mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-14 19:36:38 +03:00
4853e522bd
* From Pillow 4.3.0->8.1.0 * CVE-2021-25293
289 lines
7.9 KiB
C
289 lines
7.9 KiB
C
/*
|
|
* The Python Imaging Library.
|
|
* $Id$
|
|
*
|
|
* decoder for Sgi RLE data.
|
|
*
|
|
* history:
|
|
* 2017-07-28 mb fixed for images larger than 64KB
|
|
* 2017-07-20 mb created
|
|
*
|
|
* Copyright (c) Mickael Bonfill 2017.
|
|
*
|
|
* See the README file for information on usage and redistribution.
|
|
*/
|
|
|
|
#include "Imaging.h"
|
|
#include "Sgi.h"
|
|
|
|
#define SGI_HEADER_SIZE 512
|
|
#define RLE_COPY_FLAG 0x80
|
|
#define RLE_MAX_RUN 0x7f
|
|
|
|
static void
|
|
read4B(UINT32 *dest, UINT8 *buf) {
|
|
*dest = (UINT32)((buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]);
|
|
}
|
|
|
|
/*
|
|
SgiRleDecoding is done in a single channel row oriented set of RLE chunks.
|
|
|
|
* The file is arranged as
|
|
- SGI Header
|
|
- Rle Offset Table
|
|
- Rle Length Table
|
|
- Scanline Data
|
|
|
|
* Each RLE atom is c->bpc bytes wide (1 or 2)
|
|
|
|
* Each RLE Chunk is [specifier atom] [ 1 or n data atoms ]
|
|
|
|
* Copy Atoms are a byte with the high bit set, and the low 7 are
|
|
the number of bytes to copy from the source to the
|
|
destination. e.g.
|
|
|
|
CBBBBBBBB or 0CHLHLHLHLHLHL (B=byte, H/L = Hi low bytes)
|
|
|
|
* Run atoms do not have the high bit set, and the low 7 bits are
|
|
the number of copies of the next atom to copy to the
|
|
destination. e.g.:
|
|
|
|
RB -> BBBBB or RHL -> HLHLHLHLHL
|
|
|
|
The upshot of this is, there is no way to determine the required
|
|
length of the input buffer from reloffset and rlelength without
|
|
going through the data at that scan line.
|
|
|
|
Furthermore, there's no requirement that individual scan lines
|
|
pointed to from the rleoffset table are in any sort of order or
|
|
used only once, or even disjoint. There's also no requirement that
|
|
all of the data in the scan line area of the image file be used
|
|
|
|
*/
|
|
static int
|
|
expandrow(UINT8 *dest, UINT8 *src, int n, int z, int xsize, UINT8 *end_of_buffer) {
|
|
/*
|
|
* n here is the number of rlechunks
|
|
* z is the number of channels, for calculating the interleave
|
|
* offset to go to RGBA style pixels
|
|
* xsize is the row width
|
|
* end_of_buffer is the address of the end of the input buffer
|
|
*/
|
|
|
|
UINT8 pixel, count;
|
|
int x = 0;
|
|
|
|
for (; n > 0; n--) {
|
|
if (src > end_of_buffer) {
|
|
return -1;
|
|
}
|
|
pixel = *src++;
|
|
if (n == 1 && pixel != 0) {
|
|
return n;
|
|
}
|
|
count = pixel & RLE_MAX_RUN;
|
|
if (!count) {
|
|
return count;
|
|
}
|
|
if (x + count > xsize) {
|
|
return -1;
|
|
}
|
|
x += count;
|
|
if (pixel & RLE_COPY_FLAG) {
|
|
if (src + count > end_of_buffer) {
|
|
return -1;
|
|
}
|
|
while (count--) {
|
|
*dest = *src++;
|
|
dest += z;
|
|
}
|
|
|
|
} else {
|
|
if (src > end_of_buffer) {
|
|
return -1;
|
|
}
|
|
pixel = *src++;
|
|
while (count--) {
|
|
*dest = pixel;
|
|
dest += z;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
expandrow2(UINT8 *dest, const UINT8 *src, int n, int z, int xsize, UINT8 *end_of_buffer) {
|
|
UINT8 pixel, count;
|
|
int x = 0;
|
|
|
|
for (; n > 0; n--) {
|
|
if (src + 1 > end_of_buffer) {
|
|
return -1;
|
|
}
|
|
pixel = src[1];
|
|
src += 2;
|
|
if (n == 1 && pixel != 0) {
|
|
return n;
|
|
}
|
|
count = pixel & RLE_MAX_RUN;
|
|
if (!count) {
|
|
return count;
|
|
}
|
|
if (x + count > xsize) {
|
|
return -1;
|
|
}
|
|
x += count;
|
|
if (pixel & RLE_COPY_FLAG) {
|
|
if (src + 2 * count > end_of_buffer) {
|
|
return -1;
|
|
}
|
|
while (count--) {
|
|
memcpy(dest, src, 2);
|
|
src += 2;
|
|
dest += z * 2;
|
|
}
|
|
} else {
|
|
if (src + 2 > end_of_buffer) {
|
|
return -1;
|
|
}
|
|
while (count--) {
|
|
memcpy(dest, src, 2);
|
|
dest += z * 2;
|
|
}
|
|
src += 2;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ImagingSgiRleDecode(Imaging im, ImagingCodecState state, UINT8 *buf, Py_ssize_t bytes) {
|
|
UINT8 *ptr;
|
|
SGISTATE *c;
|
|
int err = 0;
|
|
int status;
|
|
|
|
/* size check */
|
|
if (im->xsize > INT_MAX / im->bands || im->ysize > INT_MAX / im->bands) {
|
|
state->errcode = IMAGING_CODEC_MEMORY;
|
|
return -1;
|
|
}
|
|
|
|
/* Get all data from File descriptor */
|
|
c = (SGISTATE *)state->context;
|
|
_imaging_seek_pyFd(state->fd, 0L, SEEK_END);
|
|
c->bufsize = _imaging_tell_pyFd(state->fd);
|
|
c->bufsize -= SGI_HEADER_SIZE;
|
|
|
|
c->tablen = im->bands * im->ysize;
|
|
/* below, we populate the starttab and lentab into the bufsize,
|
|
each with 4 bytes per element of tablen
|
|
Check here before we allocate any memory
|
|
*/
|
|
if (c->bufsize < 8 * c->tablen) {
|
|
state->errcode = IMAGING_CODEC_OVERRUN;
|
|
return -1;
|
|
}
|
|
|
|
ptr = malloc(sizeof(UINT8) * c->bufsize);
|
|
if (!ptr) {
|
|
state->errcode = IMAGING_CODEC_MEMORY;
|
|
return -1;
|
|
}
|
|
_imaging_seek_pyFd(state->fd, SGI_HEADER_SIZE, SEEK_SET);
|
|
if (_imaging_read_pyFd(state->fd, (char *)ptr, c->bufsize) != c->bufsize) {
|
|
state->errcode = IMAGING_CODEC_UNKNOWN;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* decoder initialization */
|
|
state->count = 0;
|
|
state->y = 0;
|
|
if (state->ystep < 0) {
|
|
state->y = im->ysize - 1;
|
|
} else {
|
|
state->ystep = 1;
|
|
}
|
|
|
|
/* Allocate memory for RLE tables and rows */
|
|
free(state->buffer);
|
|
state->buffer = NULL;
|
|
/* malloc overflow check above */
|
|
state->buffer = calloc(im->xsize * im->bands, sizeof(UINT8) * 2);
|
|
c->starttab = calloc(c->tablen, sizeof(UINT32));
|
|
c->lengthtab = calloc(c->tablen, sizeof(UINT32));
|
|
if (!state->buffer || !c->starttab || !c->lengthtab) {
|
|
err = IMAGING_CODEC_MEMORY;
|
|
goto sgi_finish_decode;
|
|
}
|
|
/* populate offsets table */
|
|
for (c->tabindex = 0, c->bufindex = 0; c->tabindex < c->tablen;
|
|
c->tabindex++, c->bufindex += 4) {
|
|
read4B(&c->starttab[c->tabindex], &ptr[c->bufindex]);
|
|
}
|
|
/* populate lengths table */
|
|
for (c->tabindex = 0, c->bufindex = c->tablen * sizeof(UINT32);
|
|
c->tabindex < c->tablen;
|
|
c->tabindex++, c->bufindex += 4) {
|
|
read4B(&c->lengthtab[c->tabindex], &ptr[c->bufindex]);
|
|
}
|
|
|
|
/* read compressed rows */
|
|
for (c->rowno = 0; c->rowno < im->ysize; c->rowno++, state->y += state->ystep) {
|
|
for (c->channo = 0; c->channo < im->bands; c->channo++) {
|
|
c->rleoffset = c->starttab[c->rowno + c->channo * im->ysize];
|
|
c->rlelength = c->lengthtab[c->rowno + c->channo * im->ysize];
|
|
|
|
// Check for underflow of rleoffset-SGI_HEADER_SIZE
|
|
if (c->rleoffset < SGI_HEADER_SIZE) {
|
|
state->errcode = IMAGING_CODEC_OVERRUN;
|
|
goto sgi_finish_decode;
|
|
}
|
|
|
|
c->rleoffset -= SGI_HEADER_SIZE;
|
|
|
|
/* row decompression */
|
|
if (c->bpc == 1) {
|
|
status = expandrow(
|
|
&state->buffer[c->channo],
|
|
&ptr[c->rleoffset],
|
|
c->rlelength,
|
|
im->bands,
|
|
im->xsize,
|
|
&ptr[c->bufsize-1]);
|
|
} else {
|
|
status = expandrow2(
|
|
&state->buffer[c->channo * 2],
|
|
&ptr[c->rleoffset],
|
|
c->rlelength,
|
|
im->bands,
|
|
im->xsize,
|
|
&ptr[c->bufsize-1]);
|
|
}
|
|
if (status == -1) {
|
|
state->errcode = IMAGING_CODEC_OVERRUN;
|
|
goto sgi_finish_decode;
|
|
} else if (status == 1) {
|
|
goto sgi_finish_decode;
|
|
}
|
|
|
|
}
|
|
|
|
/* store decompressed data in image */
|
|
state->shuffle((UINT8 *)im->image[state->y], state->buffer, im->xsize);
|
|
}
|
|
|
|
sgi_finish_decode:;
|
|
|
|
free(c->starttab);
|
|
free(c->lengthtab);
|
|
free(ptr);
|
|
if (err != 0) {
|
|
state->errcode = err;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|