mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 16:07:30 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			960 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			960 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The Python Imaging Library
 | |
|  * $Id$
 | |
|  *
 | |
|  * the imaging geometry methods
 | |
|  *
 | |
|  * history:
 | |
|  * 1995-06-15 fl  Created
 | |
|  * 1996-04-15 fl  Changed origin
 | |
|  * 1996-05-18 fl  Fixed rotate90/270 for rectangular images
 | |
|  * 1996-05-27 fl  Added general purpose transform
 | |
|  * 1996-11-22 fl  Don't crash when resizing from outside source image
 | |
|  * 1997-08-09 fl  Fixed rounding error in resize
 | |
|  * 1998-09-21 fl  Incorporated transformation patches (from Zircon #2)
 | |
|  * 1998-09-22 fl  Added bounding box to transform engines
 | |
|  * 1999-02-03 fl  Fixed bicubic filtering for RGB images
 | |
|  * 1999-02-16 fl  Added fixed-point version of affine transform
 | |
|  * 2001-03-28 fl  Fixed transform(EXTENT) for xoffset < 0
 | |
|  * 2003-03-10 fl  Compiler tweaks
 | |
|  * 2004-09-19 fl  Fixed bilinear/bicubic filtering of LA images
 | |
|  *
 | |
|  * Copyright (c) 1997-2003 by Secret Labs AB
 | |
|  * Copyright (c) 1995-1997 by Fredrik Lundh
 | |
|  *
 | |
|  * See the README file for information on usage and redistribution.
 | |
|  */
 | |
| 
 | |
| #include "Imaging.h"
 | |
| 
 | |
| /* Undef if you don't need resampling filters */
 | |
| #define WITH_FILTERS
 | |
| 
 | |
| #define COORD(v) ((v) < 0.0 ? -1 : ((int)(v)))
 | |
| #define FLOOR(v) ((v) < 0.0 ? ((int)floor(v)) : ((int)(v)))
 | |
| 
 | |
| /* -------------------------------------------------------------------- */
 | |
| /* Transpose operations							*/
 | |
| 
 | |
| Imaging
 | |
| ImagingFlipLeftRight(Imaging imOut, Imaging imIn)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     int x, y, xr;
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
|     if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
 | |
| 	return (Imaging) ImagingError_Mismatch();
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
| #define	FLIP_HORIZ(image)\
 | |
|     for (y = 0; y < imIn->ysize; y++) {\
 | |
| 	xr = imIn->xsize-1;\
 | |
| 	for (x = 0; x < imIn->xsize; x++, xr--)\
 | |
| 	    imOut->image[y][x] = imIn->image[y][xr];\
 | |
|     }
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     if (imIn->image8)
 | |
| 	FLIP_HORIZ(image8)
 | |
|     else
 | |
| 	FLIP_HORIZ(image32)
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| 
 | |
| Imaging
 | |
| ImagingFlipTopBottom(Imaging imOut, Imaging imIn)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     int y, yr;
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
|     if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
 | |
| 	return (Imaging) ImagingError_Mismatch();
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     yr = imIn->ysize-1;
 | |
|     for (y = 0; y < imIn->ysize; y++, yr--)
 | |
| 	memcpy(imOut->image[yr], imIn->image[y], imIn->linesize);
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| 
 | |
| Imaging
 | |
| ImagingRotate90(Imaging imOut, Imaging imIn)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     int x, y, xr;
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
|     if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
 | |
| 	return (Imaging) ImagingError_Mismatch();
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
| #define	ROTATE_90(image)\
 | |
|     for (y = 0; y < imIn->ysize; y++) {\
 | |
| 	xr = imIn->xsize-1;\
 | |
| 	for (x = 0; x < imIn->xsize; x++, xr--)\
 | |
| 	    imOut->image[xr][y] = imIn->image[y][x];\
 | |
|     }
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     if (imIn->image8)
 | |
| 	ROTATE_90(image8)
 | |
|     else
 | |
| 	ROTATE_90(image32)
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| 
 | |
| Imaging
 | |
| ImagingRotate180(Imaging imOut, Imaging imIn)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     int x, y, xr, yr;
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
|     if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
 | |
| 	return (Imaging) ImagingError_Mismatch();
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
|     yr = imIn->ysize-1;
 | |
| 
 | |
| #define	ROTATE_180(image)\
 | |
|     for (y = 0; y < imIn->ysize; y++, yr--) {\
 | |
| 	xr = imIn->xsize-1;\
 | |
| 	for (x = 0; x < imIn->xsize; x++, xr--)\
 | |
| 	    imOut->image[y][x] = imIn->image[yr][xr];\
 | |
|     }
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     if (imIn->image8)
 | |
| 	ROTATE_180(image8)
 | |
|     else
 | |
| 	ROTATE_180(image32)
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| 
 | |
| Imaging
 | |
| ImagingRotate270(Imaging imOut, Imaging imIn)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
|     int x, y, yr;
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
|     if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
 | |
| 	return (Imaging) ImagingError_Mismatch();
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
|     yr = imIn->ysize - 1;
 | |
| 
 | |
| #define	ROTATE_270(image)\
 | |
|     for (y = 0; y < imIn->ysize; y++, yr--)\
 | |
| 	for (x = 0; x < imIn->xsize; x++)\
 | |
| 	    imOut->image[x][y] = imIn->image[yr][x];
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     if (imIn->image8)
 | |
| 	ROTATE_270(image8)
 | |
|     else
 | |
| 	ROTATE_270(image32)
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* -------------------------------------------------------------------- */
 | |
| /* Transforms								*/
 | |
| 
 | |
| /* transform primitives (ImagingTransformMap) */
 | |
| 
 | |
| static int
 | |
| affine_transform(double* xin, double* yin, int x, int y, void* data)
 | |
| {
 | |
|     /* full moon tonight.  your compiler will generate bogus code
 | |
|        for simple expressions, unless you reorganize the code, or
 | |
|        install Service Pack 3 */
 | |
| 
 | |
|     double* a = (double*) data;
 | |
|     double a0 = a[0]; double a1 = a[1]; double a2 = a[2];
 | |
|     double a3 = a[3]; double a4 = a[4]; double a5 = a[5];
 | |
| 
 | |
|     xin[0] = a0 + a1*x + a2*y;
 | |
|     yin[0] = a3 + a4*x + a5*y;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| perspective_transform(double* xin, double* yin, int x, int y, void* data)
 | |
| {
 | |
|     double* a = (double*) data;
 | |
|     double a0 = a[0]; double a1 = a[1]; double a2 = a[2];
 | |
|     double a3 = a[3]; double a4 = a[4]; double a5 = a[5];
 | |
|     double a6 = a[6]; double a7 = a[7];
 | |
| 
 | |
|     xin[0] = (a0 + a1*x + a2*y) / (a6*x + a7*y + 1);
 | |
|     yin[0] = (a3 + a4*x + a5*y) / (a6*x + a7*y + 1);
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static int
 | |
| quadratic_transform(double* xin, double* yin, int x, int y, void* data)
 | |
| {
 | |
|     double* a = (double*) data;
 | |
| 
 | |
|     double a0 = a[0]; double a1 = a[1]; double a2 = a[2]; double a3 = a[3];
 | |
|     double a4 = a[4]; double a5 = a[5]; double a6 = a[6]; double a7 = a[7];
 | |
|     double a8 = a[8]; double a9 = a[9]; double a10 = a[10]; double a11 = a[11];
 | |
| 
 | |
|     xin[0] = a0 + a1*x + a2*y + a3*x*x + a4*x*y + a5*y*y;
 | |
|     yin[0] = a6 + a7*x + a8*y + a9*x*x + a10*x*y + a11*y*y;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| quad_transform(double* xin, double* yin, int x, int y, void* data)
 | |
| {
 | |
|     /* quad warp: map quadrilateral to rectangle */
 | |
| 
 | |
|     double* a = (double*) data;
 | |
|     double a0 = a[0]; double a1 = a[1]; double a2 = a[2]; double a3 = a[3];
 | |
|     double a4 = a[4]; double a5 = a[5]; double a6 = a[6]; double a7 = a[7];
 | |
| 
 | |
|     xin[0] = a0 + a1*x + a2*y + a3*x*y;
 | |
|     yin[0] = a4 + a5*x + a6*y + a7*x*y;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* transform filters (ImagingTransformFilter) */
 | |
| 
 | |
| #ifdef WITH_FILTERS
 | |
| 
 | |
| static int
 | |
| nearest_filter8(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     int x = COORD(xin);
 | |
|     int y = COORD(yin);
 | |
|     if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
 | |
|         return 0;
 | |
|     ((UINT8*)out)[0] = im->image8[y][x];
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| nearest_filter16(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     int x = COORD(xin);
 | |
|     int y = COORD(yin);
 | |
|     if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
 | |
|         return 0;
 | |
|     ((INT16*)out)[0] = ((INT16*)(im->image8[y]))[x];
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| nearest_filter32(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     int x = COORD(xin);
 | |
|     int y = COORD(yin);
 | |
|     if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
 | |
|         return 0;
 | |
|     ((INT32*)out)[0] = im->image32[y][x];
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #define XCLIP(im, x) ( ((x) < 0) ? 0 : ((x) < im->xsize) ? (x) : im->xsize-1 )
 | |
| #define YCLIP(im, y) ( ((y) < 0) ? 0 : ((y) < im->ysize) ? (y) : im->ysize-1 )
 | |
| 
 | |
| #define BILINEAR(v, a, b, d)\
 | |
|     (v = (a) + ( (b) - (a) ) * (d))
 | |
| 
 | |
| #define BILINEAR_HEAD(type)\
 | |
|     int x, y;\
 | |
|     int x0, x1;\
 | |
|     double v1, v2;\
 | |
|     double dx, dy;\
 | |
|     type* in;\
 | |
|     if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize)\
 | |
|         return 0;\
 | |
|     xin -= 0.5;\
 | |
|     yin -= 0.5;\
 | |
|     x = FLOOR(xin);\
 | |
|     y = FLOOR(yin);\
 | |
|     dx = xin - x;\
 | |
|     dy = yin - y;
 | |
| 
 | |
| #define BILINEAR_BODY(type, image, step, offset) {\
 | |
|     in = (type*) ((image)[YCLIP(im, y)] + offset);\
 | |
|     x0 = XCLIP(im, x+0)*step;\
 | |
|     x1 = XCLIP(im, x+1)*step;\
 | |
|     BILINEAR(v1, in[x0], in[x1], dx);\
 | |
|     if (y+1 >= 0 && y+1 < im->ysize) {\
 | |
|         in = (type*) ((image)[y+1] + offset);\
 | |
|         BILINEAR(v2, in[x0], in[x1], dx);\
 | |
|     } else\
 | |
|         v2 = v1;\
 | |
|     BILINEAR(v1, v1, v2, dy);\
 | |
| }
 | |
| 
 | |
| static int
 | |
| bilinear_filter8(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BILINEAR_HEAD(UINT8);
 | |
|     BILINEAR_BODY(UINT8, im->image8, 1, 0);
 | |
|     ((UINT8*)out)[0] = (UINT8) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bilinear_filter32I(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BILINEAR_HEAD(INT32);
 | |
|     BILINEAR_BODY(INT32, im->image32, 1, 0);
 | |
|     ((INT32*)out)[0] = (INT32) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bilinear_filter32F(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BILINEAR_HEAD(FLOAT32);
 | |
|     BILINEAR_BODY(FLOAT32, im->image32, 1, 0);
 | |
|     ((FLOAT32*)out)[0] = (FLOAT32) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bilinear_filter32LA(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BILINEAR_HEAD(UINT8);
 | |
|     BILINEAR_BODY(UINT8, im->image, 4, 0);
 | |
|     ((UINT8*)out)[0] = (UINT8) v1;
 | |
|     ((UINT8*)out)[1] = (UINT8) v1;
 | |
|     ((UINT8*)out)[2] = (UINT8) v1;
 | |
|     BILINEAR_BODY(UINT8, im->image, 4, 3);
 | |
|     ((UINT8*)out)[3] = (UINT8) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bilinear_filter32RGB(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     int b;
 | |
|     BILINEAR_HEAD(UINT8);
 | |
|     for (b = 0; b < im->bands; b++) {
 | |
|         BILINEAR_BODY(UINT8, im->image, 4, b);
 | |
|         ((UINT8*)out)[b] = (UINT8) v1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #define BICUBIC(v, v1, v2, v3, v4, d) {\
 | |
|     double p1 = v2;\
 | |
|     double p2 = -v1 + v3;\
 | |
|     double p3 = 2*(v1 - v2) + v3 - v4;\
 | |
|     double p4 = -v1 + v2 - v3 + v4;\
 | |
|     v = p1 + (d)*(p2 + (d)*(p3 + (d)*p4));\
 | |
| }
 | |
| 
 | |
| #define BICUBIC_HEAD(type)\
 | |
|     int x = FLOOR(xin);\
 | |
|     int y = FLOOR(yin);\
 | |
|     int x0, x1, x2, x3;\
 | |
|     double v1, v2, v3, v4;\
 | |
|     double dx, dy;\
 | |
|     type* in;\
 | |
|     if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize)\
 | |
|         return 0;\
 | |
|     xin -= 0.5;\
 | |
|     yin -= 0.5;\
 | |
|     x = FLOOR(xin);\
 | |
|     y = FLOOR(yin);\
 | |
|     dx = xin - x;\
 | |
|     dy = yin - y;\
 | |
|     x--; y--;
 | |
| 
 | |
| #define BICUBIC_BODY(type, image, step, offset) {\
 | |
|     in = (type*) ((image)[YCLIP(im, y)] + offset);\
 | |
|     x0 = XCLIP(im, x+0)*step;\
 | |
|     x1 = XCLIP(im, x+1)*step;\
 | |
|     x2 = XCLIP(im, x+2)*step;\
 | |
|     x3 = XCLIP(im, x+3)*step;\
 | |
|     BICUBIC(v1, in[x0], in[x1], in[x2], in[x3], dx);\
 | |
|     if (y+1 >= 0 && y+1 < im->ysize) {\
 | |
|         in = (type*) ((image)[y+1] + offset);\
 | |
|         BICUBIC(v2, in[x0], in[x1], in[x2], in[x3], dx);\
 | |
|     } else\
 | |
|         v2 = v1;\
 | |
|     if (y+2 >= 0 && y+2 < im->ysize) {\
 | |
|         in = (type*) ((image)[y+2] + offset);\
 | |
|         BICUBIC(v3, in[x0], in[x1], in[x2], in[x3], dx);\
 | |
|     } else\
 | |
|         v3 = v2;\
 | |
|     if (y+3 >= 0 && y+3 < im->ysize) {\
 | |
|         in = (type*) ((image)[y+3] + offset);\
 | |
|         BICUBIC(v4, in[x0], in[x1], in[x2], in[x3], dx);\
 | |
|     } else\
 | |
|         v4 = v3;\
 | |
|     BICUBIC(v1, v1, v2, v3, v4, dy);\
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| bicubic_filter8(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BICUBIC_HEAD(UINT8);
 | |
|     BICUBIC_BODY(UINT8, im->image8, 1, 0);
 | |
|     if (v1 <= 0.0)
 | |
|         ((UINT8*)out)[0] = 0;
 | |
|     else if (v1 >= 255.0)
 | |
|         ((UINT8*)out)[0] = 255;
 | |
|     else
 | |
|         ((UINT8*)out)[0] = (UINT8) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bicubic_filter32I(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BICUBIC_HEAD(INT32);
 | |
|     BICUBIC_BODY(INT32, im->image32, 1, 0);
 | |
|     ((INT32*)out)[0] = (INT32) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bicubic_filter32F(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BICUBIC_HEAD(FLOAT32);
 | |
|     BICUBIC_BODY(FLOAT32, im->image32, 1, 0);
 | |
|     ((FLOAT32*)out)[0] = (FLOAT32) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bicubic_filter32LA(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     BICUBIC_HEAD(UINT8);
 | |
|     BICUBIC_BODY(UINT8, im->image, 4, 0);
 | |
|     if (v1 <= 0.0) {
 | |
|         ((UINT8*)out)[0] = 0;
 | |
|         ((UINT8*)out)[1] = 0;
 | |
|         ((UINT8*)out)[2] = 0;
 | |
|     } else if (v1 >= 255.0) {
 | |
|         ((UINT8*)out)[0] = 255;
 | |
|         ((UINT8*)out)[1] = 255;
 | |
|         ((UINT8*)out)[2] = 255;
 | |
|     } else {
 | |
|         ((UINT8*)out)[0] = (UINT8) v1;
 | |
|         ((UINT8*)out)[1] = (UINT8) v1;
 | |
|         ((UINT8*)out)[2] = (UINT8) v1;
 | |
|     }
 | |
|     BICUBIC_BODY(UINT8, im->image, 4, 3);
 | |
|     if (v1 <= 0.0)
 | |
|         ((UINT8*)out)[3] = 0;
 | |
|     else if (v1 >= 255.0)
 | |
|         ((UINT8*)out)[3] = 255;
 | |
|     else
 | |
|         ((UINT8*)out)[3] = (UINT8) v1;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bicubic_filter32RGB(void* out, Imaging im, double xin, double yin, void* data)
 | |
| {
 | |
|     int b;
 | |
|     BICUBIC_HEAD(UINT8);
 | |
|     for (b = 0; b < im->bands; b++) {
 | |
|         BICUBIC_BODY(UINT8, im->image, 4, b);
 | |
|         if (v1 <= 0.0)
 | |
|             ((UINT8*)out)[b] = 0;
 | |
|         else if (v1 >= 255.0)
 | |
|             ((UINT8*)out)[b] = 255;
 | |
|         else
 | |
|             ((UINT8*)out)[b] = (UINT8) v1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static ImagingTransformFilter
 | |
| getfilter(Imaging im, int filterid)
 | |
| {
 | |
|     switch (filterid) {
 | |
|     case IMAGING_TRANSFORM_NEAREST:
 | |
|         if (im->image8)
 | |
|             switch (im->type) {
 | |
|             case IMAGING_TYPE_UINT8:
 | |
|                 return (ImagingTransformFilter) nearest_filter8;
 | |
|             case IMAGING_TYPE_SPECIAL:
 | |
|                 switch (im->pixelsize) {
 | |
|                 case 1:
 | |
|                     return (ImagingTransformFilter) nearest_filter8;
 | |
|                 case 2:
 | |
|                     return (ImagingTransformFilter) nearest_filter16;
 | |
|                 case 4:
 | |
|                     return (ImagingTransformFilter) nearest_filter32;
 | |
|                 }
 | |
|             }
 | |
|         else
 | |
|             return (ImagingTransformFilter) nearest_filter32;
 | |
|         break;
 | |
|     case IMAGING_TRANSFORM_BILINEAR:
 | |
|         if (im->image8)
 | |
|             return (ImagingTransformFilter) bilinear_filter8;
 | |
|         else if (im->image32) {
 | |
|             switch (im->type) {
 | |
|             case IMAGING_TYPE_UINT8:
 | |
|                 if (im->bands == 2)
 | |
|                     return (ImagingTransformFilter) bilinear_filter32LA;
 | |
|                 else
 | |
|                     return (ImagingTransformFilter) bilinear_filter32RGB;
 | |
|             case IMAGING_TYPE_INT32:
 | |
|                 return (ImagingTransformFilter) bilinear_filter32I;
 | |
|             case IMAGING_TYPE_FLOAT32:
 | |
|                 return (ImagingTransformFilter) bilinear_filter32F;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case IMAGING_TRANSFORM_BICUBIC:
 | |
|         if (im->image8)
 | |
|             return (ImagingTransformFilter) bicubic_filter8;
 | |
|         else if (im->image32) {
 | |
|             switch (im->type) {
 | |
|             case IMAGING_TYPE_UINT8:
 | |
|                 if (im->bands == 2)
 | |
|                     return (ImagingTransformFilter) bicubic_filter32LA;
 | |
|                 else
 | |
|                     return (ImagingTransformFilter) bicubic_filter32RGB;
 | |
|             case IMAGING_TYPE_INT32:
 | |
|                 return (ImagingTransformFilter) bicubic_filter32I;
 | |
|             case IMAGING_TYPE_FLOAT32:
 | |
|                 return (ImagingTransformFilter) bicubic_filter32F;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     /* no such filter */
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define getfilter(im, id) NULL
 | |
| #endif
 | |
| 
 | |
| /* transformation engines */
 | |
| 
 | |
| Imaging
 | |
| ImagingTransform(
 | |
|     Imaging imOut, Imaging imIn, int x0, int y0, int x1, int y1, 
 | |
|     ImagingTransformMap transform, void* transform_data,
 | |
|     ImagingTransformFilter filter, void* filter_data,
 | |
|     int fill)
 | |
| {
 | |
|     /* slow generic transformation.  use ImagingTransformAffine or
 | |
|        ImagingScaleAffine where possible. */
 | |
| 
 | |
|     ImagingSectionCookie cookie;
 | |
|     int x, y;
 | |
|     char *out;
 | |
|     double xx, yy;
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     if (x0 < 0)
 | |
|         x0 = 0;
 | |
|     if (y0 < 0)
 | |
|         y0 = 0;
 | |
|     if (x1 > imOut->xsize)
 | |
|         x1 = imOut->xsize;
 | |
|     if (y1 > imOut->ysize)
 | |
|         y1 = imOut->ysize;
 | |
| 
 | |
|     for (y = y0; y < y1; y++) {
 | |
| 	out = imOut->image[y] + x0*imOut->pixelsize;
 | |
| 	for (x = x0; x < x1; x++) {
 | |
| 	    if (!transform(&xx, &yy, x-x0, y-y0, transform_data) ||
 | |
|                 !filter(out, imIn, xx, yy, filter_data)) {
 | |
|                 if (fill)
 | |
|                     memset(out, 0, imOut->pixelsize);
 | |
|             }
 | |
|             out += imOut->pixelsize;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| static Imaging
 | |
| ImagingScaleAffine(Imaging imOut, Imaging imIn,
 | |
|                    int x0, int y0, int x1, int y1,
 | |
|                    double a[6], int fill)
 | |
| {
 | |
|     /* scale, nearest neighbour resampling */
 | |
| 
 | |
|     ImagingSectionCookie cookie;
 | |
|     int x, y;
 | |
|     int xin;
 | |
|     double xo, yo;
 | |
|     int xmin, xmax;
 | |
|     int *xintab;
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
|     if (x0 < 0)
 | |
|         x0 = 0;
 | |
|     if (y0 < 0)
 | |
|         y0 = 0;
 | |
|     if (x1 > imOut->xsize)
 | |
|         x1 = imOut->xsize;
 | |
|     if (y1 > imOut->ysize)
 | |
|         y1 = imOut->ysize;
 | |
| 
 | |
|     xintab = (int*) malloc(imOut->xsize * sizeof(int));
 | |
|     if (!xintab) {
 | |
| 	ImagingDelete(imOut);
 | |
| 	return (Imaging) ImagingError_MemoryError();
 | |
|     }
 | |
| 
 | |
|     xo = a[0];
 | |
|     yo = a[3];
 | |
| 
 | |
|     xmin = x1;
 | |
|     xmax = x0;
 | |
| 
 | |
|     /* Pretabulate horizontal pixel positions */
 | |
|     for (x = x0; x < x1; x++) {
 | |
| 	xin = COORD(xo);
 | |
| 	if (xin >= 0 && xin < (int) imIn->xsize) {
 | |
| 	    xmax = x+1;
 | |
| 	    if (x < xmin)
 | |
| 		xmin = x;
 | |
| 	    xintab[x] = xin;
 | |
| 	}
 | |
| 	xo += a[1];
 | |
|     }
 | |
| 
 | |
| #define	AFFINE_SCALE(pixel, image)\
 | |
|     for (y = y0; y < y1; y++) {\
 | |
| 	int yi = COORD(yo);\
 | |
| 	pixel *in, *out;\
 | |
| 	out = imOut->image[y];\
 | |
|         if (fill && x1 > x0)\
 | |
|             memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
 | |
| 	if (yi >= 0 && yi < imIn->ysize) {\
 | |
| 	    in = imIn->image[yi];\
 | |
| 	    for (x = xmin; x < xmax; x++)\
 | |
| 		out[x] = in[xintab[x]];\
 | |
| 	}\
 | |
| 	yo += a[5];\
 | |
|     }
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     if (imIn->image8) {
 | |
|         AFFINE_SCALE(UINT8, image8);
 | |
|     } else {
 | |
|         AFFINE_SCALE(INT32, image32);
 | |
|     }
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     free(xintab);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| check_fixed(double a[6], int x, int y)
 | |
| {
 | |
|     return (fabs(a[0] + x*a[1] + y*a[2]) < 32768.0 &&
 | |
|             fabs(a[3] + x*a[4] + y*a[5]) < 32768.0);
 | |
| }
 | |
| 
 | |
| static inline Imaging
 | |
| affine_fixed(Imaging imOut, Imaging imIn,
 | |
|              int x0, int y0, int x1, int y1,
 | |
|              double a[6], int filterid, int fill)
 | |
| {
 | |
|     /* affine transform, nearest neighbour resampling, fixed point
 | |
|        arithmetics */
 | |
| 
 | |
|     int x, y;
 | |
|     int xin, yin;
 | |
|     int xsize, ysize;
 | |
|     int xx, yy;
 | |
|     int a0, a1, a2, a3, a4, a5;
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
|     xsize = (int) imIn->xsize;
 | |
|     ysize = (int) imIn->ysize;
 | |
| 
 | |
| /* use 16.16 fixed point arithmetics */
 | |
| #define FIX(v) FLOOR((v)*65536.0 + 0.5)
 | |
| 
 | |
|     a0 = FIX(a[0]); a1 = FIX(a[1]); a2 = FIX(a[2]);
 | |
|     a3 = FIX(a[3]); a4 = FIX(a[4]); a5 = FIX(a[5]);
 | |
| 
 | |
| #define	AFFINE_TRANSFORM_FIXED(pixel, image)\
 | |
|     for (y = y0; y < y1; y++) {\
 | |
| 	pixel *out;\
 | |
| 	xx = a0;\
 | |
| 	yy = a3;\
 | |
| 	out = imOut->image[y];\
 | |
|         if (fill && x1 > x0)\
 | |
|             memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
 | |
|         for (x = x0; x < x1; x++, out++) {\
 | |
| 	    xin = xx >> 16;\
 | |
| 	    if (xin >= 0 && xin < xsize) {\
 | |
| 	        yin = yy >> 16;\
 | |
| 		if (yin >= 0 && yin < ysize)\
 | |
|                     *out = imIn->image[yin][xin];\
 | |
|             }\
 | |
| 	    xx += a1;\
 | |
| 	    yy += a4;\
 | |
| 	}\
 | |
| 	a0 += a2;\
 | |
| 	a3 += a5;\
 | |
|     }
 | |
| 
 | |
|     if (imIn->image8)
 | |
| 	AFFINE_TRANSFORM_FIXED(UINT8, image8)
 | |
|     else
 | |
| 	AFFINE_TRANSFORM_FIXED(INT32, image32)
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| Imaging
 | |
| ImagingTransformAffine(Imaging imOut, Imaging imIn,
 | |
|                        int x0, int y0, int x1, int y1,
 | |
|                        double a[6], int filterid, int fill)
 | |
| {
 | |
|     /* affine transform, nearest neighbour resampling, floating point
 | |
|        arithmetics*/
 | |
| 
 | |
|     ImagingSectionCookie cookie;
 | |
|     int x, y;
 | |
|     int xin, yin;
 | |
|     int xsize, ysize;
 | |
|     double xx, yy;
 | |
|     double xo, yo;
 | |
| 
 | |
|     if (filterid || imIn->type == IMAGING_TYPE_SPECIAL) {
 | |
|         /* Filtered transform */
 | |
|         ImagingTransformFilter filter = getfilter(imIn, filterid);
 | |
|         if (!filter)
 | |
|             return (Imaging) ImagingError_ValueError("unknown filter");
 | |
|         return ImagingTransform(
 | |
|             imOut, imIn,
 | |
|             x0, y0, x1, y1,
 | |
|             affine_transform, a,
 | |
|             filter, NULL, fill);
 | |
|     }
 | |
| 
 | |
|     if (a[2] == 0 && a[4] == 0)
 | |
| 	/* Scaling */
 | |
| 	return ImagingScaleAffine(imOut, imIn, x0, y0, x1, y1, a, fill);
 | |
| 
 | |
|     if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
 | |
| 	return (Imaging) ImagingError_ModeError();
 | |
| 
 | |
|     if (x0 < 0)
 | |
|         x0 = 0;
 | |
|     if (y0 < 0)
 | |
|         y0 = 0;
 | |
|     if (x1 > imOut->xsize)
 | |
|         x1 = imOut->xsize;
 | |
|     if (y1 > imOut->ysize)
 | |
|         y1 = imOut->ysize;
 | |
| 
 | |
|     ImagingCopyInfo(imOut, imIn);
 | |
| 
 | |
|     /* translate all four corners to check if they are within the
 | |
|        range that can be represented by the fixed point arithmetics */
 | |
| 
 | |
|     if (check_fixed(a, 0, 0) && check_fixed(a, x1-x0, y1-y0) &&
 | |
|         check_fixed(a, 0, y1-y0) && check_fixed(a, x1-x0, 0))
 | |
|         return affine_fixed(imOut, imIn, x0, y0, x1, y1, a, filterid, fill);
 | |
| 
 | |
|     /* FIXME: cannot really think of any reasonable case when the
 | |
|        following code is used.  maybe we should fall back on the slow
 | |
|        generic transform engine in this case? */
 | |
| 
 | |
|     xsize = (int) imIn->xsize;
 | |
|     ysize = (int) imIn->ysize;
 | |
| 
 | |
|     xo = a[0];
 | |
|     yo = a[3];
 | |
| 
 | |
| #define	AFFINE_TRANSFORM(pixel, image)\
 | |
|     for (y = y0; y < y1; y++) {\
 | |
| 	pixel *out;\
 | |
| 	xx = xo;\
 | |
| 	yy = yo;\
 | |
| 	out = imOut->image[y];\
 | |
|         if (fill && x1 > x0)\
 | |
|             memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
 | |
|         for (x = x0; x < x1; x++, out++) {\
 | |
| 	    xin = COORD(xx);\
 | |
| 	    if (xin >= 0 && xin < xsize) {\
 | |
| 	        yin = COORD(yy);\
 | |
| 		if (yin >= 0 && yin < ysize)\
 | |
|                     *out = imIn->image[yin][xin];\
 | |
|             }\
 | |
| 	    xx += a[1];\
 | |
| 	    yy += a[4];\
 | |
| 	}\
 | |
| 	xo += a[2];\
 | |
| 	yo += a[5];\
 | |
|     }
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     if (imIn->image8)
 | |
| 	AFFINE_TRANSFORM(UINT8, image8)
 | |
|     else
 | |
| 	AFFINE_TRANSFORM(INT32, image32)
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| Imaging
 | |
| ImagingTransformPerspective(Imaging imOut, Imaging imIn,
 | |
|                             int x0, int y0, int x1, int y1,
 | |
|                             double a[8], int filterid, int fill)
 | |
| {
 | |
|     ImagingTransformFilter filter = getfilter(imIn, filterid);
 | |
|     if (!filter)
 | |
|         return (Imaging) ImagingError_ValueError("bad filter number");
 | |
| 
 | |
|     return ImagingTransform(
 | |
|         imOut, imIn,
 | |
|         x0, y0, x1, y1,
 | |
|         perspective_transform, a,
 | |
|         filter, NULL,
 | |
|         fill);
 | |
| }
 | |
| 
 | |
| Imaging
 | |
| ImagingTransformQuad(Imaging imOut, Imaging imIn,
 | |
|                      int x0, int y0, int x1, int y1,
 | |
|                      double a[8], int filterid, int fill)
 | |
| {
 | |
|     ImagingTransformFilter filter = getfilter(imIn, filterid);
 | |
|     if (!filter)
 | |
|         return (Imaging) ImagingError_ValueError("bad filter number");
 | |
| 
 | |
|     return ImagingTransform(
 | |
|         imOut, imIn,
 | |
|         x0, y0, x1, y1,
 | |
|         quad_transform, a,
 | |
|         filter, NULL,
 | |
|         fill);
 | |
| }
 | |
| 
 | |
| /* -------------------------------------------------------------------- */
 | |
| /* Convenience functions */
 | |
| 
 | |
| Imaging
 | |
| ImagingResize(Imaging imOut, Imaging imIn, int filterid)
 | |
| {
 | |
|     double a[6];
 | |
| 
 | |
|     if (imOut->xsize == imIn->xsize && imOut->ysize == imIn->ysize)
 | |
| 	return ImagingCopy2(imOut, imIn);
 | |
| 
 | |
|     memset(a, 0, sizeof a);
 | |
|     a[1] = (double) imIn->xsize / imOut->xsize;
 | |
|     a[5] = (double) imIn->ysize / imOut->ysize;
 | |
| 
 | |
|     if (!filterid && imIn->type != IMAGING_TYPE_SPECIAL)
 | |
|         return ImagingScaleAffine(
 | |
|             imOut, imIn,
 | |
|             0, 0, imOut->xsize, imOut->ysize,
 | |
|             a, 1);
 | |
| 
 | |
|     return ImagingTransformAffine(
 | |
|         imOut, imIn,
 | |
|         0, 0, imOut->xsize, imOut->ysize,
 | |
|         a, filterid, 1);
 | |
| }
 | |
| 
 | |
| Imaging
 | |
| ImagingRotate(Imaging imOut, Imaging imIn, double theta, int filterid)
 | |
| {
 | |
|     int xsize, ysize;
 | |
|     double sintheta, costheta;
 | |
|     double a[6];
 | |
| 
 | |
|     /* Setup an affine transform to rotate around the image center */
 | |
|     theta = -theta * M_PI / 180.0;
 | |
|     sintheta = sin(theta);
 | |
|     costheta = cos(theta);
 | |
| 
 | |
|     xsize = imOut->xsize;
 | |
|     ysize = imOut->ysize;
 | |
| 
 | |
|     a[0] = -costheta * xsize/2 - sintheta * ysize/2 + xsize/2;
 | |
|     a[1] = costheta;
 | |
|     a[2] = sintheta;
 | |
|     a[3] = sintheta * xsize/2 - costheta * ysize/2 + ysize/2;
 | |
|     a[4] = -sintheta;
 | |
|     a[5] = costheta;
 | |
| 
 | |
|     return ImagingTransformAffine(
 | |
|         imOut, imIn,
 | |
|         0, 0, imOut->xsize, imOut->ysize,
 | |
|         a, filterid, 1);
 | |
| }
 |