mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-12-25 17:36:18 +03:00
206 lines
7.0 KiB
Python
206 lines
7.0 KiB
Python
from tester import *
|
|
|
|
import random
|
|
|
|
from PIL import Image
|
|
from PIL import ImageFile
|
|
|
|
codecs = dir(Image.core)
|
|
|
|
if "jpeg_encoder" not in codecs or "jpeg_decoder" not in codecs:
|
|
skip("jpeg support not available")
|
|
|
|
# sample jpeg stream
|
|
file = "Images/lena.jpg"
|
|
data = open(file, "rb").read()
|
|
|
|
def roundtrip(im, **options):
|
|
out = BytesIO()
|
|
im.save(out, "JPEG", **options)
|
|
bytes = out.tell()
|
|
out.seek(0)
|
|
im = Image.open(out)
|
|
im.bytes = bytes # for testing only
|
|
return im
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def test_sanity():
|
|
|
|
# internal version number
|
|
assert_match(Image.core.jpeglib_version, "\d+\.\d+$")
|
|
|
|
im = Image.open(file)
|
|
im.load()
|
|
assert_equal(im.mode, "RGB")
|
|
assert_equal(im.size, (128, 128))
|
|
assert_equal(im.format, "JPEG")
|
|
|
|
# --------------------------------------------------------------------
|
|
|
|
def test_app():
|
|
# Test APP/COM reader (@PIL135)
|
|
im = Image.open(file)
|
|
assert_equal(im.applist[0],
|
|
("APP0", b"JFIF\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00"))
|
|
assert_equal(im.applist[1], ("COM", b"Python Imaging Library"))
|
|
assert_equal(len(im.applist), 2)
|
|
|
|
def test_cmyk():
|
|
# Test CMYK handling. Thanks to Tim and Charlie for test data,
|
|
# Michael for getting me to look one more time.
|
|
file = "Tests/images/pil_sample_cmyk.jpg"
|
|
im = Image.open(file)
|
|
# the source image has red pixels in the upper left corner.
|
|
c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))]
|
|
assert_true(c == 0.0 and m > 0.8 and y > 0.8 and k == 0.0)
|
|
# the opposite corner is black
|
|
c, m, y, k = [x / 255.0 for x in im.getpixel((im.size[0]-1, im.size[1]-1))]
|
|
assert_true(k > 0.9)
|
|
# roundtrip, and check again
|
|
im = roundtrip(im)
|
|
c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))]
|
|
assert_true(c == 0.0 and m > 0.8 and y > 0.8 and k == 0.0)
|
|
c, m, y, k = [x / 255.0 for x in im.getpixel((im.size[0]-1, im.size[1]-1))]
|
|
assert_true(k > 0.9)
|
|
|
|
def test_dpi():
|
|
def test(xdpi, ydpi=None):
|
|
im = Image.open(file)
|
|
im = roundtrip(im, dpi=(xdpi, ydpi or xdpi))
|
|
return im.info.get("dpi")
|
|
assert_equal(test(72), (72, 72))
|
|
assert_equal(test(300), (300, 300))
|
|
assert_equal(test(100, 200), (100, 200))
|
|
assert_equal(test(0), None) # square pixels
|
|
|
|
def test_icc():
|
|
# Test ICC support
|
|
im1 = Image.open("Tests/images/rgb.jpg")
|
|
icc_profile = im1.info["icc_profile"]
|
|
assert_equal(len(icc_profile), 3144)
|
|
# Roundtrip via physical file.
|
|
file = tempfile("temp.jpg")
|
|
im1.save(file, icc_profile=icc_profile)
|
|
im2 = Image.open(file)
|
|
assert_equal(im2.info.get("icc_profile"), icc_profile)
|
|
# Roundtrip via memory buffer.
|
|
im1 = roundtrip(lena())
|
|
im2 = roundtrip(lena(), icc_profile=icc_profile)
|
|
assert_image_equal(im1, im2)
|
|
assert_false(im1.info.get("icc_profile"))
|
|
assert_true(im2.info.get("icc_profile"))
|
|
|
|
def test_icc_big():
|
|
# Make sure that the "extra" support handles large blocks
|
|
def test(n):
|
|
# The ICC APP marker can store 65519 bytes per marker, so
|
|
# using a 4-byte test code should allow us to detect out of
|
|
# order issues.
|
|
icc_profile = (b"Test"*int(n/4+1))[:n]
|
|
assert len(icc_profile) == n # sanity
|
|
im1 = roundtrip(lena(), icc_profile=icc_profile)
|
|
assert_equal(im1.info.get("icc_profile"), icc_profile or None)
|
|
test(0); test(1)
|
|
test(3); test(4); test(5)
|
|
test(65533-14) # full JPEG marker block
|
|
test(65533-14+1) # full block plus one byte
|
|
test(ImageFile.MAXBLOCK) # full buffer block
|
|
test(ImageFile.MAXBLOCK+1) # full buffer block plus one byte
|
|
test(ImageFile.MAXBLOCK*4+3) # large block
|
|
|
|
def test_optimize():
|
|
im1 = roundtrip(lena())
|
|
im2 = roundtrip(lena(), optimize=1)
|
|
assert_image_equal(im1, im2)
|
|
assert_true(im1.bytes >= im2.bytes)
|
|
|
|
def test_optimize_large_buffer():
|
|
#https://github.com/python-imaging/Pillow/issues/148
|
|
f = tempfile('temp.jpg')
|
|
# this requires ~ 1.5x Image.MAXBLOCK
|
|
im = Image.new("RGB", (4096,4096), 0xff3333)
|
|
im.save(f, format="JPEG", optimize=True)
|
|
|
|
def test_progressive():
|
|
im1 = roundtrip(lena())
|
|
im2 = roundtrip(lena(), progressive=True)
|
|
assert_image_equal(im1, im2)
|
|
assert_true(im1.bytes >= im2.bytes)
|
|
|
|
def test_progressive_large_buffer():
|
|
f = tempfile('temp.jpg')
|
|
# this requires ~ 1.5x Image.MAXBLOCK
|
|
im = Image.new("RGB", (4096,4096), 0xff3333)
|
|
im.save(f, format="JPEG", progressive=True)
|
|
|
|
def test_progressive_large_buffer_highest_quality():
|
|
f = tempfile('temp.jpg')
|
|
if py3:
|
|
a = bytes(random.randint(0, 255) for _ in range(256 * 256 * 3))
|
|
else:
|
|
a = b''.join(chr(random.randint(0, 255)) for _ in range(256 * 256 * 3))
|
|
im = Image.frombuffer("RGB", (256, 256), a, "raw", "RGB", 0, 1)
|
|
# this requires more bytes than pixels in the image
|
|
im.save(f, format="JPEG", progressive=True, quality=100)
|
|
|
|
def test_large_exif():
|
|
#https://github.com/python-imaging/Pillow/issues/148
|
|
f = tempfile('temp.jpg')
|
|
im = lena()
|
|
im.save(f,'JPEG', quality=90, exif=b"1"*65532)
|
|
|
|
def test_progressive_compat():
|
|
im1 = roundtrip(lena())
|
|
im2 = roundtrip(lena(), progressive=1)
|
|
im3 = roundtrip(lena(), progression=1) # compatibility
|
|
assert_image_equal(im1, im2)
|
|
assert_image_equal(im1, im3)
|
|
assert_false(im1.info.get("progressive"))
|
|
assert_false(im1.info.get("progression"))
|
|
assert_true(im2.info.get("progressive"))
|
|
assert_true(im2.info.get("progression"))
|
|
assert_true(im3.info.get("progressive"))
|
|
assert_true(im3.info.get("progression"))
|
|
|
|
def test_quality():
|
|
im1 = roundtrip(lena())
|
|
im2 = roundtrip(lena(), quality=50)
|
|
assert_image(im1, im2.mode, im2.size)
|
|
assert_true(im1.bytes >= im2.bytes)
|
|
|
|
def test_smooth():
|
|
im1 = roundtrip(lena())
|
|
im2 = roundtrip(lena(), smooth=100)
|
|
assert_image(im1, im2.mode, im2.size)
|
|
|
|
def test_subsampling():
|
|
def getsampling(im):
|
|
layer = im.layer
|
|
return layer[0][1:3] + layer[1][1:3] + layer[2][1:3]
|
|
# experimental API
|
|
im = roundtrip(lena(), subsampling=-1) # default
|
|
assert_equal(getsampling(im), (2, 2, 1, 1, 1, 1))
|
|
im = roundtrip(lena(), subsampling=0) # 4:4:4
|
|
assert_equal(getsampling(im), (1, 1, 1, 1, 1, 1))
|
|
im = roundtrip(lena(), subsampling=1) # 4:2:2
|
|
assert_equal(getsampling(im), (2, 1, 1, 1, 1, 1))
|
|
im = roundtrip(lena(), subsampling=2) # 4:1:1
|
|
assert_equal(getsampling(im), (2, 2, 1, 1, 1, 1))
|
|
im = roundtrip(lena(), subsampling=3) # default (undefined)
|
|
assert_equal(getsampling(im), (2, 2, 1, 1, 1, 1))
|
|
|
|
im = roundtrip(lena(), subsampling="4:4:4")
|
|
assert_equal(getsampling(im), (1, 1, 1, 1, 1, 1))
|
|
im = roundtrip(lena(), subsampling="4:2:2")
|
|
assert_equal(getsampling(im), (2, 1, 1, 1, 1, 1))
|
|
im = roundtrip(lena(), subsampling="4:1:1")
|
|
assert_equal(getsampling(im), (2, 2, 1, 1, 1, 1))
|
|
|
|
assert_exception(TypeError, lambda: roundtrip(lena(), subsampling="1:1:1"))
|
|
|
|
def test_exif():
|
|
im = Image.open("Tests/images/pil_sample_rgb.jpg")
|
|
info = im._getexif()
|
|
assert_equal(info[305], 'Adobe Photoshop CS Macintosh')
|