mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-10-19 18:24:43 +03:00
303 lines
8.6 KiB
Python
303 lines
8.6 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
from typing import Any, NamedTuple
|
|
|
|
import pytest
|
|
|
|
from PIL import Image
|
|
|
|
from .helper import (
|
|
assert_deep_equal,
|
|
assert_image_equal,
|
|
hopper,
|
|
is_big_endian,
|
|
)
|
|
|
|
TYPE_CHECKING = False
|
|
if TYPE_CHECKING:
|
|
import nanoarrow # type: ignore [import-not-found]
|
|
else:
|
|
nanoarrow = pytest.importorskip("nanoarrow", reason="Nanoarrow not installed")
|
|
|
|
TEST_IMAGE_SIZE = (10, 10)
|
|
|
|
|
|
def _test_img_equals_pyarray(
|
|
img: Image.Image, arr: Any, mask: list[int] | None, elts_per_pixel: int = 1
|
|
) -> None:
|
|
assert img.height * img.width * elts_per_pixel == len(arr)
|
|
px = img.load()
|
|
assert px is not None
|
|
if elts_per_pixel > 1 and mask is None:
|
|
# have to do element-wise comparison when we're comparing
|
|
# flattened r,g,b,a to a pixel.
|
|
mask = list(range(elts_per_pixel))
|
|
for x in range(0, img.size[0], int(img.size[0] / 10)):
|
|
for y in range(0, img.size[1], int(img.size[1] / 10)):
|
|
if mask:
|
|
pixel = px[x, y]
|
|
assert isinstance(pixel, tuple)
|
|
for ix, elt in enumerate(mask):
|
|
if elts_per_pixel == 1:
|
|
assert pixel[ix] == arr[y * img.width + x].as_py()[elt]
|
|
else:
|
|
assert (
|
|
pixel[ix]
|
|
== arr[(y * img.width + x) * elts_per_pixel + elt].as_py()
|
|
)
|
|
else:
|
|
assert_deep_equal(px[x, y], arr[y * img.width + x].as_py())
|
|
|
|
|
|
def _test_img_equals_int32_pyarray(
|
|
img: Image.Image, arr: Any, mask: list[int] | None, elts_per_pixel: int = 1
|
|
) -> None:
|
|
assert img.height * img.width * elts_per_pixel == len(arr)
|
|
px = img.load()
|
|
assert px is not None
|
|
if mask is None:
|
|
# have to do element-wise comparison when we're comparing
|
|
# flattened rgba in an uint32 to a pixel.
|
|
mask = list(range(elts_per_pixel))
|
|
for x in range(0, img.size[0], int(img.size[0] / 10)):
|
|
for y in range(0, img.size[1], int(img.size[1] / 10)):
|
|
pixel = px[x, y]
|
|
assert isinstance(pixel, tuple)
|
|
arr_pixel_int = arr[y * img.width + x].as_py()
|
|
arr_pixel_tuple = (
|
|
arr_pixel_int % 256,
|
|
(arr_pixel_int // 256) % 256,
|
|
(arr_pixel_int // 256**2) % 256,
|
|
(arr_pixel_int // 256**3),
|
|
)
|
|
if is_big_endian():
|
|
arr_pixel_tuple = arr_pixel_tuple[::-1]
|
|
|
|
for ix, elt in enumerate(mask):
|
|
assert pixel[ix] == arr_pixel_tuple[elt]
|
|
|
|
|
|
fl_uint8_4_type = nanoarrow.fixed_size_list(
|
|
value_type=nanoarrow.uint8(nullable=False), list_size=4, nullable=False
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mode, dtype, mask",
|
|
(
|
|
("L", nanoarrow.uint8(nullable=False), None),
|
|
("I", nanoarrow.int32(nullable=False), None),
|
|
("F", nanoarrow.float32(nullable=False), None),
|
|
("LA", fl_uint8_4_type, [0, 3]),
|
|
("RGB", fl_uint8_4_type, [0, 1, 2]),
|
|
("RGBA", fl_uint8_4_type, None),
|
|
("RGBX", fl_uint8_4_type, None),
|
|
("CMYK", fl_uint8_4_type, None),
|
|
("YCbCr", fl_uint8_4_type, [0, 1, 2]),
|
|
("HSV", fl_uint8_4_type, [0, 1, 2]),
|
|
),
|
|
)
|
|
def test_to_array(mode: str, dtype: nanoarrow, mask: list[int] | None) -> None:
|
|
img = hopper(mode)
|
|
|
|
# Resize to non-square
|
|
img = img.crop((3, 0, 124, 127))
|
|
assert img.size == (121, 127)
|
|
|
|
arr = nanoarrow.Array(img)
|
|
_test_img_equals_pyarray(img, arr, mask)
|
|
assert arr.schema.type == dtype.type
|
|
assert arr.schema.nullable == dtype.nullable
|
|
|
|
reloaded = Image.fromarrow(arr, mode, img.size)
|
|
assert_image_equal(img, reloaded)
|
|
|
|
|
|
def test_lifetime() -> None:
|
|
# valgrind shouldn't error out here.
|
|
# arrays should be accessible after the image is deleted.
|
|
|
|
img = hopper("L")
|
|
|
|
arr_1 = nanoarrow.Array(img)
|
|
arr_2 = nanoarrow.Array(img)
|
|
|
|
del img
|
|
|
|
assert sum(arr_1.iter_py()) > 0
|
|
del arr_1
|
|
|
|
assert sum(arr_2.iter_py()) > 0
|
|
del arr_2
|
|
|
|
|
|
def test_lifetime2() -> None:
|
|
# valgrind shouldn't error out here.
|
|
# img should remain after the arrays are collected.
|
|
|
|
img = hopper("L")
|
|
|
|
arr_1 = nanoarrow.Array(img)
|
|
arr_2 = nanoarrow.Array(img)
|
|
|
|
assert sum(arr_1.iter_py()) > 0
|
|
del arr_1
|
|
|
|
assert sum(arr_2.iter_py()) > 0
|
|
del arr_2
|
|
|
|
img2 = img.copy()
|
|
px = img2.load()
|
|
assert px # make mypy happy
|
|
assert isinstance(px[0, 0], int)
|
|
|
|
|
|
class DataShape(NamedTuple):
|
|
dtype: nanoarrow
|
|
# Strictly speaking, elt should be a pixel or pixel component, so
|
|
# list[uint8][4], float, int, uint32, uint8, etc. But more
|
|
# correctly, it should be exactly the dtype from the line above.
|
|
elt: Any
|
|
elts_per_pixel: int
|
|
|
|
|
|
UINT_ARR = DataShape(
|
|
dtype=fl_uint8_4_type,
|
|
elt=[1, 2, 3, 4], # array of 4 uint8 per pixel
|
|
elts_per_pixel=1, # only one array per pixel
|
|
)
|
|
|
|
UINT = DataShape(
|
|
dtype=nanoarrow.uint8(),
|
|
elt=3, # one uint8,
|
|
elts_per_pixel=4, # but repeated 4x per pixel
|
|
)
|
|
|
|
UINT32 = DataShape(
|
|
dtype=nanoarrow.uint32(),
|
|
elt=0xABCDEF45, # one packed int, doesn't fit in a int32 > 0x80000000
|
|
elts_per_pixel=1, # one per pixel
|
|
)
|
|
|
|
INT32 = DataShape(
|
|
dtype=nanoarrow.uint32(),
|
|
elt=0x12CDEF45, # one packed int
|
|
elts_per_pixel=1, # one per pixel
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mode, data_tp, mask",
|
|
(
|
|
("L", DataShape(nanoarrow.uint8(), 3, 1), None),
|
|
("I", DataShape(nanoarrow.int32(), 1 << 24, 1), None),
|
|
("F", DataShape(nanoarrow.float32(), 3.14159, 1), None),
|
|
("LA", UINT_ARR, [0, 3]),
|
|
("LA", UINT, [0, 3]),
|
|
("RGB", UINT_ARR, [0, 1, 2]),
|
|
("RGBA", UINT_ARR, None),
|
|
("CMYK", UINT_ARR, None),
|
|
("YCbCr", UINT_ARR, [0, 1, 2]),
|
|
("HSV", UINT_ARR, [0, 1, 2]),
|
|
("RGB", UINT, [0, 1, 2]),
|
|
("RGBA", UINT, None),
|
|
("CMYK", UINT, None),
|
|
("YCbCr", UINT, [0, 1, 2]),
|
|
("HSV", UINT, [0, 1, 2]),
|
|
),
|
|
)
|
|
def test_fromarray(mode: str, data_tp: DataShape, mask: list[int] | None) -> None:
|
|
(dtype, elt, elts_per_pixel) = data_tp
|
|
|
|
ct_pixels = TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1]
|
|
if dtype == fl_uint8_4_type:
|
|
tmp_arr = nanoarrow.Array(
|
|
elt * (ct_pixels * elts_per_pixel), schema=nanoarrow.uint8()
|
|
)
|
|
c_array = nanoarrow.c_array_from_buffers(
|
|
dtype, ct_pixels, buffers=[], children=[tmp_arr]
|
|
)
|
|
arr = nanoarrow.Array(c_array)
|
|
else:
|
|
arr = nanoarrow.Array(
|
|
nanoarrow.c_array([elt] * (ct_pixels * elts_per_pixel), schema=dtype)
|
|
)
|
|
img = Image.fromarrow(arr, mode, TEST_IMAGE_SIZE)
|
|
|
|
_test_img_equals_pyarray(img, arr, mask, elts_per_pixel)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mode, mask",
|
|
(
|
|
("LA", [0, 3]),
|
|
("RGB", [0, 1, 2]),
|
|
("RGBA", None),
|
|
("CMYK", None),
|
|
("YCbCr", [0, 1, 2]),
|
|
("HSV", [0, 1, 2]),
|
|
),
|
|
)
|
|
@pytest.mark.parametrize("data_tp", (UINT32, INT32))
|
|
def test_from_int32array(mode: str, mask: list[int] | None, data_tp: DataShape) -> None:
|
|
(dtype, elt, elts_per_pixel) = data_tp
|
|
|
|
ct_pixels = TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1]
|
|
arr = nanoarrow.Array(
|
|
nanoarrow.c_array([elt] * (ct_pixels * elts_per_pixel), schema=dtype)
|
|
)
|
|
img = Image.fromarrow(arr, mode, TEST_IMAGE_SIZE)
|
|
|
|
_test_img_equals_int32_pyarray(img, arr, mask, elts_per_pixel)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mode, metadata",
|
|
(
|
|
("LA", ["L", "X", "X", "A"]),
|
|
("RGB", ["R", "G", "B", "X"]),
|
|
("RGBX", ["R", "G", "B", "X"]),
|
|
("RGBA", ["R", "G", "B", "A"]),
|
|
("CMYK", ["C", "M", "Y", "K"]),
|
|
("YCbCr", ["Y", "Cb", "Cr", "X"]),
|
|
("HSV", ["H", "S", "V", "X"]),
|
|
),
|
|
)
|
|
def test_image_nested_metadata(mode: str, metadata: list[str]) -> None:
|
|
img = hopper(mode)
|
|
|
|
arr = nanoarrow.Array(img)
|
|
|
|
assert arr.schema.value_type.metadata
|
|
assert arr.schema.value_type.metadata[b"image"]
|
|
|
|
parsed_metadata = json.loads(
|
|
arr.schema.value_type.metadata[b"image"].decode("utf8")
|
|
)
|
|
|
|
assert "bands" in parsed_metadata
|
|
assert parsed_metadata["bands"] == metadata
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mode, metadata",
|
|
(
|
|
("L", ["L"]),
|
|
("I", ["I"]),
|
|
("F", ["F"]),
|
|
),
|
|
)
|
|
def test_image_flat_metadata(mode: str, metadata: list[str]) -> None:
|
|
img = hopper(mode)
|
|
|
|
arr = nanoarrow.Array(img)
|
|
|
|
assert arr.schema.metadata
|
|
assert arr.schema.metadata[b"image"]
|
|
|
|
parsed_metadata = json.loads(arr.schema.metadata[b"image"].decode("utf8"))
|
|
|
|
assert "bands" in parsed_metadata
|
|
assert parsed_metadata["bands"] == metadata
|