mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-11-04 09:57:43 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			121 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			121 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from tester import *
 | 
						|
 | 
						|
from PIL import Image
 | 
						|
import struct
 | 
						|
 | 
						|
try:
 | 
						|
    import site
 | 
						|
    import numpy
 | 
						|
except ImportError:
 | 
						|
    skip()
 | 
						|
 | 
						|
def test_numpy_to_image():
 | 
						|
 | 
						|
    def to_image(dtype, bands=1, bool=0):
 | 
						|
        if bands == 1:
 | 
						|
            if bool:
 | 
						|
                data = [0, 1] * 50
 | 
						|
            else:
 | 
						|
                data = list(range(100))
 | 
						|
            a = numpy.array(data, dtype=dtype)
 | 
						|
            a.shape = 10, 10
 | 
						|
            i = Image.fromarray(a)
 | 
						|
            if list(i.getdata()) != data:
 | 
						|
                print("data mismatch for", dtype)
 | 
						|
        else:
 | 
						|
            data = list(range(100))
 | 
						|
            a = numpy.array([[x]*bands for x in data], dtype=dtype)
 | 
						|
            a.shape = 10, 10, bands
 | 
						|
            i = Image.fromarray(a)
 | 
						|
            if list(i.split()[0].getdata()) != list(range(100)):
 | 
						|
                print("data mismatch for", dtype)
 | 
						|
        # print dtype, list(i.getdata())
 | 
						|
        return i
 | 
						|
 | 
						|
    # assert_image(to_image(numpy.bool, bool=1), "1", (10, 10))
 | 
						|
    # assert_image(to_image(numpy.bool8, bool=1), "1", (10, 10))
 | 
						|
 | 
						|
    assert_exception(TypeError, lambda: to_image(numpy.uint))
 | 
						|
    assert_image(to_image(numpy.uint8), "L", (10, 10))
 | 
						|
    assert_exception(TypeError, lambda: to_image(numpy.uint16))
 | 
						|
    assert_exception(TypeError, lambda: to_image(numpy.uint32))
 | 
						|
    assert_exception(TypeError, lambda: to_image(numpy.uint64))
 | 
						|
 | 
						|
    assert_image(to_image(numpy.int8), "I", (10, 10))
 | 
						|
    if Image._ENDIAN == '<': # Little endian
 | 
						|
        assert_image(to_image(numpy.int16), "I;16", (10, 10))
 | 
						|
    else:
 | 
						|
        assert_image(to_image(numpy.int16), "I;16B", (10, 10))
 | 
						|
    assert_image(to_image(numpy.int32), "I", (10, 10))
 | 
						|
    assert_exception(TypeError, lambda: to_image(numpy.int64))
 | 
						|
 | 
						|
    assert_image(to_image(numpy.float), "F", (10, 10))
 | 
						|
    assert_image(to_image(numpy.float32), "F", (10, 10))
 | 
						|
    assert_image(to_image(numpy.float64), "F", (10, 10))
 | 
						|
 | 
						|
    assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10))
 | 
						|
    assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10))
 | 
						|
 | 
						|
 | 
						|
# based on an erring example at http://is.gd/6F0esS  (which resolves to)
 | 
						|
# http://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function
 | 
						|
def test_3d_array():
 | 
						|
    a = numpy.ones((10, 10, 10), dtype=numpy.uint8)
 | 
						|
    assert_image(Image.fromarray(a[1, :, :]), "L", (10, 10))
 | 
						|
    assert_image(Image.fromarray(a[:, 1, :]), "L", (10, 10))
 | 
						|
    assert_image(Image.fromarray(a[:, :, 1]), "L", (10, 10))
 | 
						|
 | 
						|
 | 
						|
def _test_img_equals_nparray(img, np):
 | 
						|
    assert_equal(img.size, np.shape[0:2])
 | 
						|
    px = img.load()
 | 
						|
    for x in range(0, img.size[0], int(img.size[0]/10)):
 | 
						|
        for y in range(0, img.size[1], int(img.size[1]/10)):
 | 
						|
            assert_deep_equal(px[x,y], np[y,x])
 | 
						|
 | 
						|
 | 
						|
def test_16bit():
 | 
						|
    img = Image.open('Tests/images/16bit.cropped.tif')
 | 
						|
    np_img = numpy.array(img)
 | 
						|
    _test_img_equals_nparray(img, np_img)
 | 
						|
    assert_equal(np_img.dtype, numpy.dtype('<u2'))
 | 
						|
 | 
						|
def test_to_array():
 | 
						|
 | 
						|
    def _to_array(mode, dtype):
 | 
						|
        img = lena(mode)            
 | 
						|
        np_img = numpy.array(img)
 | 
						|
        _test_img_equals_nparray(img, np_img)
 | 
						|
        assert_equal(np_img.dtype, numpy.dtype(dtype))
 | 
						|
    
 | 
						|
     
 | 
						|
    modes = [("L", 'uint8'),
 | 
						|
             ("I", 'int32'),
 | 
						|
             ("F", 'float32'),
 | 
						|
             ("RGB", 'uint8'),
 | 
						|
             ("RGBA", 'uint8'),
 | 
						|
             ("RGBX", 'uint8'),
 | 
						|
             ("CMYK", 'uint8'),
 | 
						|
             ("YCbCr", 'uint8'),
 | 
						|
             ("I;16", '<u2'),
 | 
						|
             ("I;16B", '>u2'),
 | 
						|
             ("I;16L", '<u2'),
 | 
						|
             ]
 | 
						|
    
 | 
						|
 | 
						|
    for mode in modes:
 | 
						|
        assert_no_exception(lambda: _to_array(*mode))
 | 
						|
 | 
						|
 | 
						|
def test_point_lut():
 | 
						|
    # see https://github.com/python-imaging/Pillow/issues/439
 | 
						|
    
 | 
						|
    data = list(range(256))*3
 | 
						|
    lut = numpy.array(data, dtype='uint8')
 | 
						|
 | 
						|
    im = lena()
 | 
						|
 | 
						|
    assert_no_exception(lambda: im.point(lut))
 | 
						|
    
 | 
						|
 |