mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-12-26 18:06:18 +03:00
295 lines
9.7 KiB
Python
295 lines
9.7 KiB
Python
import math
|
|
|
|
from PIL import Image, ImageTransform
|
|
|
|
from .helper import PillowTestCase, assert_image_equal, assert_image_similar, hopper
|
|
|
|
|
|
class TestImageTransform(PillowTestCase):
|
|
def test_sanity(self):
|
|
im = Image.new("L", (100, 100))
|
|
|
|
seq = tuple(range(10))
|
|
|
|
transform = ImageTransform.AffineTransform(seq[:6])
|
|
im.transform((100, 100), transform)
|
|
transform = ImageTransform.ExtentTransform(seq[:4])
|
|
im.transform((100, 100), transform)
|
|
transform = ImageTransform.QuadTransform(seq[:8])
|
|
im.transform((100, 100), transform)
|
|
transform = ImageTransform.MeshTransform([(seq[:4], seq[:8])])
|
|
im.transform((100, 100), transform)
|
|
|
|
def test_info(self):
|
|
comment = b"File written by Adobe Photoshop\xa8 4.0"
|
|
|
|
with Image.open("Tests/images/hopper.gif") as im:
|
|
self.assertEqual(im.info["comment"], comment)
|
|
|
|
transform = ImageTransform.ExtentTransform((0, 0, 0, 0))
|
|
new_im = im.transform((100, 100), transform)
|
|
self.assertEqual(new_im.info["comment"], comment)
|
|
|
|
def test_extent(self):
|
|
im = hopper("RGB")
|
|
(w, h) = im.size
|
|
# fmt: off
|
|
transformed = im.transform(im.size, Image.EXTENT,
|
|
(0, 0,
|
|
w//2, h//2), # ul -> lr
|
|
Image.BILINEAR)
|
|
# fmt: on
|
|
|
|
scaled = im.resize((w * 2, h * 2), Image.BILINEAR).crop((0, 0, w, h))
|
|
|
|
# undone -- precision?
|
|
assert_image_similar(transformed, scaled, 23)
|
|
|
|
def test_quad(self):
|
|
# one simple quad transform, equivalent to scale & crop upper left quad
|
|
im = hopper("RGB")
|
|
(w, h) = im.size
|
|
# fmt: off
|
|
transformed = im.transform(im.size, Image.QUAD,
|
|
(0, 0, 0, h//2,
|
|
# ul -> ccw around quad:
|
|
w//2, h//2, w//2, 0),
|
|
Image.BILINEAR)
|
|
# fmt: on
|
|
|
|
scaled = im.transform(
|
|
(w, h), Image.AFFINE, (0.5, 0, 0, 0, 0.5, 0), Image.BILINEAR
|
|
)
|
|
|
|
assert_image_equal(transformed, scaled)
|
|
|
|
def test_fill(self):
|
|
for mode, pixel in [
|
|
["RGB", (255, 0, 0)],
|
|
["RGBA", (255, 0, 0, 255)],
|
|
["LA", (76, 0)],
|
|
]:
|
|
im = hopper(mode)
|
|
(w, h) = im.size
|
|
transformed = im.transform(
|
|
im.size,
|
|
Image.EXTENT,
|
|
(0, 0, w * 2, h * 2),
|
|
Image.BILINEAR,
|
|
fillcolor="red",
|
|
)
|
|
|
|
self.assertEqual(transformed.getpixel((w - 1, h - 1)), pixel)
|
|
|
|
def test_mesh(self):
|
|
# this should be a checkerboard of halfsized hoppers in ul, lr
|
|
im = hopper("RGBA")
|
|
(w, h) = im.size
|
|
# fmt: off
|
|
transformed = im.transform(im.size, Image.MESH,
|
|
[((0, 0, w//2, h//2), # box
|
|
(0, 0, 0, h,
|
|
w, h, w, 0)), # ul -> ccw around quad
|
|
((w//2, h//2, w, h), # box
|
|
(0, 0, 0, h,
|
|
w, h, w, 0))], # ul -> ccw around quad
|
|
Image.BILINEAR)
|
|
# fmt: on
|
|
|
|
scaled = im.transform(
|
|
(w // 2, h // 2), Image.AFFINE, (2, 0, 0, 0, 2, 0), Image.BILINEAR
|
|
)
|
|
|
|
checker = Image.new("RGBA", im.size)
|
|
checker.paste(scaled, (0, 0))
|
|
checker.paste(scaled, (w // 2, h // 2))
|
|
|
|
assert_image_equal(transformed, checker)
|
|
|
|
# now, check to see that the extra area is (0, 0, 0, 0)
|
|
blank = Image.new("RGBA", (w // 2, h // 2), (0, 0, 0, 0))
|
|
|
|
assert_image_equal(blank, transformed.crop((w // 2, 0, w, h // 2)))
|
|
assert_image_equal(blank, transformed.crop((0, h // 2, w // 2, h)))
|
|
|
|
def _test_alpha_premult(self, op):
|
|
# create image with half white, half black,
|
|
# with the black half transparent.
|
|
# do op,
|
|
# there should be no darkness in the white section.
|
|
im = Image.new("RGBA", (10, 10), (0, 0, 0, 0))
|
|
im2 = Image.new("RGBA", (5, 10), (255, 255, 255, 255))
|
|
im.paste(im2, (0, 0))
|
|
|
|
im = op(im, (40, 10))
|
|
im_background = Image.new("RGB", (40, 10), (255, 255, 255))
|
|
im_background.paste(im, (0, 0), im)
|
|
|
|
hist = im_background.histogram()
|
|
self.assertEqual(40 * 10, hist[-1])
|
|
|
|
def test_alpha_premult_resize(self):
|
|
def op(im, sz):
|
|
return im.resize(sz, Image.BILINEAR)
|
|
|
|
self._test_alpha_premult(op)
|
|
|
|
def test_alpha_premult_transform(self):
|
|
def op(im, sz):
|
|
(w, h) = im.size
|
|
return im.transform(sz, Image.EXTENT, (0, 0, w, h), Image.BILINEAR)
|
|
|
|
self._test_alpha_premult(op)
|
|
|
|
def test_blank_fill(self):
|
|
# attempting to hit
|
|
# https://github.com/python-pillow/Pillow/issues/254 reported
|
|
#
|
|
# issue is that transforms with transparent overflow area
|
|
# contained junk from previous images, especially on systems with
|
|
# constrained memory. So, attempt to fill up memory with a
|
|
# pattern, free it, and then run the mesh test again. Using a 1Mp
|
|
# image with 4 bands, for 4 megs of data allocated, x 64. OMM (64
|
|
# bit 12.04 VM with 512 megs available, this fails with Pillow <
|
|
# a0eaf06cc5f62a6fb6de556989ac1014ff3348ea
|
|
#
|
|
# Running by default, but I'd totally understand not doing it in
|
|
# the future
|
|
|
|
pattern = [Image.new("RGBA", (1024, 1024), (a, a, a, a)) for a in range(1, 65)]
|
|
|
|
# Yeah. Watch some JIT optimize this out.
|
|
pattern = None # noqa: F841
|
|
|
|
self.test_mesh()
|
|
|
|
def test_missing_method_data(self):
|
|
with hopper() as im:
|
|
self.assertRaises(ValueError, im.transform, (100, 100), None)
|
|
|
|
def test_unknown_resampling_filter(self):
|
|
with hopper() as im:
|
|
(w, h) = im.size
|
|
for resample in (Image.BOX, "unknown"):
|
|
self.assertRaises(
|
|
ValueError,
|
|
im.transform,
|
|
(100, 100),
|
|
Image.EXTENT,
|
|
(0, 0, w, h),
|
|
resample,
|
|
)
|
|
|
|
|
|
class TestImageTransformAffine(PillowTestCase):
|
|
transform = Image.AFFINE
|
|
|
|
def _test_image(self):
|
|
im = hopper("RGB")
|
|
return im.crop((10, 20, im.width - 10, im.height - 20))
|
|
|
|
def _test_rotate(self, deg, transpose):
|
|
im = self._test_image()
|
|
|
|
angle = -math.radians(deg)
|
|
matrix = [
|
|
round(math.cos(angle), 15),
|
|
round(math.sin(angle), 15),
|
|
0.0,
|
|
round(-math.sin(angle), 15),
|
|
round(math.cos(angle), 15),
|
|
0.0,
|
|
0,
|
|
0,
|
|
]
|
|
matrix[2] = (1 - matrix[0] - matrix[1]) * im.width / 2
|
|
matrix[5] = (1 - matrix[3] - matrix[4]) * im.height / 2
|
|
|
|
if transpose is not None:
|
|
transposed = im.transpose(transpose)
|
|
else:
|
|
transposed = im
|
|
|
|
for resample in [Image.NEAREST, Image.BILINEAR, Image.BICUBIC]:
|
|
transformed = im.transform(
|
|
transposed.size, self.transform, matrix, resample
|
|
)
|
|
assert_image_equal(transposed, transformed)
|
|
|
|
def test_rotate_0_deg(self):
|
|
self._test_rotate(0, None)
|
|
|
|
def test_rotate_90_deg(self):
|
|
self._test_rotate(90, Image.ROTATE_90)
|
|
|
|
def test_rotate_180_deg(self):
|
|
self._test_rotate(180, Image.ROTATE_180)
|
|
|
|
def test_rotate_270_deg(self):
|
|
self._test_rotate(270, Image.ROTATE_270)
|
|
|
|
def _test_resize(self, scale, epsilonscale):
|
|
im = self._test_image()
|
|
|
|
size_up = int(round(im.width * scale)), int(round(im.height * scale))
|
|
matrix_up = [1 / scale, 0, 0, 0, 1 / scale, 0, 0, 0]
|
|
matrix_down = [scale, 0, 0, 0, scale, 0, 0, 0]
|
|
|
|
for resample, epsilon in [
|
|
(Image.NEAREST, 0),
|
|
(Image.BILINEAR, 2),
|
|
(Image.BICUBIC, 1),
|
|
]:
|
|
transformed = im.transform(size_up, self.transform, matrix_up, resample)
|
|
transformed = transformed.transform(
|
|
im.size, self.transform, matrix_down, resample
|
|
)
|
|
assert_image_similar(transformed, im, epsilon * epsilonscale)
|
|
|
|
def test_resize_1_1x(self):
|
|
self._test_resize(1.1, 6.9)
|
|
|
|
def test_resize_1_5x(self):
|
|
self._test_resize(1.5, 5.5)
|
|
|
|
def test_resize_2_0x(self):
|
|
self._test_resize(2.0, 5.5)
|
|
|
|
def test_resize_2_3x(self):
|
|
self._test_resize(2.3, 3.7)
|
|
|
|
def test_resize_2_5x(self):
|
|
self._test_resize(2.5, 3.7)
|
|
|
|
def _test_translate(self, x, y, epsilonscale):
|
|
im = self._test_image()
|
|
|
|
size_up = int(round(im.width + x)), int(round(im.height + y))
|
|
matrix_up = [1, 0, -x, 0, 1, -y, 0, 0]
|
|
matrix_down = [1, 0, x, 0, 1, y, 0, 0]
|
|
|
|
for resample, epsilon in [
|
|
(Image.NEAREST, 0),
|
|
(Image.BILINEAR, 1.5),
|
|
(Image.BICUBIC, 1),
|
|
]:
|
|
transformed = im.transform(size_up, self.transform, matrix_up, resample)
|
|
transformed = transformed.transform(
|
|
im.size, self.transform, matrix_down, resample
|
|
)
|
|
assert_image_similar(transformed, im, epsilon * epsilonscale)
|
|
|
|
def test_translate_0_1(self):
|
|
self._test_translate(0.1, 0, 3.7)
|
|
|
|
def test_translate_0_6(self):
|
|
self._test_translate(0.6, 0, 9.1)
|
|
|
|
def test_translate_50(self):
|
|
self._test_translate(50, 50, 0)
|
|
|
|
|
|
class TestImageTransformPerspective(TestImageTransformAffine):
|
|
# Repeat all tests for AFFINE transformations with PERSPECTIVE
|
|
transform = Image.PERSPECTIVE
|