, double *kk)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     double ss;
 | |
|     int xx, yy, x, xmin, xmax;
 | |
|     double *k;
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
|     switch(imIn->type) {
 | |
|         case IMAGING_TYPE_INT32:
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     xmin = bounds[xx * 2 + 0];
 | |
|                     xmax = bounds[xx * 2 + 1];
 | |
|                     k = &kk[xx * ksize];
 | |
|                     ss = 0.0;
 | |
|                     for (x = 0; x < xmax; x++)
 | |
|                         ss += IMAGING_PIXEL_I(imIn, x + xmin, yy + offset) * k[x];
 | |
|                     IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case IMAGING_TYPE_FLOAT32:
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     xmin = bounds[xx * 2 + 0];
 | |
|                     xmax = bounds[xx * 2 + 1];
 | |
|                     k = &kk[xx * ksize];
 | |
|                     ss = 0.0;
 | |
|                     for (x = 0; x < xmax; x++)
 | |
|                         ss += IMAGING_PIXEL_F(imIn, x + xmin, yy + offset) * k[x];
 | |
|                     IMAGING_PIXEL_F(imOut, xx, yy) = ss;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|     }
 | |
|     ImagingSectionLeave(&cookie);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| ImagingResampleVertical_32bpc(Imaging imOut, Imaging imIn, int offset,
 | |
|                               int ksize, int *bounds, double *kk)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     double ss;
 | |
|     int xx, yy, y, ymin, ymax;
 | |
|     double *k;
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
|     switch(imIn->type) {
 | |
|         case IMAGING_TYPE_INT32:
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 ymin = bounds[yy * 2 + 0];
 | |
|                 ymax = bounds[yy * 2 + 1];
 | |
|                 k = &kk[yy * ksize];
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     ss = 0.0;
 | |
|                     for (y = 0; y < ymax; y++)
 | |
|                         ss += IMAGING_PIXEL_I(imIn, xx, y + ymin) * k[y];
 | |
|                     IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case IMAGING_TYPE_FLOAT32:
 | |
|             for (yy = 0; yy < imOut->ysize; yy++) {
 | |
|                 ymin = bounds[yy * 2 + 0];
 | |
|                 ymax = bounds[yy * 2 + 1];
 | |
|                 k = &kk[yy * ksize];
 | |
|                 for (xx = 0; xx < imOut->xsize; xx++) {
 | |
|                     ss = 0.0;
 | |
|                     for (y = 0; y < ymax; y++)
 | |
|                         ss += IMAGING_PIXEL_F(imIn, xx, y + ymin) * k[y];
 | |
|                     IMAGING_PIXEL_F(imOut, xx, yy) = ss;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|     }
 | |
|     ImagingSectionLeave(&cookie);
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef void (*ResampleFunction)(Imaging imOut, Imaging imIn, int offset,
 | |
|                                  int ksize, int *bounds, double *kk);
 | |
| 
 | |
| 
 | |
| Imaging
 | |
| ImagingResampleInner(Imaging imIn, int xsize, int ysize,
 | |
|                      struct filter *filterp, float box[4],
 | |
|                      ResampleFunction ResampleHorizontal,
 | |
|                      ResampleFunction ResampleVertical);
 | |
| 
 | |
| 
 | |
| Imaging
 | |
| ImagingResample(Imaging imIn, int xsize, int ysize, int filter, float box[4])
 | |
| {
 | |
|     struct filter *filterp;
 | |
|     ResampleFunction ResampleHorizontal;
 | |
|     ResampleFunction ResampleVertical;
 | |
| 
 | |
|     if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
 | |
|         return (Imaging) ImagingError_ModeError();
 | |
| 
 | |
|     if (imIn->type == IMAGING_TYPE_SPECIAL) {
 | |
|         return (Imaging) ImagingError_ModeError();
 | |
|     } else if (imIn->image8) {
 | |
|         ResampleHorizontal = ImagingResampleHorizontal_8bpc;
 | |
|         ResampleVertical = ImagingResampleVertical_8bpc;
 | |
|     } else {
 | |
|         switch(imIn->type) {
 | |
|             case IMAGING_TYPE_UINT8:
 | |
|                 ResampleHorizontal = ImagingResampleHorizontal_8bpc;
 | |
|                 ResampleVertical = ImagingResampleVertical_8bpc;
 | |
|                 break;
 | |
|             case IMAGING_TYPE_INT32:
 | |
|             case IMAGING_TYPE_FLOAT32:
 | |
|                 ResampleHorizontal = ImagingResampleHorizontal_32bpc;
 | |
|                 ResampleVertical = ImagingResampleVertical_32bpc;
 | |
|                 break;
 | |
|             default:
 | |
|                 return (Imaging) ImagingError_ModeError();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* check filter */
 | |
|     switch (filter) {
 | |
|     case IMAGING_TRANSFORM_BOX:
 | |
|         filterp = &BOX;
 | |
|         break;
 | |
|     case IMAGING_TRANSFORM_BILINEAR:
 | |
|         filterp = &BILINEAR;
 | |
|         break;
 | |
|     case IMAGING_TRANSFORM_HAMMING:
 | |
|         filterp = &HAMMING;
 | |
|         break;
 | |
|     case IMAGING_TRANSFORM_BICUBIC:
 | |
|         filterp = &BICUBIC;
 | |
|         break;
 | |
|     case IMAGING_TRANSFORM_LANCZOS:
 | |
|         filterp = &LANCZOS;
 | |
|         break;
 | |
|     default:
 | |
|         return (Imaging) ImagingError_ValueError(
 | |
|             "unsupported resampling filter"
 | |
|             );
 | |
|     }
 | |
| 
 | |
|     return ImagingResampleInner(imIn, xsize, ysize, filterp, box,
 | |
|                                 ResampleHorizontal, ResampleVertical);
 | |
| }
 | |
| 
 | |
| 
 | |
| Imaging
 | |
| ImagingResampleInner(Imaging imIn, int xsize, int ysize,
 | |
|                      struct filter *filterp, float box[4],
 | |
|                      ResampleFunction ResampleHorizontal,
 | |
|                      ResampleFunction ResampleVertical)
 | |
| {
 | |
|     Imaging imTemp = NULL;
 | |
|     Imaging imOut = NULL;
 | |
| 
 | |
|     int i, need_horizontal, need_vertical;
 | |
|     int ybox_first, ybox_last;
 | |
|     int ksize_horiz, ksize_vert;
 | |
|     int *bounds_horiz, *bounds_vert;
 | |
|     double *kk_horiz, *kk_vert;
 | |
| 
 | |
|     need_horizontal = xsize != imIn->xsize || box[0] || box[2] != xsize;
 | |
|     need_vertical = ysize != imIn->ysize || box[1] || box[3] != ysize;
 | |
| 
 | |
|     ksize_horiz = precompute_coeffs(imIn->xsize, box[0], box[2], xsize,
 | |
|                                     filterp, &bounds_horiz, &kk_horiz);
 | |
|     if ( ! ksize_horiz) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ksize_vert = precompute_coeffs(imIn->ysize, box[1], box[3], ysize,
 | |
|                                    filterp, &bounds_vert, &kk_vert);
 | |
|     if ( ! ksize_vert) {
 | |
|         free(bounds_horiz);
 | |
|         free(kk_horiz);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // First used row in the source image
 | |
|     ybox_first = bounds_vert[0];
 | |
|     // Last used row in the source image
 | |
|     ybox_last = bounds_vert[ysize*2 - 2] + bounds_vert[ysize*2 - 1];
 | |
| 
 | |
| 
 | |
|     /* two-pass resize, horizontal pass */
 | |
|     if (need_horizontal) {
 | |
|         // Shift bounds for vertical pass
 | |
|         for (i = 0; i < ysize; i++) {
 | |
|             bounds_vert[i * 2] -= ybox_first;
 | |
|         }
 | |
| 
 | |
|         imTemp = ImagingNewDirty(imIn->mode, xsize, ybox_last - ybox_first);
 | |
|         if (imTemp) {
 | |
|             ResampleHorizontal(imTemp, imIn, ybox_first,
 | |
|                                ksize_horiz, bounds_horiz, kk_horiz);
 | |
|         }
 | |
|         free(bounds_horiz);
 | |
|         free(kk_horiz);
 | |
|         if ( ! imTemp) {
 | |
|             free(bounds_vert);
 | |
|             free(kk_vert);
 | |
|             return NULL;
 | |
|         }
 | |
|         imOut = imIn = imTemp;
 | |
|     } else {
 | |
|         // Free in any case
 | |
|         free(bounds_horiz);
 | |
|         free(kk_horiz);
 | |
|     }
 | |
| 
 | |
|     /* vertical pass */
 | |
|     if (need_vertical) {
 | |
|         imOut = ImagingNewDirty(imIn->mode, imIn->xsize, ysize);
 | |
|         if (imOut) {
 | |
|             /* imIn can be the original image or horizontally resampled one */
 | |
|             ResampleVertical(imOut, imIn, 0,
 | |
|                              ksize_vert, bounds_vert, kk_vert);
 | |
|         }
 | |
|         /* it's safe to call ImagingDelete with empty value
 | |
|            if previous step was not performed. */
 | |
|         ImagingDelete(imTemp);
 | |
|         free(bounds_vert);
 | |
|         free(kk_vert);
 | |
|         if ( ! imOut) {
 | |
|             return NULL;
 | |
|         }
 | |
|     } else {
 | |
|         // Free in any case
 | |
|         free(bounds_vert);
 | |
|         free(kk_vert);
 | |
|     }
 | |
| 
 | |
|     /* none of the previous steps are performed, copying */
 | |
|     if ( ! imOut) {
 | |
|         imOut = ImagingCopy(imIn);
 | |
|     }
 | |
| 
 | |
|     return imOut;
 | |
| }
 |