mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-11 01:36:19 +03:00
437 lines
13 KiB
Python
437 lines
13 KiB
Python
#
|
|
# The Python Imaging Library.
|
|
# $Id$
|
|
#
|
|
# standard image operations
|
|
#
|
|
# History:
|
|
# 2001-10-20 fl Created
|
|
# 2001-10-23 fl Added autocontrast operator
|
|
# 2001-12-18 fl Added Kevin's fit operator
|
|
# 2004-03-14 fl Fixed potential division by zero in equalize
|
|
# 2005-05-05 fl Fixed equalize for low number of values
|
|
#
|
|
# Copyright (c) 2001-2004 by Secret Labs AB
|
|
# Copyright (c) 2001-2004 by Fredrik Lundh
|
|
#
|
|
# See the README file for information on usage and redistribution.
|
|
#
|
|
|
|
from PIL import Image
|
|
from PIL._util import isStringType
|
|
import operator
|
|
from functools import reduce
|
|
|
|
#
|
|
# helpers
|
|
|
|
def _border(border):
|
|
if isinstance(border, tuple):
|
|
if len(border) == 2:
|
|
left, top = right, bottom = border
|
|
elif len(border) == 4:
|
|
left, top, right, bottom = border
|
|
else:
|
|
left = top = right = bottom = border
|
|
return left, top, right, bottom
|
|
|
|
def _color(color, mode):
|
|
if isStringType(color):
|
|
from PIL import ImageColor
|
|
color = ImageColor.getcolor(color, mode)
|
|
return color
|
|
|
|
def _lut(image, lut):
|
|
if image.mode == "P":
|
|
# FIXME: apply to lookup table, not image data
|
|
raise NotImplementedError("mode P support coming soon")
|
|
elif image.mode in ("L", "RGB"):
|
|
if image.mode == "RGB" and len(lut) == 256:
|
|
lut = lut + lut + lut
|
|
return image.point(lut)
|
|
else:
|
|
raise IOError("not supported for this image mode")
|
|
|
|
#
|
|
# actions
|
|
|
|
|
|
def autocontrast(image, cutoff=0, ignore=None):
|
|
"""
|
|
Maximize (normalize) image contrast. This function calculates a
|
|
histogram of the input image, removes **cutoff** percent of the
|
|
lightest and darkest pixels from the histogram, and remaps the image
|
|
so that the darkest pixel becomes black (0), and the lightest
|
|
becomes white (255).
|
|
|
|
:param image: The image to process.
|
|
:param cutoff: How many percent to cut off from the histogram.
|
|
:param ignore: The background pixel value (use None for no background).
|
|
:return: An image.
|
|
"""
|
|
histogram = image.histogram()
|
|
lut = []
|
|
for layer in range(0, len(histogram), 256):
|
|
h = histogram[layer:layer+256]
|
|
if ignore is not None:
|
|
# get rid of outliers
|
|
try:
|
|
h[ignore] = 0
|
|
except TypeError:
|
|
# assume sequence
|
|
for ix in ignore:
|
|
h[ix] = 0
|
|
if cutoff:
|
|
# cut off pixels from both ends of the histogram
|
|
# get number of pixels
|
|
n = 0
|
|
for ix in range(256):
|
|
n = n + h[ix]
|
|
# remove cutoff% pixels from the low end
|
|
cut = n * cutoff // 100
|
|
for lo in range(256):
|
|
if cut > h[lo]:
|
|
cut = cut - h[lo]
|
|
h[lo] = 0
|
|
else:
|
|
h[lo] = h[lo] - cut
|
|
cut = 0
|
|
if cut <= 0:
|
|
break
|
|
# remove cutoff% samples from the hi end
|
|
cut = n * cutoff // 100
|
|
for hi in range(255, -1, -1):
|
|
if cut > h[hi]:
|
|
cut = cut - h[hi]
|
|
h[hi] = 0
|
|
else:
|
|
h[hi] = h[hi] - cut
|
|
cut = 0
|
|
if cut <= 0:
|
|
break
|
|
# find lowest/highest samples after preprocessing
|
|
for lo in range(256):
|
|
if h[lo]:
|
|
break
|
|
for hi in range(255, -1, -1):
|
|
if h[hi]:
|
|
break
|
|
if hi <= lo:
|
|
# don't bother
|
|
lut.extend(list(range(256)))
|
|
else:
|
|
scale = 255.0 / (hi - lo)
|
|
offset = -lo * scale
|
|
for ix in range(256):
|
|
ix = int(ix * scale + offset)
|
|
if ix < 0:
|
|
ix = 0
|
|
elif ix > 255:
|
|
ix = 255
|
|
lut.append(ix)
|
|
return _lut(image, lut)
|
|
|
|
|
|
def colorize(image, black, white):
|
|
"""
|
|
Colorize grayscale image. The **black** and **white**
|
|
arguments should be RGB tuples; this function calculates a color
|
|
wedge mapping all black pixels in the source image to the first
|
|
color, and all white pixels to the second color.
|
|
|
|
:param image: The image to colorize.
|
|
:param black: The color to use for black input pixels.
|
|
:param white: The color to use for white input pixels.
|
|
:return: An image.
|
|
"""
|
|
assert image.mode == "L"
|
|
black = _color(black, "RGB")
|
|
white = _color(white, "RGB")
|
|
red = []; green = []; blue = []
|
|
for i in range(256):
|
|
red.append(black[0]+i*(white[0]-black[0])//255)
|
|
green.append(black[1]+i*(white[1]-black[1])//255)
|
|
blue.append(black[2]+i*(white[2]-black[2])//255)
|
|
image = image.convert("RGB")
|
|
return _lut(image, red + green + blue)
|
|
|
|
|
|
def crop(image, border=0):
|
|
"""
|
|
Remove border from image. The same amount of pixels are removed
|
|
from all four sides. This function works on all image modes.
|
|
|
|
.. seealso:: :py:meth:`~PIL.Image.Image.crop`
|
|
|
|
:param image: The image to crop.
|
|
:param border: The number of pixels to remove.
|
|
:return: An image.
|
|
"""
|
|
left, top, right, bottom = _border(border)
|
|
return image.crop(
|
|
(left, top, image.size[0]-right, image.size[1]-bottom)
|
|
)
|
|
|
|
|
|
def deform(image, deformer, resample=Image.BILINEAR):
|
|
"""
|
|
Deform the image.
|
|
|
|
:param image: The image to deform.
|
|
:param deformer: A deformer object. Any object that implements a
|
|
**getmesh** method can be used.
|
|
:param resample: What resampling filter to use.
|
|
:return: An image.
|
|
"""
|
|
return image.transform(
|
|
image.size, Image.MESH, deformer.getmesh(image), resample
|
|
)
|
|
|
|
|
|
def equalize(image, mask=None):
|
|
"""
|
|
Equalize the image histogram. This function applies a non-linear
|
|
mapping to the input image, in order to create a uniform
|
|
distribution of grayscale values in the output image.
|
|
|
|
:param image: The image to equalize.
|
|
:param mask: An optional mask. If given, only the pixels selected by
|
|
the mask are included in the analysis.
|
|
:return: An image.
|
|
"""
|
|
if image.mode == "P":
|
|
image = image.convert("RGB")
|
|
h = image.histogram(mask)
|
|
lut = []
|
|
for b in range(0, len(h), 256):
|
|
histo = [_f for _f in h[b:b+256] if _f]
|
|
if len(histo) <= 1:
|
|
lut.extend(list(range(256)))
|
|
else:
|
|
step = (reduce(operator.add, histo) - histo[-1]) // 255
|
|
if not step:
|
|
lut.extend(list(range(256)))
|
|
else:
|
|
n = step // 2
|
|
for i in range(256):
|
|
lut.append(n // step)
|
|
n = n + h[i+b]
|
|
return _lut(image, lut)
|
|
|
|
|
|
def expand(image, border=0, fill=0):
|
|
"""
|
|
Add border to the image
|
|
|
|
:param image: The image to expand.
|
|
:param border: Border width, in pixels.
|
|
:param fill: Pixel fill value (a color value). Default is 0 (black).
|
|
:return: An image.
|
|
"""
|
|
"Add border to image"
|
|
left, top, right, bottom = _border(border)
|
|
width = left + image.size[0] + right
|
|
height = top + image.size[1] + bottom
|
|
out = Image.new(image.mode, (width, height), _color(fill, image.mode))
|
|
out.paste(image, (left, top))
|
|
return out
|
|
|
|
|
|
def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
|
|
"""
|
|
Returns a sized and cropped version of the image, cropped to the
|
|
requested aspect ratio and size.
|
|
|
|
This function was contributed by Kevin Cazabon.
|
|
|
|
:param size: The requested output size in pixels, given as a
|
|
(width, height) tuple.
|
|
:param method: What resampling method to use. Default is
|
|
:py:attr:`PIL.Image.NEAREST`.
|
|
:param bleed: Remove a border around the outside of the image (from all
|
|
four edges. The value is a decimal percentage (use 0.01 for
|
|
one percent). The default value is 0 (no border).
|
|
:param centering: Control the cropping position. Use (0.5, 0.5) for
|
|
center cropping (e.g. if cropping the width, take 50% off
|
|
of the left side, and therefore 50% off the right side).
|
|
(0.0, 0.0) will crop from the top left corner (i.e. if
|
|
cropping the width, take all of the crop off of the right
|
|
side, and if cropping the height, take all of it off the
|
|
bottom). (1.0, 0.0) will crop from the bottom left
|
|
corner, etc. (i.e. if cropping the width, take all of the
|
|
crop off the left side, and if cropping the height take
|
|
none from the top, and therefore all off the bottom).
|
|
:return: An image.
|
|
"""
|
|
|
|
# by Kevin Cazabon, Feb 17/2000
|
|
# kevin@cazabon.com
|
|
# http://www.cazabon.com
|
|
|
|
# ensure inputs are valid
|
|
if not isinstance(centering, list):
|
|
centering = [centering[0], centering[1]]
|
|
|
|
if centering[0] > 1.0 or centering[0] < 0.0:
|
|
centering [0] = 0.50
|
|
if centering[1] > 1.0 or centering[1] < 0.0:
|
|
centering[1] = 0.50
|
|
|
|
if bleed > 0.49999 or bleed < 0.0:
|
|
bleed = 0.0
|
|
|
|
# calculate the area to use for resizing and cropping, subtracting
|
|
# the 'bleed' around the edges
|
|
|
|
# number of pixels to trim off on Top and Bottom, Left and Right
|
|
bleedPixels = (
|
|
int((float(bleed) * float(image.size[0])) + 0.5),
|
|
int((float(bleed) * float(image.size[1])) + 0.5)
|
|
)
|
|
|
|
liveArea = (0, 0, image.size[0], image.size[1])
|
|
if bleed > 0.0:
|
|
liveArea = (
|
|
bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1,
|
|
image.size[1] - bleedPixels[1] - 1
|
|
)
|
|
|
|
liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1])
|
|
|
|
# calculate the aspect ratio of the liveArea
|
|
liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1])
|
|
|
|
# calculate the aspect ratio of the output image
|
|
aspectRatio = float(size[0]) / float(size[1])
|
|
|
|
# figure out if the sides or top/bottom will be cropped off
|
|
if liveAreaAspectRatio >= aspectRatio:
|
|
# liveArea is wider than what's needed, crop the sides
|
|
cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5)
|
|
cropHeight = liveSize[1]
|
|
else:
|
|
# liveArea is taller than what's needed, crop the top and bottom
|
|
cropWidth = liveSize[0]
|
|
cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5)
|
|
|
|
# make the crop
|
|
leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0]))
|
|
if leftSide < 0:
|
|
leftSide = 0
|
|
topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1]))
|
|
if topSide < 0:
|
|
topSide = 0
|
|
|
|
out = image.crop(
|
|
(leftSide, topSide, leftSide + cropWidth, topSide + cropHeight)
|
|
)
|
|
|
|
# resize the image and return it
|
|
return out.resize(size, method)
|
|
|
|
|
|
def flip(image):
|
|
"""
|
|
Flip the image vertically (top to bottom).
|
|
|
|
:param image: The image to flip.
|
|
:return: An image.
|
|
"""
|
|
return image.transpose(Image.FLIP_TOP_BOTTOM)
|
|
|
|
|
|
def grayscale(image):
|
|
"""
|
|
Convert the image to grayscale.
|
|
|
|
:param image: The image to convert.
|
|
:return: An image.
|
|
"""
|
|
return image.convert("L")
|
|
|
|
|
|
def invert(image):
|
|
"""
|
|
Invert (negate) the image.
|
|
|
|
:param image: The image to invert.
|
|
:return: An image.
|
|
"""
|
|
lut = []
|
|
for i in range(256):
|
|
lut.append(255-i)
|
|
return _lut(image, lut)
|
|
|
|
|
|
def mirror(image):
|
|
"""
|
|
Flip image horizontally (left to right).
|
|
|
|
:param image: The image to mirror.
|
|
:return: An image.
|
|
"""
|
|
return image.transpose(Image.FLIP_LEFT_RIGHT)
|
|
|
|
|
|
def posterize(image, bits):
|
|
"""
|
|
Reduce the number of bits for each color channel.
|
|
|
|
:param image: The image to posterize.
|
|
:param bits: The number of bits to keep for each channel (1-8).
|
|
:return: An image.
|
|
"""
|
|
lut = []
|
|
mask = ~(2**(8-bits)-1)
|
|
for i in range(256):
|
|
lut.append(i & mask)
|
|
return _lut(image, lut)
|
|
|
|
|
|
def solarize(image, threshold=128):
|
|
"""
|
|
Invert all pixel values above a threshold.
|
|
|
|
:param image: The image to posterize.
|
|
:param threshold: All pixels above this greyscale level are inverted.
|
|
:return: An image.
|
|
"""
|
|
lut = []
|
|
for i in range(256):
|
|
if i < threshold:
|
|
lut.append(i)
|
|
else:
|
|
lut.append(255-i)
|
|
return _lut(image, lut)
|
|
|
|
# --------------------------------------------------------------------
|
|
# PIL USM components, from Kevin Cazabon.
|
|
|
|
def gaussian_blur(im, radius=None):
|
|
""" PIL_usm.gblur(im, [radius])"""
|
|
|
|
if radius is None:
|
|
radius = 5.0
|
|
|
|
im.load()
|
|
|
|
return im.im.gaussian_blur(radius)
|
|
|
|
gblur = gaussian_blur
|
|
|
|
def unsharp_mask(im, radius=None, percent=None, threshold=None):
|
|
""" PIL_usm.usm(im, [radius, percent, threshold])"""
|
|
|
|
if radius is None:
|
|
radius = 5.0
|
|
if percent is None:
|
|
percent = 150
|
|
if threshold is None:
|
|
threshold = 3
|
|
|
|
im.load()
|
|
|
|
return im.im.unsharp_mask(radius, percent, threshold)
|
|
|
|
usm = unsharp_mask
|