mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-11-04 01:47:47 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			290 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
# The Python Imaging Library.
 | 
						|
# $Id$
 | 
						|
#
 | 
						|
# standard filters
 | 
						|
#
 | 
						|
# History:
 | 
						|
# 1995-11-27 fl   Created
 | 
						|
# 2002-06-08 fl   Added rank and mode filters
 | 
						|
# 2003-09-15 fl   Fixed rank calculation in rank filter; added expand call
 | 
						|
#
 | 
						|
# Copyright (c) 1997-2003 by Secret Labs AB.
 | 
						|
# Copyright (c) 1995-2002 by Fredrik Lundh.
 | 
						|
#
 | 
						|
# See the README file for information on usage and redistribution.
 | 
						|
#
 | 
						|
 | 
						|
class Filter:
 | 
						|
    pass
 | 
						|
 | 
						|
##
 | 
						|
# Convolution filter kernel.
 | 
						|
 | 
						|
class Kernel(Filter):
 | 
						|
 | 
						|
    ##
 | 
						|
    # Create a convolution kernel.  The current version only
 | 
						|
    # supports 3x3 and 5x5 integer and floating point kernels.
 | 
						|
    # <p>
 | 
						|
    # In the current version, kernels can only be applied to
 | 
						|
    # "L" and "RGB" images.
 | 
						|
    #
 | 
						|
    # @def __init__(size, kernel, **options)
 | 
						|
    # @param size Kernel size, given as (width, height).  In
 | 
						|
    #    the current version, this must be (3,3) or (5,5).
 | 
						|
    # @param kernel A sequence containing kernel weights.
 | 
						|
    # @param **options Optional keyword arguments.
 | 
						|
    # @keyparam scale Scale factor.  If given, the result for each
 | 
						|
    #    pixel is divided by this value.  The default is the sum
 | 
						|
    #    of the kernel weights.
 | 
						|
    # @keyparam offset Offset.  If given, this value is added to the
 | 
						|
    #    result, after it has been divided by the scale factor.
 | 
						|
 | 
						|
    def __init__(self, size, kernel, scale=None, offset=0):
 | 
						|
        if scale is None:
 | 
						|
            # default scale is sum of kernel
 | 
						|
            scale = reduce(lambda a,b: a+b, kernel)
 | 
						|
        if size[0] * size[1] != len(kernel):
 | 
						|
            raise ValueError("not enough coefficients in kernel")
 | 
						|
        self.filterargs = size, scale, offset, kernel
 | 
						|
 | 
						|
    def filter(self, image):
 | 
						|
        if image.mode == "P":
 | 
						|
            raise ValueError("cannot filter palette images")
 | 
						|
        return apply(image.filter, self.filterargs)
 | 
						|
 | 
						|
class BuiltinFilter(Kernel):
 | 
						|
    def __init__(self):
 | 
						|
        pass
 | 
						|
 | 
						|
##
 | 
						|
# Rank filter.
 | 
						|
 | 
						|
class RankFilter(Filter):
 | 
						|
    name = "Rank"
 | 
						|
 | 
						|
    ##
 | 
						|
    # Create a rank filter.  The rank filter sorts all pixels in
 | 
						|
    # a window of the given size, and returns the rank'th value.
 | 
						|
    #
 | 
						|
    # @param size The kernel size, in pixels.
 | 
						|
    # @param rank What pixel value to pick.  Use 0 for a min filter,
 | 
						|
    #    size*size/2 for a median filter, size*size-1 for a max filter,
 | 
						|
    #    etc.
 | 
						|
 | 
						|
    def __init__(self, size, rank):
 | 
						|
        self.size = size
 | 
						|
        self.rank = rank
 | 
						|
 | 
						|
    def filter(self, image):
 | 
						|
        if image.mode == "P":
 | 
						|
            raise ValueError("cannot filter palette images")
 | 
						|
        image = image.expand(self.size/2, self.size/2)
 | 
						|
        return image.rankfilter(self.size, self.rank)
 | 
						|
 | 
						|
##
 | 
						|
# Median filter.  Picks the median pixel value in a window with the
 | 
						|
# given size.
 | 
						|
 | 
						|
class MedianFilter(RankFilter):
 | 
						|
    name = "Median"
 | 
						|
 | 
						|
    ##
 | 
						|
    # Create a median filter.
 | 
						|
    #
 | 
						|
    # @param size The kernel size, in pixels.
 | 
						|
 | 
						|
    def __init__(self, size=3):
 | 
						|
        self.size = size
 | 
						|
        self.rank = size*size/2
 | 
						|
 | 
						|
##
 | 
						|
# Min filter.  Picks the lowest pixel value in a window with the given
 | 
						|
# size.
 | 
						|
 | 
						|
class MinFilter(RankFilter):
 | 
						|
    name = "Min"
 | 
						|
 | 
						|
    ##
 | 
						|
    # Create a min filter.
 | 
						|
    #
 | 
						|
    # @param size The kernel size, in pixels.
 | 
						|
 | 
						|
    def __init__(self, size=3):
 | 
						|
        self.size = size
 | 
						|
        self.rank = 0
 | 
						|
 | 
						|
##
 | 
						|
# Max filter.  Picks the largest pixel value in a window with the
 | 
						|
# given size.
 | 
						|
 | 
						|
class MaxFilter(RankFilter):
 | 
						|
    name = "Max"
 | 
						|
 | 
						|
    ##
 | 
						|
    # Create a max filter.
 | 
						|
    #
 | 
						|
    # @param size The kernel size, in pixels.
 | 
						|
 | 
						|
    def __init__(self, size=3):
 | 
						|
        self.size = size
 | 
						|
        self.rank = size*size-1
 | 
						|
 | 
						|
##
 | 
						|
# Mode filter.  Picks the most frequent pixel value in a box with the
 | 
						|
# given size.  Pixel values that occur only once or twice are ignored;
 | 
						|
# if no pixel value occurs more than twice, the original pixel value
 | 
						|
# is preserved.
 | 
						|
 | 
						|
class ModeFilter(Filter):
 | 
						|
    name = "Mode"
 | 
						|
 | 
						|
    ##
 | 
						|
    # Create a mode filter.
 | 
						|
    #
 | 
						|
    # @param size The kernel size, in pixels.
 | 
						|
 | 
						|
    def __init__(self, size=3):
 | 
						|
        self.size = size
 | 
						|
    def filter(self, image):
 | 
						|
        return image.modefilter(self.size)
 | 
						|
 | 
						|
##
 | 
						|
# Gaussian blur filter.
 | 
						|
 | 
						|
class GaussianBlur(Filter):
 | 
						|
    name = "GaussianBlur"
 | 
						|
 | 
						|
    def __init__(self, radius=2):
 | 
						|
        self.radius = 2
 | 
						|
    def filter(self, image):
 | 
						|
        return image.gaussian_blur(self.radius)
 | 
						|
 | 
						|
##
 | 
						|
# Unsharp mask filter.
 | 
						|
 | 
						|
class UnsharpMask(Filter):
 | 
						|
    name = "UnsharpMask"
 | 
						|
 | 
						|
    def __init__(self, radius=2, percent=150, threshold=3):
 | 
						|
        self.radius = 2
 | 
						|
        self.percent = percent
 | 
						|
        self.threshold = threshold
 | 
						|
    def filter(self, image):
 | 
						|
        return image.unsharp_mask(self.radius, self.percent, self.threshold)
 | 
						|
 | 
						|
##
 | 
						|
# Simple blur filter.
 | 
						|
 | 
						|
class BLUR(BuiltinFilter):
 | 
						|
    name = "Blur"
 | 
						|
    filterargs = (5, 5), 16, 0, (
 | 
						|
        1,  1,  1,  1,  1,
 | 
						|
        1,  0,  0,  0,  1,
 | 
						|
        1,  0,  0,  0,  1,
 | 
						|
        1,  0,  0,  0,  1,
 | 
						|
        1,  1,  1,  1,  1
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple contour filter.
 | 
						|
 | 
						|
class CONTOUR(BuiltinFilter):
 | 
						|
    name = "Contour"
 | 
						|
    filterargs = (3, 3), 1, 255, (
 | 
						|
        -1, -1, -1,
 | 
						|
        -1,  8, -1,
 | 
						|
        -1, -1, -1
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple detail filter.
 | 
						|
 | 
						|
class DETAIL(BuiltinFilter):
 | 
						|
    name = "Detail"
 | 
						|
    filterargs = (3, 3), 6, 0, (
 | 
						|
        0, -1,  0,
 | 
						|
        -1, 10, -1,
 | 
						|
        0, -1,  0
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple edge enhancement filter.
 | 
						|
 | 
						|
class EDGE_ENHANCE(BuiltinFilter):
 | 
						|
    name = "Edge-enhance"
 | 
						|
    filterargs = (3, 3), 2, 0, (
 | 
						|
        -1, -1, -1,
 | 
						|
        -1, 10, -1,
 | 
						|
        -1, -1, -1
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple stronger edge enhancement filter.
 | 
						|
 | 
						|
class EDGE_ENHANCE_MORE(BuiltinFilter):
 | 
						|
    name = "Edge-enhance More"
 | 
						|
    filterargs = (3, 3), 1, 0, (
 | 
						|
        -1, -1, -1,
 | 
						|
        -1,  9, -1,
 | 
						|
        -1, -1, -1
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple embossing filter.
 | 
						|
 | 
						|
class EMBOSS(BuiltinFilter):
 | 
						|
    name = "Emboss"
 | 
						|
    filterargs = (3, 3), 1, 128, (
 | 
						|
        -1,  0,  0,
 | 
						|
        0,  1,  0,
 | 
						|
        0,  0,  0
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple edge-finding filter.
 | 
						|
 | 
						|
class FIND_EDGES(BuiltinFilter):
 | 
						|
    name = "Find Edges"
 | 
						|
    filterargs = (3, 3), 1, 0, (
 | 
						|
        -1, -1, -1,
 | 
						|
        -1,  8, -1,
 | 
						|
        -1, -1, -1
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple smoothing filter.
 | 
						|
 | 
						|
class SMOOTH(BuiltinFilter):
 | 
						|
    name = "Smooth"
 | 
						|
    filterargs = (3, 3), 13, 0, (
 | 
						|
        1,  1,  1,
 | 
						|
        1,  5,  1,
 | 
						|
        1,  1,  1
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple stronger smoothing filter.
 | 
						|
 | 
						|
class SMOOTH_MORE(BuiltinFilter):
 | 
						|
    name = "Smooth More"
 | 
						|
    filterargs = (5, 5), 100, 0, (
 | 
						|
        1,  1,  1,  1,  1,
 | 
						|
        1,  5,  5,  5,  1,
 | 
						|
        1,  5, 44,  5,  1,
 | 
						|
        1,  5,  5,  5,  1,
 | 
						|
        1,  1,  1,  1,  1
 | 
						|
        )
 | 
						|
 | 
						|
##
 | 
						|
# Simple sharpening filter.
 | 
						|
 | 
						|
class SHARPEN(BuiltinFilter):
 | 
						|
    name = "Sharpen"
 | 
						|
    filterargs = (3, 3), 16, 0, (
 | 
						|
        -2, -2, -2,
 | 
						|
        -2, 32, -2,
 | 
						|
        -2, -2, -2
 | 
						|
        )
 |