Pillow/Tests/test_image_reduce.py
Jon Dufresne 63729766c4 Remove unnecessary coerce to float
In Python 3, the division operator is floating point division. No longer
need to coerce integers to floating point numbers before division.
2020-01-26 06:33:18 -08:00

245 lines
8.7 KiB
Python

from PIL import Image, ImageMath, ImageMode
from .helper import PillowTestCase, convert_to_comparable
class TestImageReduce(PillowTestCase):
# There are several internal implementations
remarkable_factors = [
# special implementations
1,
2,
3,
4,
5,
6,
# 1xN implementation
(1, 2),
(1, 3),
(1, 4),
(1, 7),
# Nx1 implementation
(2, 1),
(3, 1),
(4, 1),
(7, 1),
# general implementation with different paths
(4, 6),
(5, 6),
(4, 7),
(5, 7),
(19, 17),
]
@classmethod
def setUpClass(cls):
cls.gradients_image = Image.open("Tests/images/radial_gradients.png")
cls.gradients_image.load()
def test_args_factor(self):
im = Image.new("L", (10, 10))
self.assertEqual((4, 4), im.reduce(3).size)
self.assertEqual((4, 10), im.reduce((3, 1)).size)
self.assertEqual((10, 4), im.reduce((1, 3)).size)
with self.assertRaises(ValueError):
im.reduce(0)
with self.assertRaises(TypeError):
im.reduce(2.0)
with self.assertRaises(ValueError):
im.reduce((0, 10))
def test_args_box(self):
im = Image.new("L", (10, 10))
self.assertEqual((5, 5), im.reduce(2, (0, 0, 10, 10)).size)
self.assertEqual((1, 1), im.reduce(2, (5, 5, 6, 6)).size)
with self.assertRaises(TypeError):
im.reduce(2, "stri")
with self.assertRaises(TypeError):
im.reduce(2, 2)
with self.assertRaises(ValueError):
im.reduce(2, (0, 0, 11, 10))
with self.assertRaises(ValueError):
im.reduce(2, (0, 0, 10, 11))
with self.assertRaises(ValueError):
im.reduce(2, (-1, 0, 10, 10))
with self.assertRaises(ValueError):
im.reduce(2, (0, -1, 10, 10))
with self.assertRaises(ValueError):
im.reduce(2, (0, 5, 10, 5))
with self.assertRaises(ValueError):
im.reduce(2, (5, 0, 5, 10))
def test_unsupported_modes(self):
im = Image.new("P", (10, 10))
with self.assertRaises(ValueError):
im.reduce(3)
im = Image.new("1", (10, 10))
with self.assertRaises(ValueError):
im.reduce(3)
im = Image.new("I;16", (10, 10))
with self.assertRaises(ValueError):
im.reduce(3)
def get_image(self, mode):
mode_info = ImageMode.getmode(mode)
if mode_info.basetype == "L":
bands = [self.gradients_image]
for _ in mode_info.bands[1:]:
# rotate previous image
band = bands[-1].transpose(Image.ROTATE_90)
bands.append(band)
# Correct alpha channel by transforming completely transparent pixels.
# Low alpha values also emphasize error after alpha multiplication.
if mode.endswith("A"):
bands[-1] = bands[-1].point(lambda x: int(85 + x / 1.5))
im = Image.merge(mode, bands)
else:
assert len(mode_info.bands) == 1
im = self.gradients_image.convert(mode)
# change the height to make a not-square image
return im.crop((0, 0, im.width, im.height - 5))
def compare_reduce_with_box(self, im, factor):
box = (11, 13, 146, 164)
reduced = im.reduce(factor, box=box)
reference = im.crop(box).reduce(factor)
self.assertEqual(reduced, reference)
def compare_reduce_with_reference(self, im, factor, average_diff=0.4, max_diff=1):
"""Image.reduce() should look very similar to Image.resize(BOX).
A reference image is compiled from a large source area
and possible last column and last row.
+-----------+
|..........c|
|..........c|
|..........c|
|rrrrrrrrrrp|
+-----------+
"""
reduced = im.reduce(factor)
if not isinstance(factor, (list, tuple)):
factor = (factor, factor)
reference = Image.new(im.mode, reduced.size)
area_size = (im.size[0] // factor[0], im.size[1] // factor[1])
area_box = (0, 0, area_size[0] * factor[0], area_size[1] * factor[1])
area = im.resize(area_size, Image.BOX, area_box)
reference.paste(area, (0, 0))
if area_size[0] < reduced.size[0]:
self.assertEqual(reduced.size[0] - area_size[0], 1)
last_column_box = (area_box[2], 0, im.size[0], area_box[3])
last_column = im.resize((1, area_size[1]), Image.BOX, last_column_box)
reference.paste(last_column, (area_size[0], 0))
if area_size[1] < reduced.size[1]:
self.assertEqual(reduced.size[1] - area_size[1], 1)
last_row_box = (0, area_box[3], area_box[2], im.size[1])
last_row = im.resize((area_size[0], 1), Image.BOX, last_row_box)
reference.paste(last_row, (0, area_size[1]))
if area_size[0] < reduced.size[0] and area_size[1] < reduced.size[1]:
last_pixel_box = (area_box[2], area_box[3], im.size[0], im.size[1])
last_pixel = im.resize((1, 1), Image.BOX, last_pixel_box)
reference.paste(last_pixel, area_size)
self.assert_compare_images(reduced, reference, average_diff, max_diff)
def assert_compare_images(self, a, b, max_average_diff, max_diff=255):
self.assertEqual(a.mode, b.mode, "got mode %r, expected %r" % (a.mode, b.mode))
self.assertEqual(a.size, b.size, "got size %r, expected %r" % (a.size, b.size))
a, b = convert_to_comparable(a, b)
bands = ImageMode.getmode(a.mode).bands
for band, ach, bch in zip(bands, a.split(), b.split()):
ch_diff = ImageMath.eval("convert(abs(a - b), 'L')", a=ach, b=bch)
ch_hist = ch_diff.histogram()
average_diff = sum(i * num for i, num in enumerate(ch_hist)) / (
a.size[0] * a.size[1]
)
self.assertGreaterEqual(
max_average_diff,
average_diff,
(
"average pixel value difference {:.4f} > expected {:.4f} "
"for '{}' band"
).format(average_diff, max_average_diff, band),
)
last_diff = [i for i, num in enumerate(ch_hist) if num > 0][-1]
self.assertGreaterEqual(
max_diff,
last_diff,
"max pixel value difference {} > expected {} for '{}' band".format(
last_diff, max_diff, band
),
)
def test_mode_L(self):
im = self.get_image("L")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_LA(self):
im = self.get_image("LA")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor, 0.8, 5)
# With opaque alpha, an error should be way smaller.
im.putalpha(Image.new("L", im.size, 255))
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_La(self):
im = self.get_image("La")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_RGB(self):
im = self.get_image("RGB")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_RGBA(self):
im = self.get_image("RGBA")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor, 0.8, 5)
# With opaque alpha, an error should be way smaller.
im.putalpha(Image.new("L", im.size, 255))
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_RGBa(self):
im = self.get_image("RGBa")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_I(self):
im = self.get_image("I")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_F(self):
im = self.get_image("F")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor, 0, 0)
self.compare_reduce_with_box(im, factor)