mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 07:57:27 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			168 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from PIL import Image
 | |
| 
 | |
| from .helper import (
 | |
|     assert_image_equal,
 | |
|     assert_image_similar,
 | |
|     fromstring,
 | |
|     hopper,
 | |
|     skip_unless_feature,
 | |
|     tostring,
 | |
| )
 | |
| 
 | |
| 
 | |
| def test_sanity() -> None:
 | |
|     im = hopper()
 | |
|     im.thumbnail((100, 100))
 | |
| 
 | |
|     assert im.size == (100, 100)
 | |
| 
 | |
| 
 | |
| def test_aspect() -> None:
 | |
|     im = Image.new("L", (128, 128))
 | |
|     im.thumbnail((100, 100))
 | |
|     assert im.size == (100, 100)
 | |
| 
 | |
|     im = Image.new("L", (128, 256))
 | |
|     im.thumbnail((100, 100))
 | |
|     assert im.size == (50, 100)
 | |
| 
 | |
|     im = Image.new("L", (128, 256))
 | |
|     im.thumbnail((50, 100))
 | |
|     assert im.size == (50, 100)
 | |
| 
 | |
|     im = Image.new("L", (256, 128))
 | |
|     im.thumbnail((100, 100))
 | |
|     assert im.size == (100, 50)
 | |
| 
 | |
|     im = Image.new("L", (256, 128))
 | |
|     im.thumbnail((100, 50))
 | |
|     assert im.size == (100, 50)
 | |
| 
 | |
|     im = Image.new("L", (64, 64))
 | |
|     im.thumbnail((100, 100))
 | |
|     assert im.size == (64, 64)
 | |
| 
 | |
|     im = Image.new("L", (256, 162))  # ratio is 1.5802469136
 | |
|     im.thumbnail((33, 33))
 | |
|     assert im.size == (33, 21)  # ratio is 1.5714285714
 | |
| 
 | |
|     im = Image.new("L", (162, 256))  # ratio is 0.6328125
 | |
|     im.thumbnail((33, 33))
 | |
|     assert im.size == (21, 33)  # ratio is 0.6363636364
 | |
| 
 | |
|     im = Image.new("L", (145, 100))  # ratio is 1.45
 | |
|     im.thumbnail((50, 50))
 | |
|     assert im.size == (50, 34)  # ratio is 1.47058823529
 | |
| 
 | |
|     im = Image.new("L", (100, 145))  # ratio is 0.689655172414
 | |
|     im.thumbnail((50, 50))
 | |
|     assert im.size == (34, 50)  # ratio is 0.68
 | |
| 
 | |
|     im = Image.new("L", (100, 30))  # ratio is 3.333333333333
 | |
|     im.thumbnail((75, 75))
 | |
|     assert im.size == (75, 23)  # ratio is 3.260869565217
 | |
| 
 | |
| 
 | |
| def test_division_by_zero() -> None:
 | |
|     im = Image.new("L", (200, 2))
 | |
|     im.thumbnail((75, 75))
 | |
|     assert im.size == (75, 1)
 | |
| 
 | |
| 
 | |
| def test_float() -> None:
 | |
|     im = Image.new("L", (128, 128))
 | |
|     im.thumbnail((99.9, 99.9))
 | |
|     assert im.size == (99, 99)
 | |
| 
 | |
| 
 | |
| def test_no_resize() -> None:
 | |
|     # Check that draft() can resize the image to the destination size
 | |
|     with Image.open("Tests/images/hopper.jpg") as im:
 | |
|         im.draft(None, (64, 64))
 | |
|         assert im.size == (64, 64)
 | |
| 
 | |
|     # Test thumbnail(), where only draft() is necessary to resize the image
 | |
|     with Image.open("Tests/images/hopper.jpg") as im:
 | |
|         im.thumbnail((64, 64))
 | |
|         assert im.size == (64, 64)
 | |
| 
 | |
| 
 | |
| @skip_unless_feature("libtiff")
 | |
| def test_transposed() -> None:
 | |
|     with Image.open("Tests/images/g4_orientation_5.tif") as im:
 | |
|         assert im.size == (590, 88)
 | |
| 
 | |
|         im.thumbnail((64, 64))
 | |
|         assert im.size == (64, 10)
 | |
| 
 | |
|     with Image.open("Tests/images/g4_orientation_5.tif") as im:
 | |
|         im.thumbnail((590, 88), reducing_gap=None)
 | |
|         assert im.size == (590, 88)
 | |
| 
 | |
| 
 | |
| def test_load_first_unless_jpeg(monkeypatch: pytest.MonkeyPatch) -> None:
 | |
|     # Test that thumbnail() still uses draft() for JPEG
 | |
|     with Image.open("Tests/images/hopper.jpg") as im:
 | |
|         original_draft = im.draft
 | |
| 
 | |
|         def im_draft(
 | |
|             mode: str | None, size: tuple[int, int] | None
 | |
|         ) -> tuple[str, tuple[int, int, float, float]] | None:
 | |
|             result = original_draft(mode, size)
 | |
|             assert result is not None
 | |
| 
 | |
|             return result
 | |
| 
 | |
|         monkeypatch.setattr(im, "draft", im_draft)
 | |
| 
 | |
|         im.thumbnail((64, 64))
 | |
| 
 | |
| 
 | |
| # valgrind test is failing with memory allocated in libjpeg
 | |
| @pytest.mark.valgrind_known_error(reason="Known Failing")
 | |
| def test_DCT_scaling_edges() -> None:
 | |
|     # Make an image with red borders and size (N * 8) + 1 to cross DCT grid
 | |
|     im = Image.new("RGB", (257, 257), "red")
 | |
|     im.paste(Image.new("RGB", (235, 235)), (11, 11))
 | |
| 
 | |
|     thumb = fromstring(tostring(im, "JPEG", quality=99, subsampling=0))
 | |
|     # small reducing_gap to amplify the effect
 | |
|     thumb.thumbnail((32, 32), Image.Resampling.BICUBIC, reducing_gap=1.0)
 | |
| 
 | |
|     ref = im.resize((32, 32), Image.Resampling.BICUBIC)
 | |
|     # This is still JPEG, some error is present. Without the fix it is 11.5
 | |
|     assert_image_similar(thumb, ref, 1.5)
 | |
| 
 | |
| 
 | |
| def test_reducing_gap_values() -> None:
 | |
|     im = hopper()
 | |
|     im.thumbnail((18, 18), Image.Resampling.BICUBIC)
 | |
| 
 | |
|     ref = hopper()
 | |
|     ref.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=2.0)
 | |
|     # reducing_gap=2.0 should be the default
 | |
|     assert_image_equal(ref, im)
 | |
| 
 | |
|     ref = hopper()
 | |
|     ref.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=None)
 | |
|     with pytest.raises(pytest.fail.Exception):
 | |
|         assert_image_equal(ref, im)
 | |
| 
 | |
|     assert_image_similar(ref, im, 3.5)
 | |
| 
 | |
| 
 | |
| def test_reducing_gap_for_DCT_scaling() -> None:
 | |
|     with Image.open("Tests/images/hopper.jpg") as ref:
 | |
|         # thumbnail should call draft with reducing_gap scale
 | |
|         ref.draft(None, (18 * 3, 18 * 3))
 | |
|         ref = ref.resize((18, 18), Image.Resampling.BICUBIC)
 | |
| 
 | |
|         with Image.open("Tests/images/hopper.jpg") as im:
 | |
|             im.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=3.0)
 | |
| 
 | |
|             assert_image_similar(ref, im, 1.4)
 |