mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-22 15:24:37 +03:00
290 lines
8.8 KiB
Python
290 lines
8.8 KiB
Python
from __future__ import annotations
|
|
|
|
import pytest
|
|
|
|
from PIL import Image, ImageMath, ImageMode
|
|
|
|
from .helper import convert_to_comparable, skip_unless_feature
|
|
|
|
codecs = dir(Image.core)
|
|
|
|
|
|
# There are several internal implementations
|
|
remarkable_factors = [
|
|
# special implementations
|
|
1,
|
|
2,
|
|
3,
|
|
4,
|
|
5,
|
|
6,
|
|
# 1xN implementation
|
|
(1, 2),
|
|
(1, 3),
|
|
(1, 4),
|
|
(1, 7),
|
|
# Nx1 implementation
|
|
(2, 1),
|
|
(3, 1),
|
|
(4, 1),
|
|
(7, 1),
|
|
# general implementation with different paths
|
|
(4, 6),
|
|
(5, 6),
|
|
(4, 7),
|
|
(5, 7),
|
|
(19, 17),
|
|
]
|
|
|
|
gradients_image = Image.open("Tests/images/radial_gradients.png")
|
|
gradients_image.load()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"size, expected",
|
|
(
|
|
(3, (4, 4)),
|
|
((3, 1), (4, 10)),
|
|
((1, 3), (10, 4)),
|
|
),
|
|
)
|
|
def test_args_factor(size: int | tuple[int, int], expected: tuple[int, int]) -> None:
|
|
im = Image.new("L", (10, 10))
|
|
assert expected == im.reduce(size).size
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"size, expected_error", ((0, ValueError), (2.0, TypeError), ((0, 10), ValueError))
|
|
)
|
|
def test_args_factor_error(
|
|
size: float | tuple[int, int], expected_error: type[Exception]
|
|
) -> None:
|
|
im = Image.new("L", (10, 10))
|
|
with pytest.raises(expected_error):
|
|
im.reduce(size) # type: ignore[arg-type]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"size, expected",
|
|
(
|
|
((0, 0, 10, 10), (5, 5)),
|
|
((5, 5, 6, 6), (1, 1)),
|
|
),
|
|
)
|
|
def test_args_box(size: tuple[int, int, int, int], expected: tuple[int, int]) -> None:
|
|
im = Image.new("L", (10, 10))
|
|
assert expected == im.reduce(2, size).size
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"size, expected_error",
|
|
(
|
|
("stri", TypeError),
|
|
((0, 0, 11, 10), ValueError),
|
|
((0, 0, 10, 11), ValueError),
|
|
((-1, 0, 10, 10), ValueError),
|
|
((0, -1, 10, 10), ValueError),
|
|
((0, 5, 10, 5), ValueError),
|
|
((5, 0, 5, 10), ValueError),
|
|
),
|
|
)
|
|
def test_args_box_error(
|
|
size: str | tuple[int, int, int, int], expected_error: type[Exception]
|
|
) -> None:
|
|
im = Image.new("L", (10, 10))
|
|
with pytest.raises(expected_error):
|
|
im.reduce(2, size).size # type: ignore[arg-type]
|
|
|
|
|
|
@pytest.mark.parametrize("mode", ("P", "1", "I;16"))
|
|
def test_unsupported_modes(mode: str) -> None:
|
|
im = Image.new("P", (10, 10))
|
|
with pytest.raises(ValueError):
|
|
im.reduce(3)
|
|
|
|
|
|
def get_image(mode: str) -> Image.Image:
|
|
mode_info = ImageMode.getmode(mode)
|
|
if mode_info.basetype == "L":
|
|
bands: list[Image.Image] = [gradients_image]
|
|
for _ in mode_info.bands[1:]:
|
|
# rotate previous image
|
|
band = bands[-1].transpose(Image.Transpose.ROTATE_90)
|
|
bands.append(band)
|
|
# Correct alpha channel by transforming completely transparent pixels.
|
|
# Low alpha values also emphasize error after alpha multiplication.
|
|
if mode.endswith("A"):
|
|
bands[-1] = bands[-1].point(lambda x: int(85 + x / 1.5))
|
|
im = Image.merge(mode, bands)
|
|
else:
|
|
assert len(mode_info.bands) == 1
|
|
im = gradients_image.convert(mode)
|
|
# change the height to make a not-square image
|
|
return im.crop((0, 0, im.width, im.height - 5))
|
|
|
|
|
|
def compare_reduce_with_box(im: Image.Image, factor: int | tuple[int, int]) -> None:
|
|
box = (11, 13, 146, 164)
|
|
reduced = im.reduce(factor, box=box)
|
|
reference = im.crop(box).reduce(factor)
|
|
assert reduced == reference
|
|
|
|
|
|
def compare_reduce_with_reference(
|
|
im: Image.Image,
|
|
factor: int | tuple[int, int],
|
|
average_diff: float = 0.4,
|
|
max_diff: int = 1,
|
|
) -> None:
|
|
"""Image.reduce() should look very similar to Image.resize(BOX).
|
|
|
|
A reference image is compiled from a large source area
|
|
and possible last column and last row.
|
|
+-----------+
|
|
|..........c|
|
|
|..........c|
|
|
|..........c|
|
|
|rrrrrrrrrrp|
|
|
+-----------+
|
|
"""
|
|
reduced = im.reduce(factor)
|
|
|
|
if not isinstance(factor, (list, tuple)):
|
|
factor = (factor, factor)
|
|
|
|
reference = Image.new(im.mode, reduced.size)
|
|
area_size = (im.size[0] // factor[0], im.size[1] // factor[1])
|
|
area_box = (0, 0, area_size[0] * factor[0], area_size[1] * factor[1])
|
|
area = im.resize(area_size, Image.Resampling.BOX, area_box)
|
|
reference.paste(area, (0, 0))
|
|
|
|
if area_size[0] < reduced.size[0]:
|
|
assert reduced.size[0] - area_size[0] == 1
|
|
last_column_box = (area_box[2], 0, im.size[0], area_box[3])
|
|
last_column = im.resize(
|
|
(1, area_size[1]), Image.Resampling.BOX, last_column_box
|
|
)
|
|
reference.paste(last_column, (area_size[0], 0))
|
|
|
|
if area_size[1] < reduced.size[1]:
|
|
assert reduced.size[1] - area_size[1] == 1
|
|
last_row_box = (0, area_box[3], area_box[2], im.size[1])
|
|
last_row = im.resize((area_size[0], 1), Image.Resampling.BOX, last_row_box)
|
|
reference.paste(last_row, (0, area_size[1]))
|
|
|
|
if area_size[0] < reduced.size[0] and area_size[1] < reduced.size[1]:
|
|
last_pixel_box = (area_box[2], area_box[3], im.size[0], im.size[1])
|
|
last_pixel = im.resize((1, 1), Image.Resampling.BOX, last_pixel_box)
|
|
reference.paste(last_pixel, area_size)
|
|
|
|
assert_compare_images(reduced, reference, average_diff, max_diff)
|
|
|
|
|
|
def assert_compare_images(
|
|
a: Image.Image, b: Image.Image, max_average_diff: float, max_diff: int = 255
|
|
) -> None:
|
|
assert a.mode == b.mode, f"got mode {repr(a.mode)}, expected {repr(b.mode)}"
|
|
assert a.size == b.size, f"got size {repr(a.size)}, expected {repr(b.size)}"
|
|
|
|
a, b = convert_to_comparable(a, b)
|
|
|
|
bands = ImageMode.getmode(a.mode).bands
|
|
for band, ach, bch in zip(bands, a.split(), b.split()):
|
|
ch_diff = ImageMath.lambda_eval(
|
|
lambda args: args["convert"](abs(args["a"] - args["b"]), "L"), a=ach, b=bch
|
|
)
|
|
ch_hist = ch_diff.histogram()
|
|
|
|
average_diff = sum(i * num for i, num in enumerate(ch_hist)) / (
|
|
a.size[0] * a.size[1]
|
|
)
|
|
msg = (
|
|
f"average pixel value difference {average_diff:.4f} > "
|
|
f"expected {max_average_diff:.4f} for '{band}' band"
|
|
)
|
|
assert max_average_diff >= average_diff, msg
|
|
|
|
last_diff = [i for i, num in enumerate(ch_hist) if num > 0][-1]
|
|
assert max_diff >= last_diff, (
|
|
f"max pixel value difference {last_diff} > expected {max_diff} "
|
|
f"for '{band}' band"
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_L(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("L")
|
|
compare_reduce_with_reference(im, factor)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_LA(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("LA")
|
|
compare_reduce_with_reference(im, factor, 0.8, 5)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_LA_opaque(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("LA")
|
|
# With opaque alpha, an error should be way smaller.
|
|
im.putalpha(Image.new("L", im.size, 255))
|
|
compare_reduce_with_reference(im, factor)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_La(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("La")
|
|
compare_reduce_with_reference(im, factor)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_RGB(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("RGB")
|
|
compare_reduce_with_reference(im, factor)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_RGBA(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("RGBA")
|
|
compare_reduce_with_reference(im, factor, 0.8, 5)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_RGBA_opaque(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("RGBA")
|
|
# With opaque alpha, an error should be way smaller.
|
|
im.putalpha(Image.new("L", im.size, 255))
|
|
compare_reduce_with_reference(im, factor)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_RGBa(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("RGBa")
|
|
compare_reduce_with_reference(im, factor)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_I(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("I")
|
|
compare_reduce_with_reference(im, factor)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
|
def test_mode_F(factor: int | tuple[int, int]) -> None:
|
|
im = get_image("F")
|
|
compare_reduce_with_reference(im, factor, 0, 0)
|
|
compare_reduce_with_box(im, factor)
|
|
|
|
|
|
@skip_unless_feature("jpg_2000")
|
|
def test_jpeg2k() -> None:
|
|
with Image.open("Tests/images/test-card-lossless.jp2") as im:
|
|
assert im.reduce(2).size == (320, 240)
|