Pillow/src/libImaging/Filter.c
2023-06-10 15:57:05 +10:00

413 lines
17 KiB
C

/*
* The Python Imaging Library
* $Id$
*
* apply convolution kernel to image
*
* history:
* 1995-11-26 fl Created, supports 3x3 kernels
* 1995-11-27 fl Added 5x5 kernels, copy border
* 1999-07-26 fl Eliminated a few compiler warnings
* 2002-06-09 fl Moved kernel definitions to Python
* 2002-06-11 fl Support floating point kernels
* 2003-09-15 fl Added ImagingExpand helper
*
* Copyright (c) Secret Labs AB 1997-2002. All rights reserved.
* Copyright (c) Fredrik Lundh 1995.
*
* See the README file for information on usage and redistribution.
*/
/*
* FIXME: Support RGB and RGBA/CMYK modes as well
* FIXME: Expand image border (current version leaves border as is)
* FIXME: Implement image processing gradient filters
*/
#include "Imaging.h"
static inline UINT8
clip8(float in) {
if (in <= 0.0) {
return 0;
}
if (in >= 255.0) {
return 255;
}
return (UINT8)in;
}
static inline INT32
clip32(float in) {
if (in <= 0.0) {
return 0;
}
if (in >= pow(2, 31) - 1) {
return pow(2, 31) - 1;
}
return (INT32)in;
}
Imaging
ImagingExpand(Imaging imIn, int xmargin, int ymargin) {
Imaging imOut;
int x, y;
ImagingSectionCookie cookie;
if (xmargin < 0 && ymargin < 0) {
return (Imaging)ImagingError_ValueError("bad kernel size");
}
imOut = ImagingNewDirty(
imIn->mode, imIn->xsize + 2 * xmargin, imIn->ysize + 2 * ymargin);
if (!imOut) {
return NULL;
}
#define EXPAND_LINE(type, image, yin, yout) \
{ \
for (x = 0; x < xmargin; x++) { \
imOut->image[yout][x] = imIn->image[yin][0]; \
} \
for (x = 0; x < imIn->xsize; x++) { \
imOut->image[yout][x + xmargin] = imIn->image[yin][x]; \
} \
for (x = 0; x < xmargin; x++) { \
imOut->image[yout][xmargin + imIn->xsize + x] = \
imIn->image[yin][imIn->xsize - 1]; \
} \
}
#define EXPAND(type, image) \
{ \
for (y = 0; y < ymargin; y++) { \
EXPAND_LINE(type, image, 0, y); \
} \
for (y = 0; y < imIn->ysize; y++) { \
EXPAND_LINE(type, image, y, y + ymargin); \
} \
for (y = 0; y < ymargin; y++) { \
EXPAND_LINE(type, image, imIn->ysize - 1, ymargin + imIn->ysize + y); \
} \
}
ImagingSectionEnter(&cookie);
if (imIn->image8) {
EXPAND(UINT8, image8);
} else {
EXPAND(INT32, image32);
}
ImagingSectionLeave(&cookie);
ImagingCopyPalette(imOut, imIn);
return imOut;
}
void
ImagingFilter3x3(Imaging imOut, Imaging im, const float *kernel, float offset) {
#define KERNEL1x3(in0, x, kernel, d) \
(_i2f(in0[x - d]) * (kernel)[0] + _i2f(in0[x]) * (kernel)[1] + \
_i2f(in0[x + d]) * (kernel)[2])
int x = 0, y = 0;
memcpy(imOut->image[0], im->image[0], im->linesize);
if (im->bands == 1) {
// Add one time for rounding
offset += 0.5;
if (im->type == IMAGING_TYPE_INT32) {
for (y = 1; y < im->ysize - 1; y++) {
INT32 *in_1 = (INT32 *)im->image[y - 1];
INT32 *in0 = (INT32 *)im->image[y];
INT32 *in1 = (INT32 *)im->image[y + 1];
INT32 *out = (INT32 *)imOut->image[y];
out[0] = in0[0];
for (x = 1; x < im->xsize - 1; x++) {
float ss = offset;
ss += KERNEL1x3(in1, x, &kernel[0], 1);
ss += KERNEL1x3(in0, x, &kernel[3], 1);
ss += KERNEL1x3(in_1, x, &kernel[6], 1);
out[x] = clip32(ss);
}
out[x] = in0[x];
}
} else {
for (y = 1; y < im->ysize - 1; y++) {
UINT8 *in_1 = (UINT8 *)im->image[y - 1];
UINT8 *in0 = (UINT8 *)im->image[y];
UINT8 *in1 = (UINT8 *)im->image[y + 1];
UINT8 *out = (UINT8 *)imOut->image[y];
out[0] = in0[0];
for (x = 1; x < im->xsize - 1; x++) {
float ss = offset;
ss += KERNEL1x3(in1, x, &kernel[0], 1);
ss += KERNEL1x3(in0, x, &kernel[3], 1);
ss += KERNEL1x3(in_1, x, &kernel[6], 1);
out[x] = clip8(ss);
}
out[x] = in0[x];
}
}
} else {
// Add one time for rounding
offset += 0.5;
for (y = 1; y < im->ysize - 1; y++) {
UINT8 *in_1 = (UINT8 *)im->image[y - 1];
UINT8 *in0 = (UINT8 *)im->image[y];
UINT8 *in1 = (UINT8 *)im->image[y + 1];
UINT8 *out = (UINT8 *)imOut->image[y];
memcpy(out, in0, sizeof(UINT32));
if (im->bands == 2) {
for (x = 1; x < im->xsize - 1; x++) {
float ss0 = offset;
float ss3 = offset;
UINT32 v;
ss0 += KERNEL1x3(in1, x * 4 + 0, &kernel[0], 4);
ss3 += KERNEL1x3(in1, x * 4 + 3, &kernel[0], 4);
ss0 += KERNEL1x3(in0, x * 4 + 0, &kernel[3], 4);
ss3 += KERNEL1x3(in0, x * 4 + 3, &kernel[3], 4);
ss0 += KERNEL1x3(in_1, x * 4 + 0, &kernel[6], 4);
ss3 += KERNEL1x3(in_1, x * 4 + 3, &kernel[6], 4);
v = MAKE_UINT32(clip8(ss0), 0, 0, clip8(ss3));
memcpy(out + x * sizeof(v), &v, sizeof(v));
}
} else if (im->bands == 3) {
for (x = 1; x < im->xsize - 1; x++) {
float ss0 = offset;
float ss1 = offset;
float ss2 = offset;
UINT32 v;
ss0 += KERNEL1x3(in1, x * 4 + 0, &kernel[0], 4);
ss1 += KERNEL1x3(in1, x * 4 + 1, &kernel[0], 4);
ss2 += KERNEL1x3(in1, x * 4 + 2, &kernel[0], 4);
ss0 += KERNEL1x3(in0, x * 4 + 0, &kernel[3], 4);
ss1 += KERNEL1x3(in0, x * 4 + 1, &kernel[3], 4);
ss2 += KERNEL1x3(in0, x * 4 + 2, &kernel[3], 4);
ss0 += KERNEL1x3(in_1, x * 4 + 0, &kernel[6], 4);
ss1 += KERNEL1x3(in_1, x * 4 + 1, &kernel[6], 4);
ss2 += KERNEL1x3(in_1, x * 4 + 2, &kernel[6], 4);
v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), 0);
memcpy(out + x * sizeof(v), &v, sizeof(v));
}
} else if (im->bands == 4) {
for (x = 1; x < im->xsize - 1; x++) {
float ss0 = offset;
float ss1 = offset;
float ss2 = offset;
float ss3 = offset;
UINT32 v;
ss0 += KERNEL1x3(in1, x * 4 + 0, &kernel[0], 4);
ss1 += KERNEL1x3(in1, x * 4 + 1, &kernel[0], 4);
ss2 += KERNEL1x3(in1, x * 4 + 2, &kernel[0], 4);
ss3 += KERNEL1x3(in1, x * 4 + 3, &kernel[0], 4);
ss0 += KERNEL1x3(in0, x * 4 + 0, &kernel[3], 4);
ss1 += KERNEL1x3(in0, x * 4 + 1, &kernel[3], 4);
ss2 += KERNEL1x3(in0, x * 4 + 2, &kernel[3], 4);
ss3 += KERNEL1x3(in0, x * 4 + 3, &kernel[3], 4);
ss0 += KERNEL1x3(in_1, x * 4 + 0, &kernel[6], 4);
ss1 += KERNEL1x3(in_1, x * 4 + 1, &kernel[6], 4);
ss2 += KERNEL1x3(in_1, x * 4 + 2, &kernel[6], 4);
ss3 += KERNEL1x3(in_1, x * 4 + 3, &kernel[6], 4);
v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3));
memcpy(out + x * sizeof(v), &v, sizeof(v));
}
}
memcpy(out + x * sizeof(UINT32), in0 + x * sizeof(UINT32), sizeof(UINT32));
}
}
memcpy(imOut->image[y], im->image[y], im->linesize);
}
void
ImagingFilter5x5(Imaging imOut, Imaging im, const float *kernel, float offset) {
#define KERNEL1x5(in0, x, kernel, d) \
(_i2f(in0[x - d - d]) * (kernel)[0] + \
_i2f(in0[x - d]) * (kernel)[1] + _i2f(in0[x]) * (kernel)[2] + \
_i2f(in0[x + d]) * (kernel)[3] + \
_i2f(in0[x + d + d]) * (kernel)[4])
int x = 0, y = 0;
memcpy(imOut->image[0], im->image[0], im->linesize);
memcpy(imOut->image[1], im->image[1], im->linesize);
if (im->bands == 1) {
// Add one time for rounding
offset += 0.5;
if (im->type == IMAGING_TYPE_INT32) {
for (y = 2; y < im->ysize - 2; y++) {
INT32 *in_2 = (INT32 *)im->image[y - 2];
INT32 *in_1 = (INT32 *)im->image[y - 1];
INT32 *in0 = (INT32 *)im->image[y];
INT32 *in1 = (INT32 *)im->image[y + 1];
INT32 *in2 = (INT32 *)im->image[y + 2];
INT32 *out = (INT32 *)imOut->image[y];
out[0] = in0[0];
out[1] = in0[1];
for (x = 2; x < im->xsize - 2; x++) {
float ss = offset;
ss += KERNEL1x5(in2, x, &kernel[0], 1);
ss += KERNEL1x5(in1, x, &kernel[5], 1);
ss += KERNEL1x5(in0, x, &kernel[10], 1);
ss += KERNEL1x5(in_1, x, &kernel[15], 1);
ss += KERNEL1x5(in_2, x, &kernel[20], 1);
out[x] = clip32(ss);
}
out[x + 0] = in0[x + 0];
out[x + 1] = in0[x + 1];
}
} else {
for (y = 2; y < im->ysize - 2; y++) {
UINT8 *in_2 = (UINT8 *)im->image[y - 2];
UINT8 *in_1 = (UINT8 *)im->image[y - 1];
UINT8 *in0 = (UINT8 *)im->image[y];
UINT8 *in1 = (UINT8 *)im->image[y + 1];
UINT8 *in2 = (UINT8 *)im->image[y + 2];
UINT8 *out = (UINT8 *)imOut->image[y];
out[0] = in0[0];
out[1] = in0[1];
for (x = 2; x < im->xsize - 2; x++) {
float ss = offset;
ss += KERNEL1x5(in2, x, &kernel[0], 1);
ss += KERNEL1x5(in1, x, &kernel[5], 1);
ss += KERNEL1x5(in0, x, &kernel[10], 1);
ss += KERNEL1x5(in_1, x, &kernel[15], 1);
ss += KERNEL1x5(in_2, x, &kernel[20], 1);
out[x] = clip8(ss);
}
out[x + 0] = in0[x + 0];
out[x + 1] = in0[x + 1];
}
}
} else {
// Add one time for rounding
offset += 0.5;
for (y = 2; y < im->ysize - 2; y++) {
UINT8 *in_2 = (UINT8 *)im->image[y - 2];
UINT8 *in_1 = (UINT8 *)im->image[y - 1];
UINT8 *in0 = (UINT8 *)im->image[y];
UINT8 *in1 = (UINT8 *)im->image[y + 1];
UINT8 *in2 = (UINT8 *)im->image[y + 2];
UINT8 *out = (UINT8 *)imOut->image[y];
memcpy(out, in0, sizeof(UINT32) * 2);
if (im->bands == 2) {
for (x = 2; x < im->xsize - 2; x++) {
float ss0 = offset;
float ss3 = offset;
UINT32 v;
ss0 += KERNEL1x5(in2, x * 4 + 0, &kernel[0], 4);
ss3 += KERNEL1x5(in2, x * 4 + 3, &kernel[0], 4);
ss0 += KERNEL1x5(in1, x * 4 + 0, &kernel[5], 4);
ss3 += KERNEL1x5(in1, x * 4 + 3, &kernel[5], 4);
ss0 += KERNEL1x5(in0, x * 4 + 0, &kernel[10], 4);
ss3 += KERNEL1x5(in0, x * 4 + 3, &kernel[10], 4);
ss0 += KERNEL1x5(in_1, x * 4 + 0, &kernel[15], 4);
ss3 += KERNEL1x5(in_1, x * 4 + 3, &kernel[15], 4);
ss0 += KERNEL1x5(in_2, x * 4 + 0, &kernel[20], 4);
ss3 += KERNEL1x5(in_2, x * 4 + 3, &kernel[20], 4);
v = MAKE_UINT32(clip8(ss0), 0, 0, clip8(ss3));
memcpy(out + x * sizeof(v), &v, sizeof(v));
}
} else if (im->bands == 3) {
for (x = 2; x < im->xsize - 2; x++) {
float ss0 = offset;
float ss1 = offset;
float ss2 = offset;
UINT32 v;
ss0 += KERNEL1x5(in2, x * 4 + 0, &kernel[0], 4);
ss1 += KERNEL1x5(in2, x * 4 + 1, &kernel[0], 4);
ss2 += KERNEL1x5(in2, x * 4 + 2, &kernel[0], 4);
ss0 += KERNEL1x5(in1, x * 4 + 0, &kernel[5], 4);
ss1 += KERNEL1x5(in1, x * 4 + 1, &kernel[5], 4);
ss2 += KERNEL1x5(in1, x * 4 + 2, &kernel[5], 4);
ss0 += KERNEL1x5(in0, x * 4 + 0, &kernel[10], 4);
ss1 += KERNEL1x5(in0, x * 4 + 1, &kernel[10], 4);
ss2 += KERNEL1x5(in0, x * 4 + 2, &kernel[10], 4);
ss0 += KERNEL1x5(in_1, x * 4 + 0, &kernel[15], 4);
ss1 += KERNEL1x5(in_1, x * 4 + 1, &kernel[15], 4);
ss2 += KERNEL1x5(in_1, x * 4 + 2, &kernel[15], 4);
ss0 += KERNEL1x5(in_2, x * 4 + 0, &kernel[20], 4);
ss1 += KERNEL1x5(in_2, x * 4 + 1, &kernel[20], 4);
ss2 += KERNEL1x5(in_2, x * 4 + 2, &kernel[20], 4);
v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), 0);
memcpy(out + x * sizeof(v), &v, sizeof(v));
}
} else if (im->bands == 4) {
for (x = 2; x < im->xsize - 2; x++) {
float ss0 = offset;
float ss1 = offset;
float ss2 = offset;
float ss3 = offset;
UINT32 v;
ss0 += KERNEL1x5(in2, x * 4 + 0, &kernel[0], 4);
ss1 += KERNEL1x5(in2, x * 4 + 1, &kernel[0], 4);
ss2 += KERNEL1x5(in2, x * 4 + 2, &kernel[0], 4);
ss3 += KERNEL1x5(in2, x * 4 + 3, &kernel[0], 4);
ss0 += KERNEL1x5(in1, x * 4 + 0, &kernel[5], 4);
ss1 += KERNEL1x5(in1, x * 4 + 1, &kernel[5], 4);
ss2 += KERNEL1x5(in1, x * 4 + 2, &kernel[5], 4);
ss3 += KERNEL1x5(in1, x * 4 + 3, &kernel[5], 4);
ss0 += KERNEL1x5(in0, x * 4 + 0, &kernel[10], 4);
ss1 += KERNEL1x5(in0, x * 4 + 1, &kernel[10], 4);
ss2 += KERNEL1x5(in0, x * 4 + 2, &kernel[10], 4);
ss3 += KERNEL1x5(in0, x * 4 + 3, &kernel[10], 4);
ss0 += KERNEL1x5(in_1, x * 4 + 0, &kernel[15], 4);
ss1 += KERNEL1x5(in_1, x * 4 + 1, &kernel[15], 4);
ss2 += KERNEL1x5(in_1, x * 4 + 2, &kernel[15], 4);
ss3 += KERNEL1x5(in_1, x * 4 + 3, &kernel[15], 4);
ss0 += KERNEL1x5(in_2, x * 4 + 0, &kernel[20], 4);
ss1 += KERNEL1x5(in_2, x * 4 + 1, &kernel[20], 4);
ss2 += KERNEL1x5(in_2, x * 4 + 2, &kernel[20], 4);
ss3 += KERNEL1x5(in_2, x * 4 + 3, &kernel[20], 4);
v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3));
memcpy(out + x * sizeof(v), &v, sizeof(v));
}
}
memcpy(
out + x * sizeof(UINT32), in0 + x * sizeof(UINT32), sizeof(UINT32) * 2);
}
}
memcpy(imOut->image[y], im->image[y], im->linesize);
memcpy(imOut->image[y + 1], im->image[y + 1], im->linesize);
}
Imaging
ImagingFilter(Imaging im, int xsize, int ysize, const FLOAT32 *kernel, FLOAT32 offset) {
Imaging imOut;
ImagingSectionCookie cookie;
if (im->type != IMAGING_TYPE_UINT8 && im->type != IMAGING_TYPE_INT32) {
return (Imaging)ImagingError_ModeError();
}
if (im->xsize < xsize || im->ysize < ysize) {
return ImagingCopy(im);
}
if ((xsize != 3 && xsize != 5) || xsize != ysize) {
return (Imaging)ImagingError_ValueError("bad kernel size");
}
imOut = ImagingNewDirty(im->mode, im->xsize, im->ysize);
if (!imOut) {
return NULL;
}
ImagingSectionEnter(&cookie);
if (xsize == 3) {
/* 3x3 kernel. */
ImagingFilter3x3(imOut, im, kernel, offset);
} else {
/* 5x5 kernel. */
ImagingFilter5x5(imOut, im, kernel, offset);
}
ImagingSectionLeave(&cookie);
return imOut;
}