mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 07:57:27 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			253 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| Tests for resize functionality.
 | |
| """
 | |
| from itertools import permutations
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from PIL import Image
 | |
| 
 | |
| from .helper import assert_image_equal, assert_image_similar, hopper
 | |
| 
 | |
| 
 | |
| class TestImagingCoreResize:
 | |
|     def resize(self, im, size, f):
 | |
|         # Image class independent version of resize.
 | |
|         im.load()
 | |
|         return im._new(im.im.resize(size, f))
 | |
| 
 | |
|     def test_nearest_mode(self):
 | |
|         for mode in [
 | |
|             "1",
 | |
|             "P",
 | |
|             "L",
 | |
|             "I",
 | |
|             "F",
 | |
|             "RGB",
 | |
|             "RGBA",
 | |
|             "CMYK",
 | |
|             "YCbCr",
 | |
|             "I;16",
 | |
|         ]:  # exotic mode
 | |
|             im = hopper(mode)
 | |
|             r = self.resize(im, (15, 12), Image.NEAREST)
 | |
|             assert r.mode == mode
 | |
|             assert r.size == (15, 12)
 | |
|             assert r.im.bands == im.im.bands
 | |
| 
 | |
|     def test_convolution_modes(self):
 | |
|         with pytest.raises(ValueError):
 | |
|             self.resize(hopper("1"), (15, 12), Image.BILINEAR)
 | |
|         with pytest.raises(ValueError):
 | |
|             self.resize(hopper("P"), (15, 12), Image.BILINEAR)
 | |
|         with pytest.raises(ValueError):
 | |
|             self.resize(hopper("I;16"), (15, 12), Image.BILINEAR)
 | |
|         for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]:
 | |
|             im = hopper(mode)
 | |
|             r = self.resize(im, (15, 12), Image.BILINEAR)
 | |
|             assert r.mode == mode
 | |
|             assert r.size == (15, 12)
 | |
|             assert r.im.bands == im.im.bands
 | |
| 
 | |
|     def test_reduce_filters(self):
 | |
|         for f in [
 | |
|             Image.NEAREST,
 | |
|             Image.BOX,
 | |
|             Image.BILINEAR,
 | |
|             Image.HAMMING,
 | |
|             Image.BICUBIC,
 | |
|             Image.LANCZOS,
 | |
|         ]:
 | |
|             r = self.resize(hopper("RGB"), (15, 12), f)
 | |
|             assert r.mode == "RGB"
 | |
|             assert r.size == (15, 12)
 | |
| 
 | |
|     def test_enlarge_filters(self):
 | |
|         for f in [
 | |
|             Image.NEAREST,
 | |
|             Image.BOX,
 | |
|             Image.BILINEAR,
 | |
|             Image.HAMMING,
 | |
|             Image.BICUBIC,
 | |
|             Image.LANCZOS,
 | |
|         ]:
 | |
|             r = self.resize(hopper("RGB"), (212, 195), f)
 | |
|             assert r.mode == "RGB"
 | |
|             assert r.size == (212, 195)
 | |
| 
 | |
|     def test_endianness(self):
 | |
|         # Make an image with one colored pixel, in one channel.
 | |
|         # When resized, that channel should be the same as a GS image.
 | |
|         # Other channels should be unaffected.
 | |
|         # The R and A channels should not swap, which is indicative of
 | |
|         # an endianness issues.
 | |
| 
 | |
|         samples = {
 | |
|             "blank": Image.new("L", (2, 2), 0),
 | |
|             "filled": Image.new("L", (2, 2), 255),
 | |
|             "dirty": Image.new("L", (2, 2), 0),
 | |
|         }
 | |
|         samples["dirty"].putpixel((1, 1), 128)
 | |
| 
 | |
|         for f in [
 | |
|             Image.NEAREST,
 | |
|             Image.BOX,
 | |
|             Image.BILINEAR,
 | |
|             Image.HAMMING,
 | |
|             Image.BICUBIC,
 | |
|             Image.LANCZOS,
 | |
|         ]:
 | |
|             # samples resized with current filter
 | |
|             references = {
 | |
|                 name: self.resize(ch, (4, 4), f) for name, ch in samples.items()
 | |
|             }
 | |
| 
 | |
|             for mode, channels_set in [
 | |
|                 ("RGB", ("blank", "filled", "dirty")),
 | |
|                 ("RGBA", ("blank", "blank", "filled", "dirty")),
 | |
|                 ("LA", ("filled", "dirty")),
 | |
|             ]:
 | |
|                 for channels in set(permutations(channels_set)):
 | |
|                     # compile image from different channels permutations
 | |
|                     im = Image.merge(mode, [samples[ch] for ch in channels])
 | |
|                     resized = self.resize(im, (4, 4), f)
 | |
| 
 | |
|                     for i, ch in enumerate(resized.split()):
 | |
|                         # check what resized channel in image is the same
 | |
|                         # as separately resized channel
 | |
|                         assert_image_equal(ch, references[channels[i]])
 | |
| 
 | |
|     def test_enlarge_zero(self):
 | |
|         for f in [
 | |
|             Image.NEAREST,
 | |
|             Image.BOX,
 | |
|             Image.BILINEAR,
 | |
|             Image.HAMMING,
 | |
|             Image.BICUBIC,
 | |
|             Image.LANCZOS,
 | |
|         ]:
 | |
|             r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f)
 | |
|             assert r.mode == "RGB"
 | |
|             assert r.size == (212, 195)
 | |
|             assert r.getdata()[0] == (0, 0, 0)
 | |
| 
 | |
|     def test_unknown_filter(self):
 | |
|         with pytest.raises(ValueError):
 | |
|             self.resize(hopper(), (10, 10), 9)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def gradients_image():
 | |
|     im = Image.open("Tests/images/radial_gradients.png")
 | |
|     im.load()
 | |
|     try:
 | |
|         yield im
 | |
|     finally:
 | |
|         im.close()
 | |
| 
 | |
| 
 | |
| class TestReducingGapResize:
 | |
|     def test_reducing_gap_values(self, gradients_image):
 | |
|         ref = gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=None)
 | |
|         im = gradients_image.resize((52, 34), Image.BICUBIC)
 | |
|         assert_image_equal(ref, im)
 | |
| 
 | |
|         with pytest.raises(ValueError):
 | |
|             gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0)
 | |
| 
 | |
|         with pytest.raises(ValueError):
 | |
|             gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0.99)
 | |
| 
 | |
|     def test_reducing_gap_1(self, gradients_image):
 | |
|         for box, epsilon in [
 | |
|             (None, 4),
 | |
|             ((1.1, 2.2, 510.8, 510.9), 4),
 | |
|             ((3, 10, 410, 256), 10),
 | |
|         ]:
 | |
|             ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
 | |
|             im = gradients_image.resize(
 | |
|                 (52, 34), Image.BICUBIC, box=box, reducing_gap=1.0
 | |
|             )
 | |
| 
 | |
|             with pytest.raises(AssertionError):
 | |
|                 assert_image_equal(ref, im)
 | |
| 
 | |
|             assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
|     def test_reducing_gap_2(self, gradients_image):
 | |
|         for box, epsilon in [
 | |
|             (None, 1.5),
 | |
|             ((1.1, 2.2, 510.8, 510.9), 1.5),
 | |
|             ((3, 10, 410, 256), 1),
 | |
|         ]:
 | |
|             ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
 | |
|             im = gradients_image.resize(
 | |
|                 (52, 34), Image.BICUBIC, box=box, reducing_gap=2.0
 | |
|             )
 | |
| 
 | |
|             with pytest.raises(AssertionError):
 | |
|                 assert_image_equal(ref, im)
 | |
| 
 | |
|             assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
|     def test_reducing_gap_3(self, gradients_image):
 | |
|         for box, epsilon in [
 | |
|             (None, 1),
 | |
|             ((1.1, 2.2, 510.8, 510.9), 1),
 | |
|             ((3, 10, 410, 256), 0.5),
 | |
|         ]:
 | |
|             ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
 | |
|             im = gradients_image.resize(
 | |
|                 (52, 34), Image.BICUBIC, box=box, reducing_gap=3.0
 | |
|             )
 | |
| 
 | |
|             with pytest.raises(AssertionError):
 | |
|                 assert_image_equal(ref, im)
 | |
| 
 | |
|             assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
|     def test_reducing_gap_8(self, gradients_image):
 | |
|         for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]:
 | |
|             ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
 | |
|             im = gradients_image.resize(
 | |
|                 (52, 34), Image.BICUBIC, box=box, reducing_gap=8.0
 | |
|             )
 | |
| 
 | |
|             assert_image_equal(ref, im)
 | |
| 
 | |
|     def test_box_filter(self, gradients_image):
 | |
|         for box, epsilon in [
 | |
|             ((0, 0, 512, 512), 5.5),
 | |
|             ((0.9, 1.7, 128, 128), 9.5),
 | |
|         ]:
 | |
|             ref = gradients_image.resize((52, 34), Image.BOX, box=box)
 | |
|             im = gradients_image.resize((52, 34), Image.BOX, box=box, reducing_gap=1.0)
 | |
| 
 | |
|             assert_image_similar(ref, im, epsilon)
 | |
| 
 | |
| 
 | |
| class TestImageResize:
 | |
|     def test_resize(self):
 | |
|         def resize(mode, size):
 | |
|             out = hopper(mode).resize(size)
 | |
|             assert out.mode == mode
 | |
|             assert out.size == size
 | |
| 
 | |
|         for mode in "1", "P", "L", "RGB", "I", "F":
 | |
|             resize(mode, (112, 103))
 | |
|             resize(mode, (188, 214))
 | |
| 
 | |
|         # Test unknown resampling filter
 | |
|         with hopper() as im:
 | |
|             with pytest.raises(ValueError):
 | |
|                 im.resize((10, 10), "unknown")
 | |
| 
 | |
|     def test_default_filter(self):
 | |
|         for mode in "L", "RGB", "I", "F":
 | |
|             im = hopper(mode)
 | |
|             assert im.resize((20, 20), Image.BICUBIC) == im.resize((20, 20))
 | |
| 
 | |
|         for mode in "1", "P":
 | |
|             im = hopper(mode)
 | |
|             assert im.resize((20, 20), Image.NEAREST) == im.resize((20, 20))
 |