mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-08 16:26:18 +03:00
188 lines
7.3 KiB
C
188 lines
7.3 KiB
C
#include "Imaging.h"
|
|
#include <math.h>
|
|
|
|
/* 8 bits for result. Table can overflow [0, 1.0] range,
|
|
so we need extra bits for overflow and negative values.
|
|
NOTE: This value should be the same as in _imaging/_prepare_lut_table() */
|
|
#define PRECISION_BITS (16 - 8 - 2)
|
|
#define PRECISION_ROUNDING (1 << (PRECISION_BITS - 1))
|
|
|
|
/* 8 - scales are multiplied on byte.
|
|
6 - max index in the table
|
|
(max size is 65, but index 64 is not reachable) */
|
|
#define SCALE_BITS (32 - 8 - 6)
|
|
#define SCALE_MASK ((1 << SCALE_BITS) - 1)
|
|
|
|
#define SHIFT_BITS (16 - 1)
|
|
|
|
static inline UINT8
|
|
clip8(int in) {
|
|
return clip8_lookups[(in + PRECISION_ROUNDING) >> PRECISION_BITS];
|
|
}
|
|
|
|
static inline void
|
|
interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], INT16 shift) {
|
|
out[0] = (a[0] * ((1 << SHIFT_BITS) - shift) + b[0] * shift) >> SHIFT_BITS;
|
|
out[1] = (a[1] * ((1 << SHIFT_BITS) - shift) + b[1] * shift) >> SHIFT_BITS;
|
|
out[2] = (a[2] * ((1 << SHIFT_BITS) - shift) + b[2] * shift) >> SHIFT_BITS;
|
|
}
|
|
|
|
static inline void
|
|
interpolate4(INT16 out[4], const INT16 a[4], const INT16 b[4], INT16 shift) {
|
|
out[0] = (a[0] * ((1 << SHIFT_BITS) - shift) + b[0] * shift) >> SHIFT_BITS;
|
|
out[1] = (a[1] * ((1 << SHIFT_BITS) - shift) + b[1] * shift) >> SHIFT_BITS;
|
|
out[2] = (a[2] * ((1 << SHIFT_BITS) - shift) + b[2] * shift) >> SHIFT_BITS;
|
|
out[3] = (a[3] * ((1 << SHIFT_BITS) - shift) + b[3] * shift) >> SHIFT_BITS;
|
|
}
|
|
|
|
static inline int
|
|
table_index3D(int index1D, int index2D, int index3D, int size1D, int size1D_2D) {
|
|
return index1D + index2D * size1D + index3D * size1D_2D;
|
|
}
|
|
|
|
/*
|
|
Transforms colors of imIn using provided 3D lookup table
|
|
and puts the result in imOut. Returns imOut on success or 0 on error.
|
|
|
|
imOut, imIn - images, should be the same size and may be the same image.
|
|
Should have 3 or 4 channels.
|
|
table_channels - number of channels in the lookup table, 3 or 4.
|
|
Should be less or equal than number of channels in imOut image;
|
|
size1D, size_2D and size3D - dimensions of provided table;
|
|
table - flat table,
|
|
array with table_channels * size1D * size2D * size3D elements,
|
|
where channels are changed first, then 1D, then 2D, then 3D.
|
|
Each element is signed 16-bit int where 0 is lowest output value
|
|
and 255 << PRECISION_BITS (16320) is highest value.
|
|
*/
|
|
Imaging
|
|
ImagingColorLUT3D_linear(
|
|
Imaging imOut,
|
|
Imaging imIn,
|
|
int table_channels,
|
|
int size1D,
|
|
int size2D,
|
|
int size3D,
|
|
INT16 *table) {
|
|
/* This float to int conversion doesn't have rounding
|
|
error compensation (+0.5) for two reasons:
|
|
1. As we don't hit the highest value,
|
|
we can use one extra bit for precision.
|
|
2. For every pixel, we interpolate 8 elements from the table:
|
|
current and +1 for every dimension and their combinations.
|
|
If we hit the upper cells from the table,
|
|
+1 cells will be outside of the table.
|
|
With this compensation we never hit the upper cells
|
|
but this also doesn't introduce any noticeable difference. */
|
|
UINT32 scale1D = (size1D - 1) / 255.0 * (1 << SCALE_BITS);
|
|
UINT32 scale2D = (size2D - 1) / 255.0 * (1 << SCALE_BITS);
|
|
UINT32 scale3D = (size3D - 1) / 255.0 * (1 << SCALE_BITS);
|
|
int size1D_2D = size1D * size2D;
|
|
int x, y;
|
|
ImagingSectionCookie cookie;
|
|
|
|
if (table_channels < 3 || table_channels > 4) {
|
|
PyErr_SetString(PyExc_ValueError, "table_channels could be 3 or 4");
|
|
return NULL;
|
|
}
|
|
|
|
if (imIn->type != IMAGING_TYPE_UINT8 || imOut->type != IMAGING_TYPE_UINT8 ||
|
|
imIn->bands < 3 || imOut->bands < table_channels) {
|
|
return (Imaging)ImagingError_ModeError();
|
|
}
|
|
|
|
/* In case we have one extra band in imOut and don't have in imIn.*/
|
|
if (imOut->bands > table_channels && imOut->bands > imIn->bands) {
|
|
return (Imaging)ImagingError_ModeError();
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
for (y = 0; y < imOut->ysize; y++) {
|
|
UINT8 *rowIn = (UINT8 *)imIn->image[y];
|
|
char *rowOut = (char *)imOut->image[y];
|
|
for (x = 0; x < imOut->xsize; x++) {
|
|
UINT32 index1D = rowIn[x * 4 + 0] * scale1D;
|
|
UINT32 index2D = rowIn[x * 4 + 1] * scale2D;
|
|
UINT32 index3D = rowIn[x * 4 + 2] * scale3D;
|
|
INT16 shift1D = (SCALE_MASK & index1D) >> (SCALE_BITS - SHIFT_BITS);
|
|
INT16 shift2D = (SCALE_MASK & index2D) >> (SCALE_BITS - SHIFT_BITS);
|
|
INT16 shift3D = (SCALE_MASK & index3D) >> (SCALE_BITS - SHIFT_BITS);
|
|
int idx = table_channels * table_index3D(
|
|
index1D >> SCALE_BITS,
|
|
index2D >> SCALE_BITS,
|
|
index3D >> SCALE_BITS,
|
|
size1D,
|
|
size1D_2D);
|
|
INT16 result[4], left[4], right[4];
|
|
INT16 leftleft[4], leftright[4], rightleft[4], rightright[4];
|
|
|
|
if (table_channels == 3) {
|
|
UINT32 v;
|
|
interpolate3(leftleft, &table[idx + 0], &table[idx + 3], shift1D);
|
|
interpolate3(
|
|
leftright,
|
|
&table[idx + size1D * 3],
|
|
&table[idx + size1D * 3 + 3],
|
|
shift1D);
|
|
interpolate3(left, leftleft, leftright, shift2D);
|
|
|
|
interpolate3(
|
|
rightleft,
|
|
&table[idx + size1D_2D * 3],
|
|
&table[idx + size1D_2D * 3 + 3],
|
|
shift1D);
|
|
interpolate3(
|
|
rightright,
|
|
&table[idx + size1D_2D * 3 + size1D * 3],
|
|
&table[idx + size1D_2D * 3 + size1D * 3 + 3],
|
|
shift1D);
|
|
interpolate3(right, rightleft, rightright, shift2D);
|
|
|
|
interpolate3(result, left, right, shift3D);
|
|
|
|
v = MAKE_UINT32(
|
|
clip8(result[0]),
|
|
clip8(result[1]),
|
|
clip8(result[2]),
|
|
rowIn[x * 4 + 3]);
|
|
memcpy(rowOut + x * sizeof(v), &v, sizeof(v));
|
|
}
|
|
|
|
if (table_channels == 4) {
|
|
UINT32 v;
|
|
interpolate4(leftleft, &table[idx + 0], &table[idx + 4], shift1D);
|
|
interpolate4(
|
|
leftright,
|
|
&table[idx + size1D * 4],
|
|
&table[idx + size1D * 4 + 4],
|
|
shift1D);
|
|
interpolate4(left, leftleft, leftright, shift2D);
|
|
|
|
interpolate4(
|
|
rightleft,
|
|
&table[idx + size1D_2D * 4],
|
|
&table[idx + size1D_2D * 4 + 4],
|
|
shift1D);
|
|
interpolate4(
|
|
rightright,
|
|
&table[idx + size1D_2D * 4 + size1D * 4],
|
|
&table[idx + size1D_2D * 4 + size1D * 4 + 4],
|
|
shift1D);
|
|
interpolate4(right, rightleft, rightright, shift2D);
|
|
|
|
interpolate4(result, left, right, shift3D);
|
|
|
|
v = MAKE_UINT32(
|
|
clip8(result[0]),
|
|
clip8(result[1]),
|
|
clip8(result[2]),
|
|
clip8(result[3]));
|
|
memcpy(rowOut + x * sizeof(v), &v, sizeof(v));
|
|
}
|
|
}
|
|
}
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
return imOut;
|
|
}
|