mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-01 04:46:18 +03:00
653 lines
22 KiB
C
653 lines
22 KiB
C
#include "Imaging.h"
|
|
|
|
#include <math.h>
|
|
|
|
|
|
#define ROUND_UP(f) ((int) ((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F))
|
|
|
|
struct filter {
|
|
double (*filter)(double x);
|
|
double support;
|
|
};
|
|
|
|
static inline double box_filter(double x)
|
|
{
|
|
if (x >= -0.5 && x < 0.5)
|
|
return 1.0;
|
|
return 0.0;
|
|
}
|
|
|
|
static inline double bilinear_filter(double x)
|
|
{
|
|
if (x < 0.0)
|
|
x = -x;
|
|
if (x < 1.0)
|
|
return 1.0-x;
|
|
return 0.0;
|
|
}
|
|
|
|
static inline double hamming_filter(double x)
|
|
{
|
|
if (x < 0.0)
|
|
x = -x;
|
|
if (x == 0.0)
|
|
return 1.0;
|
|
x = x * M_PI;
|
|
return sin(x) / x * (0.54f + 0.46f * cos(x));
|
|
}
|
|
|
|
static inline double bicubic_filter(double x)
|
|
{
|
|
/* https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm */
|
|
#define a -0.5
|
|
if (x < 0.0)
|
|
x = -x;
|
|
if (x < 1.0)
|
|
return ((a + 2.0) * x - (a + 3.0)) * x*x + 1;
|
|
if (x < 2.0)
|
|
return (((x - 5) * x + 8) * x - 4) * a;
|
|
return 0.0;
|
|
#undef a
|
|
}
|
|
|
|
static inline double sinc_filter(double x)
|
|
{
|
|
if (x == 0.0)
|
|
return 1.0;
|
|
x = x * M_PI;
|
|
return sin(x) / x;
|
|
}
|
|
|
|
static inline double lanczos_filter(double x)
|
|
{
|
|
/* truncated sinc */
|
|
if (-3.0 <= x && x < 3.0)
|
|
return sinc_filter(x) * sinc_filter(x/3);
|
|
return 0.0;
|
|
}
|
|
|
|
static struct filter BOX = { box_filter, 0.5 };
|
|
static struct filter BILINEAR = { bilinear_filter, 1.0 };
|
|
static struct filter HAMMING = { hamming_filter, 1.0 };
|
|
static struct filter BICUBIC = { bicubic_filter, 2.0 };
|
|
static struct filter LANCZOS = { lanczos_filter, 3.0 };
|
|
|
|
|
|
/* 8 bits for result. Filter can have negative areas.
|
|
In one cases the sum of the coefficients will be negative,
|
|
in the other it will be more than 1.0. That is why we need
|
|
two extra bits for overflow and int type. */
|
|
#define PRECISION_BITS (32 - 8 - 2)
|
|
|
|
|
|
UINT8 _lookups[512] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
|
|
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
|
|
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
|
|
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
|
|
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
|
|
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
|
|
176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
|
|
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
|
|
208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
|
|
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
|
|
240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255
|
|
};
|
|
|
|
UINT8 *lookups = &_lookups[128];
|
|
|
|
|
|
static inline UINT8 clip8(int in)
|
|
{
|
|
return lookups[in >> PRECISION_BITS];
|
|
}
|
|
|
|
|
|
int
|
|
precompute_coeffs(int inSize, float in0, float in1, int outSize,
|
|
struct filter *filterp, int **boundsp, double **kkp) {
|
|
double support, scale, filterscale;
|
|
double center, ww, ss;
|
|
int xx, x, ksize, xmin, xmax;
|
|
int *bounds;
|
|
double *kk, *k;
|
|
|
|
/* prepare for horizontal stretch */
|
|
filterscale = scale = (double) (in1 - in0) / outSize;
|
|
if (filterscale < 1.0) {
|
|
filterscale = 1.0;
|
|
}
|
|
|
|
/* determine support size (length of resampling filter) */
|
|
support = filterp->support * filterscale;
|
|
|
|
/* maximum number of coeffs */
|
|
ksize = (int) ceil(support) * 2 + 1;
|
|
|
|
// check for overflow
|
|
if (outSize > INT_MAX / (ksize * sizeof(double))) {
|
|
ImagingError_MemoryError();
|
|
return 0;
|
|
}
|
|
|
|
/* coefficient buffer */
|
|
/* malloc check ok, overflow checked above */
|
|
kk = malloc(outSize * ksize * sizeof(double));
|
|
if ( ! kk) {
|
|
ImagingError_MemoryError();
|
|
return 0;
|
|
}
|
|
|
|
/* malloc check ok, ksize*sizeof(double) > 2*sizeof(int) */
|
|
bounds = malloc(outSize * 2 * sizeof(int));
|
|
if ( ! bounds) {
|
|
free(kk);
|
|
ImagingError_MemoryError();
|
|
return 0;
|
|
}
|
|
|
|
for (xx = 0; xx < outSize; xx++) {
|
|
center = in0 + (xx + 0.5) * scale;
|
|
ww = 0.0;
|
|
ss = 1.0 / filterscale;
|
|
xmin = (int) floor(center - support);
|
|
if (xmin < 0)
|
|
xmin = 0;
|
|
xmax = (int) ceil(center + support);
|
|
if (xmax > inSize)
|
|
xmax = inSize;
|
|
xmax -= xmin;
|
|
k = &kk[xx * ksize];
|
|
for (x = 0; x < xmax; x++) {
|
|
double w = filterp->filter((x + xmin - center + 0.5) * ss);
|
|
k[x] = w;
|
|
ww += w;
|
|
|
|
// We can skip extreme coefficients if they are zeroes.
|
|
if (w == 0) {
|
|
// Skip from the start.
|
|
if (x == 0) {
|
|
// At next loop `x` will be 0.
|
|
x -= 1;
|
|
// But `w` will not be 0, because it based on `xmin`.
|
|
xmin += 1;
|
|
xmax -= 1;
|
|
} else if (x == xmax - 1) {
|
|
// Truncate the last coefficient for current `xx`.
|
|
xmax -= 1;
|
|
}
|
|
}
|
|
}
|
|
for (x = 0; x < xmax; x++) {
|
|
if (ww != 0.0)
|
|
k[x] /= ww;
|
|
}
|
|
// Remaining values should stay empty if they are used despite of xmax.
|
|
for (; x < ksize; x++) {
|
|
k[x] = 0;
|
|
}
|
|
bounds[xx * 2 + 0] = xmin;
|
|
bounds[xx * 2 + 1] = xmax;
|
|
}
|
|
*boundsp = bounds;
|
|
*kkp = kk;
|
|
return ksize;
|
|
}
|
|
|
|
|
|
void
|
|
normalize_coeffs_8bpc(int outSize, int ksize, double *prekk)
|
|
{
|
|
int x;
|
|
INT32 *kk;
|
|
|
|
// use the same buffer for normalized coefficients
|
|
kk = (INT32 *) prekk;
|
|
|
|
for (x = 0; x < outSize * ksize; x++) {
|
|
if (prekk[x] < 0) {
|
|
kk[x] = (int) (-0.5 + prekk[x] * (1 << PRECISION_BITS));
|
|
} else {
|
|
kk[x] = (int) (0.5 + prekk[x] * (1 << PRECISION_BITS));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
ImagingResampleHorizontal_8bpc(Imaging imOut, Imaging imIn, int offset,
|
|
int ksize, int *bounds, double *prekk)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int ss0, ss1, ss2, ss3;
|
|
int xx, yy, x, xmin, xmax;
|
|
INT32 *k, *kk;
|
|
|
|
// use the same buffer for normalized coefficients
|
|
kk = (INT32 *) prekk;
|
|
normalize_coeffs_8bpc(imOut->xsize, ksize, prekk);
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
if (imIn->image8) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
xmin = bounds[xx * 2 + 0];
|
|
xmax = bounds[xx * 2 + 1];
|
|
k = &kk[xx * ksize];
|
|
ss0 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++)
|
|
ss0 += ((UINT8) imIn->image8[yy + offset][x + xmin]) * k[x];
|
|
imOut->image8[yy][xx] = clip8(ss0);
|
|
}
|
|
}
|
|
} else if (imIn->type == IMAGING_TYPE_UINT8) {
|
|
if (imIn->bands == 2) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
xmin = bounds[xx * 2 + 0];
|
|
xmax = bounds[xx * 2 + 1];
|
|
k = &kk[xx * ksize];
|
|
ss0 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++) {
|
|
ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x];
|
|
ss3 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 3]) * k[x];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
} else if (imIn->bands == 3) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
xmin = bounds[xx * 2 + 0];
|
|
xmax = bounds[xx * 2 + 1];
|
|
k = &kk[xx * ksize];
|
|
ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++) {
|
|
ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x];
|
|
ss1 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 1]) * k[x];
|
|
ss2 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 2]) * k[x];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
}
|
|
}
|
|
} else {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
xmin = bounds[xx * 2 + 0];
|
|
xmax = bounds[xx * 2 + 1];
|
|
k = &kk[xx * ksize];
|
|
ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (x = 0; x < xmax; x++) {
|
|
ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x];
|
|
ss1 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 1]) * k[x];
|
|
ss2 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 2]) * k[x];
|
|
ss3 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 3]) * k[x];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ImagingSectionLeave(&cookie);
|
|
}
|
|
|
|
|
|
void
|
|
ImagingResampleVertical_8bpc(Imaging imOut, Imaging imIn, int offset,
|
|
int ksize, int *bounds, double *prekk)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int ss0, ss1, ss2, ss3;
|
|
int xx, yy, y, ymin, ymax;
|
|
INT32 *k, *kk;
|
|
|
|
// use the same buffer for normalized coefficients
|
|
kk = (INT32 *) prekk;
|
|
normalize_coeffs_8bpc(imOut->ysize, ksize, prekk);
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
if (imIn->image8) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
k = &kk[yy * ksize];
|
|
ymin = bounds[yy * 2 + 0];
|
|
ymax = bounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++)
|
|
ss0 += ((UINT8) imIn->image8[y + ymin][xx]) * k[y];
|
|
imOut->image8[yy][xx] = clip8(ss0);
|
|
}
|
|
}
|
|
} else if (imIn->type == IMAGING_TYPE_UINT8) {
|
|
if (imIn->bands == 2) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
k = &kk[yy * ksize];
|
|
ymin = bounds[yy * 2 + 0];
|
|
ymax = bounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++) {
|
|
ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
|
|
ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
} else if (imIn->bands == 3) {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
k = &kk[yy * ksize];
|
|
ymin = bounds[yy * 2 + 0];
|
|
ymax = bounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++) {
|
|
ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
|
|
ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y];
|
|
ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
}
|
|
}
|
|
} else {
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
k = &kk[yy * ksize];
|
|
ymin = bounds[yy * 2 + 0];
|
|
ymax = bounds[yy * 2 + 1];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1);
|
|
for (y = 0; y < ymax; y++) {
|
|
ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y];
|
|
ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y];
|
|
ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y];
|
|
ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y];
|
|
}
|
|
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
|
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
|
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
|
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ImagingSectionLeave(&cookie);
|
|
}
|
|
|
|
|
|
void
|
|
ImagingResampleHorizontal_32bpc(Imaging imOut, Imaging imIn, int offset,
|
|
int ksize, int *bounds, double *kk)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
double ss;
|
|
int xx, yy, x, xmin, xmax;
|
|
double *k;
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
switch(imIn->type) {
|
|
case IMAGING_TYPE_INT32:
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
xmin = bounds[xx * 2 + 0];
|
|
xmax = bounds[xx * 2 + 1];
|
|
k = &kk[xx * ksize];
|
|
ss = 0.0;
|
|
for (x = 0; x < xmax; x++)
|
|
ss += IMAGING_PIXEL_I(imIn, x + xmin, yy + offset) * k[x];
|
|
IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IMAGING_TYPE_FLOAT32:
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
xmin = bounds[xx * 2 + 0];
|
|
xmax = bounds[xx * 2 + 1];
|
|
k = &kk[xx * ksize];
|
|
ss = 0.0;
|
|
for (x = 0; x < xmax; x++)
|
|
ss += IMAGING_PIXEL_F(imIn, x + xmin, yy + offset) * k[x];
|
|
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
ImagingSectionLeave(&cookie);
|
|
}
|
|
|
|
|
|
void
|
|
ImagingResampleVertical_32bpc(Imaging imOut, Imaging imIn, int offset,
|
|
int ksize, int *bounds, double *kk)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
double ss;
|
|
int xx, yy, y, ymin, ymax;
|
|
double *k;
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
switch(imIn->type) {
|
|
case IMAGING_TYPE_INT32:
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
ymin = bounds[yy * 2 + 0];
|
|
ymax = bounds[yy * 2 + 1];
|
|
k = &kk[yy * ksize];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss = 0.0;
|
|
for (y = 0; y < ymax; y++)
|
|
ss += IMAGING_PIXEL_I(imIn, xx, y + ymin) * k[y];
|
|
IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IMAGING_TYPE_FLOAT32:
|
|
for (yy = 0; yy < imOut->ysize; yy++) {
|
|
ymin = bounds[yy * 2 + 0];
|
|
ymax = bounds[yy * 2 + 1];
|
|
k = &kk[yy * ksize];
|
|
for (xx = 0; xx < imOut->xsize; xx++) {
|
|
ss = 0.0;
|
|
for (y = 0; y < ymax; y++)
|
|
ss += IMAGING_PIXEL_F(imIn, xx, y + ymin) * k[y];
|
|
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
ImagingSectionLeave(&cookie);
|
|
}
|
|
|
|
|
|
typedef void (*ResampleFunction)(Imaging imOut, Imaging imIn, int offset,
|
|
int ksize, int *bounds, double *kk);
|
|
|
|
|
|
Imaging
|
|
ImagingResampleInner(Imaging imIn, int xsize, int ysize,
|
|
struct filter *filterp, float box[4],
|
|
ResampleFunction ResampleHorizontal,
|
|
ResampleFunction ResampleVertical);
|
|
|
|
|
|
Imaging
|
|
ImagingResample(Imaging imIn, int xsize, int ysize, int filter, float box[4])
|
|
{
|
|
struct filter *filterp;
|
|
ResampleFunction ResampleHorizontal;
|
|
ResampleFunction ResampleVertical;
|
|
|
|
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
|
|
if (imIn->type == IMAGING_TYPE_SPECIAL) {
|
|
return (Imaging) ImagingError_ModeError();
|
|
} else if (imIn->image8) {
|
|
ResampleHorizontal = ImagingResampleHorizontal_8bpc;
|
|
ResampleVertical = ImagingResampleVertical_8bpc;
|
|
} else {
|
|
switch(imIn->type) {
|
|
case IMAGING_TYPE_UINT8:
|
|
ResampleHorizontal = ImagingResampleHorizontal_8bpc;
|
|
ResampleVertical = ImagingResampleVertical_8bpc;
|
|
break;
|
|
case IMAGING_TYPE_INT32:
|
|
case IMAGING_TYPE_FLOAT32:
|
|
ResampleHorizontal = ImagingResampleHorizontal_32bpc;
|
|
ResampleVertical = ImagingResampleVertical_32bpc;
|
|
break;
|
|
default:
|
|
return (Imaging) ImagingError_ModeError();
|
|
}
|
|
}
|
|
|
|
/* check filter */
|
|
switch (filter) {
|
|
case IMAGING_TRANSFORM_BOX:
|
|
filterp = &BOX;
|
|
break;
|
|
case IMAGING_TRANSFORM_BILINEAR:
|
|
filterp = &BILINEAR;
|
|
break;
|
|
case IMAGING_TRANSFORM_HAMMING:
|
|
filterp = &HAMMING;
|
|
break;
|
|
case IMAGING_TRANSFORM_BICUBIC:
|
|
filterp = &BICUBIC;
|
|
break;
|
|
case IMAGING_TRANSFORM_LANCZOS:
|
|
filterp = &LANCZOS;
|
|
break;
|
|
default:
|
|
return (Imaging) ImagingError_ValueError(
|
|
"unsupported resampling filter"
|
|
);
|
|
}
|
|
|
|
return ImagingResampleInner(imIn, xsize, ysize, filterp, box,
|
|
ResampleHorizontal, ResampleVertical);
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingResampleInner(Imaging imIn, int xsize, int ysize,
|
|
struct filter *filterp, float box[4],
|
|
ResampleFunction ResampleHorizontal,
|
|
ResampleFunction ResampleVertical)
|
|
{
|
|
Imaging imTemp = NULL;
|
|
Imaging imOut = NULL;
|
|
|
|
int i;
|
|
int yroi_min, yroi_max;
|
|
int ksize_horiz, ksize_vert;
|
|
int *bounds_horiz, *bounds_vert;
|
|
double *kk_horiz, *kk_vert;
|
|
|
|
ksize_horiz = precompute_coeffs(imIn->xsize, box[0], box[2], xsize,
|
|
filterp, &bounds_horiz, &kk_horiz);
|
|
if ( ! ksize_horiz) {
|
|
return NULL;
|
|
}
|
|
|
|
ksize_vert = precompute_coeffs(imIn->ysize, box[1], box[3], ysize,
|
|
filterp, &bounds_vert, &kk_vert);
|
|
if ( ! ksize_vert) {
|
|
free(bounds_horiz);
|
|
free(kk_horiz);
|
|
return NULL;
|
|
}
|
|
|
|
// First used row in the source image
|
|
yroi_min = bounds_vert[0];
|
|
// Last used row in the source image
|
|
yroi_max = bounds_vert[ysize*2 - 2] + bounds_vert[ysize*2 - 1];
|
|
|
|
|
|
/* two-pass resize, first pass */
|
|
if (box[0] || box[2] != xsize) {
|
|
// Shift bounds for vertical pass
|
|
for (i = 0; i < ysize; i++) {
|
|
bounds_vert[i * 2] -= yroi_min;
|
|
}
|
|
|
|
imTemp = ImagingNew(imIn->mode, xsize, yroi_max - yroi_min);
|
|
if (imTemp) {
|
|
ResampleHorizontal(imTemp, imIn, yroi_min,
|
|
ksize_horiz, bounds_horiz, kk_horiz);
|
|
}
|
|
free(bounds_horiz);
|
|
free(kk_horiz);
|
|
if ( ! imTemp) {
|
|
free(bounds_vert);
|
|
free(kk_vert);
|
|
return NULL;
|
|
}
|
|
imOut = imIn = imTemp;
|
|
} else {
|
|
// Free in any case
|
|
free(bounds_horiz);
|
|
free(kk_horiz);
|
|
}
|
|
|
|
/* second pass */
|
|
if (box[1] || box[3] != ysize) {
|
|
imOut = ImagingNew(imIn->mode, imIn->xsize, ysize);
|
|
if (imOut) {
|
|
/* imIn can be the original image or horizontally resampled one */
|
|
ResampleVertical(imOut, imIn, 0,
|
|
ksize_vert, bounds_vert, kk_vert);
|
|
}
|
|
/* it's safe to call ImagingDelete with empty value
|
|
if previous step was not performed. */
|
|
ImagingDelete(imTemp);
|
|
free(bounds_vert);
|
|
free(kk_vert);
|
|
if ( ! imOut) {
|
|
return NULL;
|
|
}
|
|
} else {
|
|
// Free in any case
|
|
free(bounds_vert);
|
|
free(kk_vert);
|
|
}
|
|
|
|
/* none of the previous steps are performed, copying */
|
|
if ( ! imOut) {
|
|
imOut = ImagingCopy(imIn);
|
|
}
|
|
|
|
return imOut;
|
|
}
|