mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-12-31 20:36:34 +03:00
550 lines
16 KiB
Python
550 lines
16 KiB
Python
#
|
|
# The Python Imaging Library.
|
|
# $Id$
|
|
#
|
|
# standard filters
|
|
#
|
|
# History:
|
|
# 1995-11-27 fl Created
|
|
# 2002-06-08 fl Added rank and mode filters
|
|
# 2003-09-15 fl Fixed rank calculation in rank filter; added expand call
|
|
#
|
|
# Copyright (c) 1997-2003 by Secret Labs AB.
|
|
# Copyright (c) 1995-2002 by Fredrik Lundh.
|
|
#
|
|
# See the README file for information on usage and redistribution.
|
|
#
|
|
import functools
|
|
|
|
|
|
class Filter:
|
|
pass
|
|
|
|
|
|
class MultibandFilter(Filter):
|
|
pass
|
|
|
|
|
|
class BuiltinFilter(MultibandFilter):
|
|
def filter(self, image):
|
|
if image.mode == "P":
|
|
msg = "cannot filter palette images"
|
|
raise ValueError(msg)
|
|
return image.filter(*self.filterargs)
|
|
|
|
|
|
class Kernel(BuiltinFilter):
|
|
"""
|
|
Create a convolution kernel. The current version only
|
|
supports 3x3 and 5x5 integer and floating point kernels.
|
|
|
|
In the current version, kernels can only be applied to
|
|
"L" and "RGB" images.
|
|
|
|
:param size: Kernel size, given as (width, height). In the current
|
|
version, this must be (3,3) or (5,5).
|
|
:param kernel: A sequence containing kernel weights.
|
|
:param scale: Scale factor. If given, the result for each pixel is
|
|
divided by this value. The default is the sum of the
|
|
kernel weights.
|
|
:param offset: Offset. If given, this value is added to the result,
|
|
after it has been divided by the scale factor.
|
|
"""
|
|
|
|
name = "Kernel"
|
|
|
|
def __init__(self, size, kernel, scale=None, offset=0):
|
|
if scale is None:
|
|
# default scale is sum of kernel
|
|
scale = functools.reduce(lambda a, b: a + b, kernel)
|
|
if size[0] * size[1] != len(kernel):
|
|
msg = "not enough coefficients in kernel"
|
|
raise ValueError(msg)
|
|
self.filterargs = size, scale, offset, kernel
|
|
|
|
|
|
class RankFilter(Filter):
|
|
"""
|
|
Create a rank filter. The rank filter sorts all pixels in
|
|
a window of the given size, and returns the ``rank``'th value.
|
|
|
|
:param size: The kernel size, in pixels.
|
|
:param rank: What pixel value to pick. Use 0 for a min filter,
|
|
``size * size / 2`` for a median filter, ``size * size - 1``
|
|
for a max filter, etc.
|
|
"""
|
|
|
|
name = "Rank"
|
|
|
|
def __init__(self, size, rank):
|
|
self.size = size
|
|
self.rank = rank
|
|
|
|
def filter(self, image):
|
|
if image.mode == "P":
|
|
msg = "cannot filter palette images"
|
|
raise ValueError(msg)
|
|
image = image.expand(self.size // 2, self.size // 2)
|
|
return image.rankfilter(self.size, self.rank)
|
|
|
|
|
|
class MedianFilter(RankFilter):
|
|
"""
|
|
Create a median filter. Picks the median pixel value in a window with the
|
|
given size.
|
|
|
|
:param size: The kernel size, in pixels.
|
|
"""
|
|
|
|
name = "Median"
|
|
|
|
def __init__(self, size=3):
|
|
self.size = size
|
|
self.rank = size * size // 2
|
|
|
|
|
|
class MinFilter(RankFilter):
|
|
"""
|
|
Create a min filter. Picks the lowest pixel value in a window with the
|
|
given size.
|
|
|
|
:param size: The kernel size, in pixels.
|
|
"""
|
|
|
|
name = "Min"
|
|
|
|
def __init__(self, size=3):
|
|
self.size = size
|
|
self.rank = 0
|
|
|
|
|
|
class MaxFilter(RankFilter):
|
|
"""
|
|
Create a max filter. Picks the largest pixel value in a window with the
|
|
given size.
|
|
|
|
:param size: The kernel size, in pixels.
|
|
"""
|
|
|
|
name = "Max"
|
|
|
|
def __init__(self, size=3):
|
|
self.size = size
|
|
self.rank = size * size - 1
|
|
|
|
|
|
class ModeFilter(Filter):
|
|
"""
|
|
Create a mode filter. Picks the most frequent pixel value in a box with the
|
|
given size. Pixel values that occur only once or twice are ignored; if no
|
|
pixel value occurs more than twice, the original pixel value is preserved.
|
|
|
|
:param size: The kernel size, in pixels.
|
|
"""
|
|
|
|
name = "Mode"
|
|
|
|
def __init__(self, size=3):
|
|
self.size = size
|
|
|
|
def filter(self, image):
|
|
return image.modefilter(self.size)
|
|
|
|
|
|
class GaussianBlur(MultibandFilter):
|
|
"""Blurs the image with a sequence of extended box filters, which
|
|
approximates a Gaussian kernel. For details on accuracy see
|
|
<https://www.mia.uni-saarland.de/Publications/gwosdek-ssvm11.pdf>
|
|
|
|
:param radius: Standard deviation of the Gaussian kernel.
|
|
"""
|
|
|
|
name = "GaussianBlur"
|
|
|
|
def __init__(self, radius=2):
|
|
self.radius = radius
|
|
|
|
def filter(self, image):
|
|
return image.gaussian_blur(self.radius)
|
|
|
|
|
|
class BoxBlur(MultibandFilter):
|
|
"""Blurs the image by setting each pixel to the average value of the pixels
|
|
in a square box extending radius pixels in each direction.
|
|
Supports float radius of arbitrary size. Uses an optimized implementation
|
|
which runs in linear time relative to the size of the image
|
|
for any radius value.
|
|
|
|
:param radius: Size of the box in one direction. Radius 0 does not blur,
|
|
returns an identical image. Radius 1 takes 1 pixel
|
|
in each direction, i.e. 9 pixels in total.
|
|
"""
|
|
|
|
name = "BoxBlur"
|
|
|
|
def __init__(self, radius):
|
|
if radius < 0:
|
|
msg = "radius must be >= 0"
|
|
raise ValueError(msg)
|
|
self.radius = radius
|
|
|
|
def filter(self, image):
|
|
return image.box_blur(self.radius)
|
|
|
|
|
|
class UnsharpMask(MultibandFilter):
|
|
"""Unsharp mask filter.
|
|
|
|
See Wikipedia's entry on `digital unsharp masking`_ for an explanation of
|
|
the parameters.
|
|
|
|
:param radius: Blur Radius
|
|
:param percent: Unsharp strength, in percent
|
|
:param threshold: Threshold controls the minimum brightness change that
|
|
will be sharpened
|
|
|
|
.. _digital unsharp masking: https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking
|
|
|
|
""" # noqa: E501
|
|
|
|
name = "UnsharpMask"
|
|
|
|
def __init__(self, radius=2, percent=150, threshold=3):
|
|
self.radius = radius
|
|
self.percent = percent
|
|
self.threshold = threshold
|
|
|
|
def filter(self, image):
|
|
return image.unsharp_mask(self.radius, self.percent, self.threshold)
|
|
|
|
|
|
class BLUR(BuiltinFilter):
|
|
name = "Blur"
|
|
# fmt: off
|
|
filterargs = (5, 5), 16, 0, (
|
|
1, 1, 1, 1, 1,
|
|
1, 0, 0, 0, 1,
|
|
1, 0, 0, 0, 1,
|
|
1, 0, 0, 0, 1,
|
|
1, 1, 1, 1, 1,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class CONTOUR(BuiltinFilter):
|
|
name = "Contour"
|
|
# fmt: off
|
|
filterargs = (3, 3), 1, 255, (
|
|
-1, -1, -1,
|
|
-1, 8, -1,
|
|
-1, -1, -1,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class DETAIL(BuiltinFilter):
|
|
name = "Detail"
|
|
# fmt: off
|
|
filterargs = (3, 3), 6, 0, (
|
|
0, -1, 0,
|
|
-1, 10, -1,
|
|
0, -1, 0,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class EDGE_ENHANCE(BuiltinFilter):
|
|
name = "Edge-enhance"
|
|
# fmt: off
|
|
filterargs = (3, 3), 2, 0, (
|
|
-1, -1, -1,
|
|
-1, 10, -1,
|
|
-1, -1, -1,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class EDGE_ENHANCE_MORE(BuiltinFilter):
|
|
name = "Edge-enhance More"
|
|
# fmt: off
|
|
filterargs = (3, 3), 1, 0, (
|
|
-1, -1, -1,
|
|
-1, 9, -1,
|
|
-1, -1, -1,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class EMBOSS(BuiltinFilter):
|
|
name = "Emboss"
|
|
# fmt: off
|
|
filterargs = (3, 3), 1, 128, (
|
|
-1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 0,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class FIND_EDGES(BuiltinFilter):
|
|
name = "Find Edges"
|
|
# fmt: off
|
|
filterargs = (3, 3), 1, 0, (
|
|
-1, -1, -1,
|
|
-1, 8, -1,
|
|
-1, -1, -1,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class SHARPEN(BuiltinFilter):
|
|
name = "Sharpen"
|
|
# fmt: off
|
|
filterargs = (3, 3), 16, 0, (
|
|
-2, -2, -2,
|
|
-2, 32, -2,
|
|
-2, -2, -2,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class SMOOTH(BuiltinFilter):
|
|
name = "Smooth"
|
|
# fmt: off
|
|
filterargs = (3, 3), 13, 0, (
|
|
1, 1, 1,
|
|
1, 5, 1,
|
|
1, 1, 1,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class SMOOTH_MORE(BuiltinFilter):
|
|
name = "Smooth More"
|
|
# fmt: off
|
|
filterargs = (5, 5), 100, 0, (
|
|
1, 1, 1, 1, 1,
|
|
1, 5, 5, 5, 1,
|
|
1, 5, 44, 5, 1,
|
|
1, 5, 5, 5, 1,
|
|
1, 1, 1, 1, 1,
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class Color3DLUT(MultibandFilter):
|
|
"""Three-dimensional color lookup table.
|
|
|
|
Transforms 3-channel pixels using the values of the channels as coordinates
|
|
in the 3D lookup table and interpolating the nearest elements.
|
|
|
|
This method allows you to apply almost any color transformation
|
|
in constant time by using pre-calculated decimated tables.
|
|
|
|
.. versionadded:: 5.2.0
|
|
|
|
:param size: Size of the table. One int or tuple of (int, int, int).
|
|
Minimal size in any dimension is 2, maximum is 65.
|
|
:param table: Flat lookup table. A list of ``channels * size**3``
|
|
float elements or a list of ``size**3`` channels-sized
|
|
tuples with floats. Channels are changed first,
|
|
then first dimension, then second, then third.
|
|
Value 0.0 corresponds lowest value of output, 1.0 highest.
|
|
:param channels: Number of channels in the table. Could be 3 or 4.
|
|
Default is 3.
|
|
:param target_mode: A mode for the result image. Should have not less
|
|
than ``channels`` channels. Default is ``None``,
|
|
which means that mode wouldn't be changed.
|
|
"""
|
|
|
|
name = "Color 3D LUT"
|
|
|
|
def __init__(self, size, table, channels=3, target_mode=None, **kwargs):
|
|
if channels not in (3, 4):
|
|
msg = "Only 3 or 4 output channels are supported"
|
|
raise ValueError(msg)
|
|
self.size = size = self._check_size(size)
|
|
self.channels = channels
|
|
self.mode = target_mode
|
|
|
|
# Hidden flag `_copy_table=False` could be used to avoid extra copying
|
|
# of the table if the table is specially made for the constructor.
|
|
copy_table = kwargs.get("_copy_table", True)
|
|
items = size[0] * size[1] * size[2]
|
|
wrong_size = False
|
|
|
|
numpy = None
|
|
if hasattr(table, "shape"):
|
|
try:
|
|
import numpy
|
|
except ImportError: # pragma: no cover
|
|
pass
|
|
|
|
if numpy and isinstance(table, numpy.ndarray):
|
|
if copy_table:
|
|
table = table.copy()
|
|
|
|
if table.shape in [
|
|
(items * channels,),
|
|
(items, channels),
|
|
(size[2], size[1], size[0], channels),
|
|
]:
|
|
table = table.reshape(items * channels)
|
|
else:
|
|
wrong_size = True
|
|
|
|
else:
|
|
if copy_table:
|
|
table = list(table)
|
|
|
|
# Convert to a flat list
|
|
if table and isinstance(table[0], (list, tuple)):
|
|
table, raw_table = [], table
|
|
for pixel in raw_table:
|
|
if len(pixel) != channels:
|
|
msg = (
|
|
"The elements of the table should "
|
|
f"have a length of {channels}."
|
|
)
|
|
raise ValueError(msg)
|
|
table.extend(pixel)
|
|
|
|
if wrong_size or len(table) != items * channels:
|
|
msg = (
|
|
"The table should have either channels * size**3 float items "
|
|
"or size**3 items of channels-sized tuples with floats. "
|
|
f"Table should be: {channels}x{size[0]}x{size[1]}x{size[2]}. "
|
|
f"Actual length: {len(table)}"
|
|
)
|
|
raise ValueError(msg)
|
|
self.table = table
|
|
|
|
@staticmethod
|
|
def _check_size(size):
|
|
try:
|
|
_, _, _ = size
|
|
except ValueError as e:
|
|
msg = "Size should be either an integer or a tuple of three integers."
|
|
raise ValueError(msg) from e
|
|
except TypeError:
|
|
size = (size, size, size)
|
|
size = [int(x) for x in size]
|
|
for size_1d in size:
|
|
if not 2 <= size_1d <= 65:
|
|
msg = "Size should be in [2, 65] range."
|
|
raise ValueError(msg)
|
|
return size
|
|
|
|
@classmethod
|
|
def generate(cls, size, callback, channels=3, target_mode=None):
|
|
"""Generates new LUT using provided callback.
|
|
|
|
:param size: Size of the table. Passed to the constructor.
|
|
:param callback: Function with three parameters which correspond
|
|
three color channels. Will be called ``size**3``
|
|
times with values from 0.0 to 1.0 and should return
|
|
a tuple with ``channels`` elements.
|
|
:param channels: The number of channels which should return callback.
|
|
:param target_mode: Passed to the constructor of the resulting
|
|
lookup table.
|
|
"""
|
|
size_1d, size_2d, size_3d = cls._check_size(size)
|
|
if channels not in (3, 4):
|
|
msg = "Only 3 or 4 output channels are supported"
|
|
raise ValueError(msg)
|
|
|
|
table = [0] * (size_1d * size_2d * size_3d * channels)
|
|
idx_out = 0
|
|
for b in range(size_3d):
|
|
for g in range(size_2d):
|
|
for r in range(size_1d):
|
|
table[idx_out : idx_out + channels] = callback(
|
|
r / (size_1d - 1), g / (size_2d - 1), b / (size_3d - 1)
|
|
)
|
|
idx_out += channels
|
|
|
|
return cls(
|
|
(size_1d, size_2d, size_3d),
|
|
table,
|
|
channels=channels,
|
|
target_mode=target_mode,
|
|
_copy_table=False,
|
|
)
|
|
|
|
def transform(self, callback, with_normals=False, channels=None, target_mode=None):
|
|
"""Transforms the table values using provided callback and returns
|
|
a new LUT with altered values.
|
|
|
|
:param callback: A function which takes old lookup table values
|
|
and returns a new set of values. The number
|
|
of arguments which function should take is
|
|
``self.channels`` or ``3 + self.channels``
|
|
if ``with_normals`` flag is set.
|
|
Should return a tuple of ``self.channels`` or
|
|
``channels`` elements if it is set.
|
|
:param with_normals: If true, ``callback`` will be called with
|
|
coordinates in the color cube as the first
|
|
three arguments. Otherwise, ``callback``
|
|
will be called only with actual color values.
|
|
:param channels: The number of channels in the resulting lookup table.
|
|
:param target_mode: Passed to the constructor of the resulting
|
|
lookup table.
|
|
"""
|
|
if channels not in (None, 3, 4):
|
|
msg = "Only 3 or 4 output channels are supported"
|
|
raise ValueError(msg)
|
|
ch_in = self.channels
|
|
ch_out = channels or ch_in
|
|
size_1d, size_2d, size_3d = self.size
|
|
|
|
table = [0] * (size_1d * size_2d * size_3d * ch_out)
|
|
idx_in = 0
|
|
idx_out = 0
|
|
for b in range(size_3d):
|
|
for g in range(size_2d):
|
|
for r in range(size_1d):
|
|
values = self.table[idx_in : idx_in + ch_in]
|
|
if with_normals:
|
|
values = callback(
|
|
r / (size_1d - 1),
|
|
g / (size_2d - 1),
|
|
b / (size_3d - 1),
|
|
*values,
|
|
)
|
|
else:
|
|
values = callback(*values)
|
|
table[idx_out : idx_out + ch_out] = values
|
|
idx_in += ch_in
|
|
idx_out += ch_out
|
|
|
|
return type(self)(
|
|
self.size,
|
|
table,
|
|
channels=ch_out,
|
|
target_mode=target_mode or self.mode,
|
|
_copy_table=False,
|
|
)
|
|
|
|
def __repr__(self):
|
|
r = [
|
|
f"{self.__class__.__name__} from {self.table.__class__.__name__}",
|
|
"size={:d}x{:d}x{:d}".format(*self.size),
|
|
f"channels={self.channels:d}",
|
|
]
|
|
if self.mode:
|
|
r.append(f"target_mode={self.mode}")
|
|
return "<{}>".format(" ".join(r))
|
|
|
|
def filter(self, image):
|
|
from . import Image
|
|
|
|
return image.color_lut_3d(
|
|
self.mode or image.mode,
|
|
Image.Resampling.BILINEAR,
|
|
self.channels,
|
|
self.size[0],
|
|
self.size[1],
|
|
self.size[2],
|
|
self.table,
|
|
)
|