mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 16:07:30 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			444 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			444 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| # The Python Imaging Library.
 | |
| # $Id$
 | |
| #
 | |
| # standard image operations
 | |
| #
 | |
| # History:
 | |
| # 2001-10-20 fl   Created
 | |
| # 2001-10-23 fl   Added autocontrast operator
 | |
| # 2001-12-18 fl   Added Kevin's fit operator
 | |
| # 2004-03-14 fl   Fixed potential division by zero in equalize
 | |
| # 2005-05-05 fl   Fixed equalize for low number of values
 | |
| #
 | |
| # Copyright (c) 2001-2004 by Secret Labs AB
 | |
| # Copyright (c) 2001-2004 by Fredrik Lundh
 | |
| #
 | |
| # See the README file for information on usage and redistribution.
 | |
| #
 | |
| 
 | |
| from PIL import Image
 | |
| from PIL._util import isStringType
 | |
| import operator
 | |
| from functools import reduce
 | |
| 
 | |
| ##
 | |
| # (New in 1.1.3) The <b>ImageOps</b> module contains a number of
 | |
| # 'ready-made' image processing operations.  This module is somewhat
 | |
| # experimental, and most operators only work on L and RGB images.
 | |
| #
 | |
| # @since 1.1.3
 | |
| ##
 | |
| 
 | |
| #
 | |
| # helpers
 | |
| 
 | |
| def _border(border):
 | |
|     if isinstance(border, tuple):
 | |
|         if len(border) == 2:
 | |
|             left, top = right, bottom = border
 | |
|         elif len(border) == 4:
 | |
|             left, top, right, bottom = border
 | |
|     else:
 | |
|         left = top = right = bottom = border
 | |
|     return left, top, right, bottom
 | |
| 
 | |
| def _color(color, mode):
 | |
|     if isStringType(color):
 | |
|         from PIL import ImageColor
 | |
|         color = ImageColor.getcolor(color, mode)
 | |
|     return color
 | |
| 
 | |
| def _lut(image, lut):
 | |
|     if image.mode == "P":
 | |
|         # FIXME: apply to lookup table, not image data
 | |
|         raise NotImplementedError("mode P support coming soon")
 | |
|     elif image.mode in ("L", "RGB"):
 | |
|         if image.mode == "RGB" and len(lut) == 256:
 | |
|             lut = lut + lut + lut
 | |
|         return image.point(lut)
 | |
|     else:
 | |
|         raise IOError("not supported for this image mode")
 | |
| 
 | |
| #
 | |
| # actions
 | |
| 
 | |
| ##
 | |
| # Maximize (normalize) image contrast.  This function calculates a
 | |
| # histogram of the input image, removes <i>cutoff</i> percent of the
 | |
| # lightest and darkest pixels from the histogram, and remaps the image
 | |
| # so that the darkest pixel becomes black (0), and the lightest
 | |
| # becomes white (255).
 | |
| #
 | |
| # @param image The image to process.
 | |
| # @param cutoff How many percent to cut off from the histogram.
 | |
| # @param ignore The background pixel value (use None for no background).
 | |
| # @return An image.
 | |
| 
 | |
| def autocontrast(image, cutoff=0, ignore=None):
 | |
|     "Maximize image contrast, based on histogram"
 | |
|     histogram = image.histogram()
 | |
|     lut = []
 | |
|     for layer in range(0, len(histogram), 256):
 | |
|         h = histogram[layer:layer+256]
 | |
|         if ignore is not None:
 | |
|             # get rid of outliers
 | |
|             try:
 | |
|                 h[ignore] = 0
 | |
|             except TypeError:
 | |
|                 # assume sequence
 | |
|                 for ix in ignore:
 | |
|                     h[ix] = 0
 | |
|         if cutoff:
 | |
|             # cut off pixels from both ends of the histogram
 | |
|             # get number of pixels
 | |
|             n = 0
 | |
|             for ix in range(256):
 | |
|                 n = n + h[ix]
 | |
|             # remove cutoff% pixels from the low end
 | |
|             cut = n * cutoff // 100
 | |
|             for lo in range(256):
 | |
|                 if cut > h[lo]:
 | |
|                     cut = cut - h[lo]
 | |
|                     h[lo] = 0
 | |
|                 else:
 | |
|                     h[lo] = h[lo] - cut
 | |
|                     cut = 0
 | |
|                 if cut <= 0:
 | |
|                     break
 | |
|             # remove cutoff% samples from the hi end
 | |
|             cut = n * cutoff // 100
 | |
|             for hi in range(255, -1, -1):
 | |
|                 if cut > h[hi]:
 | |
|                     cut = cut - h[hi]
 | |
|                     h[hi] = 0
 | |
|                 else:
 | |
|                     h[hi] = h[hi] - cut
 | |
|                     cut = 0
 | |
|                 if cut <= 0:
 | |
|                     break
 | |
|         # find lowest/highest samples after preprocessing
 | |
|         for lo in range(256):
 | |
|             if h[lo]:
 | |
|                 break
 | |
|         for hi in range(255, -1, -1):
 | |
|             if h[hi]:
 | |
|                 break
 | |
|         if hi <= lo:
 | |
|             # don't bother
 | |
|             lut.extend(list(range(256)))
 | |
|         else:
 | |
|             scale = 255.0 / (hi - lo)
 | |
|             offset = -lo * scale
 | |
|             for ix in range(256):
 | |
|                 ix = int(ix * scale + offset)
 | |
|                 if ix < 0:
 | |
|                     ix = 0
 | |
|                 elif ix > 255:
 | |
|                     ix = 255
 | |
|                 lut.append(ix)
 | |
|     return _lut(image, lut)
 | |
| 
 | |
| ##
 | |
| # Colorize grayscale image.  The <i>black</i> and <i>white</i>
 | |
| # arguments should be RGB tuples; this function calculates a colour
 | |
| # wedge mapping all black pixels in the source image to the first
 | |
| # colour, and all white pixels to the second colour.
 | |
| #
 | |
| # @param image The image to colourize.
 | |
| # @param black The colour to use for black input pixels.
 | |
| # @param white The colour to use for white input pixels.
 | |
| # @return An image.
 | |
| 
 | |
| def colorize(image, black, white):
 | |
|     "Colorize a grayscale image"
 | |
|     assert image.mode == "L"
 | |
|     black = _color(black, "RGB")
 | |
|     white = _color(white, "RGB")
 | |
|     red = []; green = []; blue = []
 | |
|     for i in range(256):
 | |
|         red.append(black[0]+i*(white[0]-black[0])//255)
 | |
|         green.append(black[1]+i*(white[1]-black[1])//255)
 | |
|         blue.append(black[2]+i*(white[2]-black[2])//255)
 | |
|     image = image.convert("RGB")
 | |
|     return _lut(image, red + green + blue)
 | |
| 
 | |
| ##
 | |
| # Remove border from image.  The same amount of pixels are removed
 | |
| # from all four sides.  This function works on all image modes.
 | |
| #
 | |
| # @param image The image to crop.
 | |
| # @param border The number of pixels to remove.
 | |
| # @return An image.
 | |
| # @see Image#Image.crop
 | |
| 
 | |
| def crop(image, border=0):
 | |
|     "Crop border off image"
 | |
|     left, top, right, bottom = _border(border)
 | |
|     return image.crop(
 | |
|         (left, top, image.size[0]-right, image.size[1]-bottom)
 | |
|         )
 | |
| 
 | |
| ##
 | |
| # Deform the image.
 | |
| #
 | |
| # @param image The image to deform.
 | |
| # @param deformer A deformer object.  Any object that implements a
 | |
| #     <b>getmesh</b> method can be used.
 | |
| # @param resample What resampling filter to use.
 | |
| # @return An image.
 | |
| 
 | |
| def deform(image, deformer, resample=Image.BILINEAR):
 | |
|     "Deform image using the given deformer"
 | |
|     return image.transform(
 | |
|         image.size, Image.MESH, deformer.getmesh(image), resample
 | |
|         )
 | |
| 
 | |
| ##
 | |
| # Equalize the image histogram.  This function applies a non-linear
 | |
| # mapping to the input image, in order to create a uniform
 | |
| # distribution of grayscale values in the output image.
 | |
| #
 | |
| # @param image The image to equalize.
 | |
| # @param mask An optional mask.  If given, only the pixels selected by
 | |
| #     the mask are included in the analysis.
 | |
| # @return An image.
 | |
| 
 | |
| def equalize(image, mask=None):
 | |
|     "Equalize image histogram"
 | |
|     if image.mode == "P":
 | |
|         image = image.convert("RGB")
 | |
|     h = image.histogram(mask)
 | |
|     lut = []
 | |
|     for b in range(0, len(h), 256):
 | |
|         histo = [_f for _f in h[b:b+256] if _f]
 | |
|         if len(histo) <= 1:
 | |
|             lut.extend(list(range(256)))
 | |
|         else:
 | |
|             step = (reduce(operator.add, histo) - histo[-1]) // 255
 | |
|             if not step:
 | |
|                 lut.extend(list(range(256)))
 | |
|             else:
 | |
|                 n = step // 2
 | |
|                 for i in range(256):
 | |
|                     lut.append(n // step)
 | |
|                     n = n + h[i+b]
 | |
|     return _lut(image, lut)
 | |
| 
 | |
| ##
 | |
| # Add border to the image
 | |
| #
 | |
| # @param image The image to expand.
 | |
| # @param border Border width, in pixels.
 | |
| # @param fill Pixel fill value (a colour value).  Default is 0 (black).
 | |
| # @return An image.
 | |
| 
 | |
| def expand(image, border=0, fill=0):
 | |
|     "Add border to image"
 | |
|     left, top, right, bottom = _border(border)
 | |
|     width = left + image.size[0] + right
 | |
|     height = top + image.size[1] + bottom
 | |
|     out = Image.new(image.mode, (width, height), _color(fill, image.mode))
 | |
|     out.paste(image, (left, top))
 | |
|     return out
 | |
| 
 | |
| ##
 | |
| # Returns a sized and cropped version of the image, cropped to the
 | |
| # requested aspect ratio and size.
 | |
| # <p>
 | |
| # The <b>fit</b> function was contributed by Kevin Cazabon.
 | |
| #
 | |
| # @param size The requested output size in pixels, given as a
 | |
| #     (width, height) tuple.
 | |
| # @param method What resampling method to use.  Default is Image.NEAREST.
 | |
| # @param bleed Remove a border around the outside of the image (from all
 | |
| #     four edges.  The value is a decimal percentage (use 0.01 for one
 | |
| #     percent).  The default value is 0 (no border).
 | |
| # @param centering Control the cropping position.  Use (0.5, 0.5) for
 | |
| #     center cropping (e.g. if cropping the width, take 50% off of the
 | |
| #     left side, and therefore 50% off the right side).  (0.0, 0.0)
 | |
| #     will crop from the top left corner (i.e. if cropping the width,
 | |
| #     take all of the crop off of the right side, and if cropping the
 | |
| #     height, take all of it off the bottom).  (1.0, 0.0) will crop
 | |
| #     from the bottom left corner, etc. (i.e. if cropping the width,
 | |
| #     take all of the crop off the left side, and if cropping the height
 | |
| #     take none from the top, and therefore all off the bottom).
 | |
| # @return An image.
 | |
| 
 | |
| def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
 | |
|     """
 | |
|     This method returns a sized and cropped version of the image,
 | |
|     cropped to the aspect ratio and size that you request.
 | |
|     """
 | |
| 
 | |
|     # by Kevin Cazabon, Feb 17/2000
 | |
|     # kevin@cazabon.com
 | |
|     # http://www.cazabon.com
 | |
| 
 | |
|     # ensure inputs are valid
 | |
|     if not isinstance(centering, list):
 | |
|         centering = [centering[0], centering[1]]
 | |
| 
 | |
|     if centering[0] > 1.0 or centering[0] < 0.0:
 | |
|         centering [0] = 0.50
 | |
|     if centering[1] > 1.0 or centering[1] < 0.0:
 | |
|         centering[1] = 0.50
 | |
| 
 | |
|     if bleed > 0.49999 or bleed < 0.0:
 | |
|         bleed = 0.0
 | |
| 
 | |
|     # calculate the area to use for resizing and cropping, subtracting
 | |
|     # the 'bleed' around the edges
 | |
| 
 | |
|     # number of pixels to trim off on Top and Bottom, Left and Right
 | |
|     bleedPixels = (
 | |
|         int((float(bleed) * float(image.size[0])) + 0.5),
 | |
|         int((float(bleed) * float(image.size[1])) + 0.5)
 | |
|         )
 | |
| 
 | |
|     liveArea = (0, 0, image.size[0], image.size[1])
 | |
|     if bleed > 0.0:
 | |
|         liveArea = (
 | |
|             bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1,
 | |
|             image.size[1] - bleedPixels[1] - 1
 | |
|             )
 | |
| 
 | |
|     liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1])
 | |
| 
 | |
|     # calculate the aspect ratio of the liveArea
 | |
|     liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1])
 | |
| 
 | |
|     # calculate the aspect ratio of the output image
 | |
|     aspectRatio = float(size[0]) / float(size[1])
 | |
| 
 | |
|     # figure out if the sides or top/bottom will be cropped off
 | |
|     if liveAreaAspectRatio >= aspectRatio:
 | |
|         # liveArea is wider than what's needed, crop the sides
 | |
|         cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5)
 | |
|         cropHeight = liveSize[1]
 | |
|     else:
 | |
|         # liveArea is taller than what's needed, crop the top and bottom
 | |
|         cropWidth = liveSize[0]
 | |
|         cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5)
 | |
| 
 | |
|     # make the crop
 | |
|     leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0]))
 | |
|     if leftSide < 0:
 | |
|         leftSide = 0
 | |
|     topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1]))
 | |
|     if topSide < 0:
 | |
|         topSide = 0
 | |
| 
 | |
|     out = image.crop(
 | |
|         (leftSide, topSide, leftSide + cropWidth, topSide + cropHeight)
 | |
|         )
 | |
| 
 | |
|     # resize the image and return it
 | |
|     return out.resize(size, method)
 | |
| 
 | |
| ##
 | |
| # Flip the image vertically (top to bottom).
 | |
| #
 | |
| # @param image The image to flip.
 | |
| # @return An image.
 | |
| 
 | |
| def flip(image):
 | |
|     "Flip image vertically"
 | |
|     return image.transpose(Image.FLIP_TOP_BOTTOM)
 | |
| 
 | |
| ##
 | |
| # Convert the image to grayscale.
 | |
| #
 | |
| # @param image The image to convert.
 | |
| # @return An image.
 | |
| 
 | |
| def grayscale(image):
 | |
|     "Convert to grayscale"
 | |
|     return image.convert("L")
 | |
| 
 | |
| ##
 | |
| # Invert (negate) the image.
 | |
| #
 | |
| # @param image The image to invert.
 | |
| # @return An image.
 | |
| 
 | |
| def invert(image):
 | |
|     "Invert image (negate)"
 | |
|     lut = []
 | |
|     for i in range(256):
 | |
|         lut.append(255-i)
 | |
|     return _lut(image, lut)
 | |
| 
 | |
| ##
 | |
| # Flip image horizontally (left to right).
 | |
| #
 | |
| # @param image The image to mirror.
 | |
| # @return An image.
 | |
| 
 | |
| def mirror(image):
 | |
|     "Flip image horizontally"
 | |
|     return image.transpose(Image.FLIP_LEFT_RIGHT)
 | |
| 
 | |
| ##
 | |
| # Reduce the number of bits for each colour channel.
 | |
| #
 | |
| # @param image The image to posterize.
 | |
| # @param bits The number of bits to keep for each channel (1-8).
 | |
| # @return An image.
 | |
| 
 | |
| def posterize(image, bits):
 | |
|     "Reduce the number of bits per color channel"
 | |
|     lut = []
 | |
|     mask = ~(2**(8-bits)-1)
 | |
|     for i in range(256):
 | |
|         lut.append(i & mask)
 | |
|     return _lut(image, lut)
 | |
| 
 | |
| ##
 | |
| # Invert all pixel values above a threshold.
 | |
| #
 | |
| # @param image The image to posterize.
 | |
| # @param threshold All pixels above this greyscale level are inverted.
 | |
| # @return An image.
 | |
| 
 | |
| def solarize(image, threshold=128):
 | |
|     "Invert all values above threshold"
 | |
|     lut = []
 | |
|     for i in range(256):
 | |
|         if i < threshold:
 | |
|             lut.append(i)
 | |
|         else:
 | |
|             lut.append(255-i)
 | |
|     return _lut(image, lut)
 | |
| 
 | |
| # --------------------------------------------------------------------
 | |
| # PIL USM components, from Kevin Cazabon.
 | |
| 
 | |
| def gaussian_blur(im, radius=None):
 | |
|     """ PIL_usm.gblur(im, [radius])"""
 | |
| 
 | |
|     if radius is None:
 | |
|         radius = 5.0
 | |
| 
 | |
|     im.load()
 | |
| 
 | |
|     return im.im.gaussian_blur(radius)
 | |
| 
 | |
| gblur = gaussian_blur
 | |
| 
 | |
| def unsharp_mask(im, radius=None, percent=None, threshold=None):
 | |
|     """ PIL_usm.usm(im, [radius, percent, threshold])"""
 | |
| 
 | |
|     if radius is None:
 | |
|         radius = 5.0
 | |
|     if percent is None:
 | |
|         percent = 150
 | |
|     if threshold is None:
 | |
|         threshold = 3
 | |
| 
 | |
|     im.load()
 | |
| 
 | |
|     return im.im.unsharp_mask(radius, percent, threshold)
 | |
| 
 | |
| usm = unsharp_mask
 |