mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-26 01:04:29 +03:00
948 lines
24 KiB
C
948 lines
24 KiB
C
#include "Imaging.h"
|
|
|
|
/* For large images rotation is an inefficient operation in terms of CPU cache.
|
|
One row in the source image affects each column in destination.
|
|
Rotating in chunks that fit in the cache can speed up rotation
|
|
8x on a modern CPU. A chunk size of 128 requires only 65k and is large enough
|
|
that the overhead from the extra loops are not apparent. */
|
|
#define ROTATE_CHUNK 128
|
|
|
|
#define COORD(v) ((v) < 0.0 ? -1 : ((int)(v)))
|
|
#define FLOOR(v) ((v) < 0.0 ? ((int)floor(v)) : ((int)(v)))
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Transpose operations */
|
|
|
|
Imaging
|
|
ImagingFlipLeftRight(Imaging imOut, Imaging imIn)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int x, y, xr;
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
|
|
return (Imaging) ImagingError_Mismatch();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
#define FLIP_HORIZ(image)\
|
|
for (y = 0; y < imIn->ysize; y++) {\
|
|
xr = imIn->xsize-1;\
|
|
for (x = 0; x < imIn->xsize; x++, xr--)\
|
|
imOut->image[y][x] = imIn->image[y][xr];\
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (imIn->image8)
|
|
FLIP_HORIZ(image8)
|
|
else
|
|
FLIP_HORIZ(image32)
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef FLIP_HORIZ
|
|
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingFlipTopBottom(Imaging imOut, Imaging imIn)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int y, yr;
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
|
|
return (Imaging) ImagingError_Mismatch();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
yr = imIn->ysize - 1;
|
|
for (y = 0; y < imIn->ysize; y++, yr--)
|
|
memcpy(imOut->image[yr], imIn->image[y], imIn->linesize);
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingRotate90(Imaging imOut, Imaging imIn)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int x, y, xx, yy, xr, xxsize, yysize;
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
|
|
return (Imaging) ImagingError_Mismatch();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
#define ROTATE_90(image) \
|
|
for (y = 0; y < imIn->ysize; y += ROTATE_CHUNK) { \
|
|
for (x = 0; x < imIn->xsize; x += ROTATE_CHUNK) { \
|
|
yysize = y + ROTATE_CHUNK < imIn->ysize ? y + ROTATE_CHUNK : imIn->ysize; \
|
|
xxsize = x + ROTATE_CHUNK < imIn->xsize ? x + ROTATE_CHUNK : imIn->xsize; \
|
|
for (yy = y; yy < yysize; yy++) { \
|
|
xr = imIn->xsize - 1 - x; \
|
|
for (xx = x; xx < xxsize; xx++, xr--) { \
|
|
imOut->image[xr][yy] = imIn->image[yy][xx]; \
|
|
} \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (imIn->image8)
|
|
ROTATE_90(image8)
|
|
else
|
|
ROTATE_90(image32)
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef ROTATE_90
|
|
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingTranspose(Imaging imOut, Imaging imIn)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int x, y, xx, yy, xxsize, yysize;
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
|
|
return (Imaging) ImagingError_Mismatch();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
#define TRANSPOSE(image) \
|
|
for (y = 0; y < imIn->ysize; y += ROTATE_CHUNK) { \
|
|
for (x = 0; x < imIn->xsize; x += ROTATE_CHUNK) { \
|
|
yysize = y + ROTATE_CHUNK < imIn->ysize ? y + ROTATE_CHUNK : imIn->ysize; \
|
|
xxsize = x + ROTATE_CHUNK < imIn->xsize ? x + ROTATE_CHUNK : imIn->xsize; \
|
|
for (yy = y; yy < yysize; yy++) { \
|
|
for (xx = x; xx < xxsize; xx++) { \
|
|
imOut->image[xx][yy] = imIn->image[yy][xx]; \
|
|
} \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (imIn->image8)
|
|
TRANSPOSE(image8)
|
|
else
|
|
TRANSPOSE(image32)
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef TRANSPOSE
|
|
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingRotate180(Imaging imOut, Imaging imIn)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int x, y, xr, yr;
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
|
|
return (Imaging) ImagingError_Mismatch();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
#define ROTATE_180(image)\
|
|
for (y = 0; y < imIn->ysize; y++, yr--) {\
|
|
xr = imIn->xsize-1;\
|
|
for (x = 0; x < imIn->xsize; x++, xr--)\
|
|
imOut->image[y][x] = imIn->image[yr][xr];\
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
yr = imIn->ysize-1;
|
|
if (imIn->image8)
|
|
ROTATE_180(image8)
|
|
else
|
|
ROTATE_180(image32)
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef ROTATE_180
|
|
|
|
return imOut;
|
|
}
|
|
|
|
|
|
Imaging
|
|
ImagingRotate270(Imaging imOut, Imaging imIn)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
int x, y, xx, yy, yr, xxsize, yysize;
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
|
|
return (Imaging) ImagingError_Mismatch();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
#define ROTATE_270(image) \
|
|
for (y = 0; y < imIn->ysize; y += ROTATE_CHUNK) { \
|
|
for (x = 0; x < imIn->xsize; x += ROTATE_CHUNK) { \
|
|
yysize = y + ROTATE_CHUNK < imIn->ysize ? y + ROTATE_CHUNK : imIn->ysize; \
|
|
xxsize = x + ROTATE_CHUNK < imIn->xsize ? x + ROTATE_CHUNK : imIn->xsize; \
|
|
yr = imIn->ysize - 1 - y; \
|
|
for (yy = y; yy < yysize; yy++, yr--) { \
|
|
for (xx = x; xx < xxsize; xx++) { \
|
|
imOut->image[xx][yr] = imIn->image[yy][xx]; \
|
|
} \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (imIn->image8)
|
|
ROTATE_270(image8)
|
|
else
|
|
ROTATE_270(image32)
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef ROTATE_270
|
|
|
|
return imOut;
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Transforms */
|
|
|
|
/* transform primitives (ImagingTransformMap) */
|
|
|
|
static int
|
|
affine_transform(double* xout, double* yout, int x, int y, void* data)
|
|
{
|
|
/* full moon tonight. your compiler will generate bogus code
|
|
for simple expressions, unless you reorganize the code, or
|
|
install Service Pack 3 */
|
|
|
|
double* a = (double*) data;
|
|
double a0 = a[0]; double a1 = a[1]; double a2 = a[2];
|
|
double a3 = a[3]; double a4 = a[4]; double a5 = a[5];
|
|
|
|
double xin = x + 0.5;
|
|
double yin = y + 0.5;
|
|
|
|
xout[0] = a0*xin + a1*yin + a2;
|
|
yout[0] = a3*xin + a4*yin + a5;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
perspective_transform(double* xout, double* yout, int x, int y, void* data)
|
|
{
|
|
double* a = (double*) data;
|
|
double a0 = a[0]; double a1 = a[1]; double a2 = a[2];
|
|
double a3 = a[3]; double a4 = a[4]; double a5 = a[5];
|
|
double a6 = a[6]; double a7 = a[7];
|
|
|
|
double xin = x + 0.5;
|
|
double yin = y + 0.5;
|
|
|
|
xout[0] = (a0*xin + a1*yin + a2) / (a6*xin + a7*yin + 1);
|
|
yout[0] = (a3*xin + a4*yin + a5) / (a6*xin + a7*yin + 1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
quad_transform(double* xout, double* yout, int x, int y, void* data)
|
|
{
|
|
/* quad warp: map quadrilateral to rectangle */
|
|
|
|
double* a = (double*) data;
|
|
double a0 = a[0]; double a1 = a[1]; double a2 = a[2]; double a3 = a[3];
|
|
double a4 = a[4]; double a5 = a[5]; double a6 = a[6]; double a7 = a[7];
|
|
|
|
double xin = x + 0.5;
|
|
double yin = y + 0.5;
|
|
|
|
xout[0] = a0 + a1*xin + a2*yin + a3*xin*yin;
|
|
yout[0] = a4 + a5*xin + a6*yin + a7*xin*yin;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* transform filters (ImagingTransformFilter) */
|
|
|
|
static int
|
|
nearest_filter8(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
int x = COORD(xin);
|
|
int y = COORD(yin);
|
|
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
|
|
return 0;
|
|
((UINT8*)out)[0] = im->image8[y][x];
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
nearest_filter16(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
int x = COORD(xin);
|
|
int y = COORD(yin);
|
|
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
|
|
return 0;
|
|
((INT16*)out)[0] = ((INT16*)(im->image8[y]))[x];
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
nearest_filter32(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
int x = COORD(xin);
|
|
int y = COORD(yin);
|
|
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
|
|
return 0;
|
|
((INT32*)out)[0] = im->image32[y][x];
|
|
return 1;
|
|
}
|
|
|
|
#define XCLIP(im, x) ( ((x) < 0) ? 0 : ((x) < im->xsize) ? (x) : im->xsize-1 )
|
|
#define YCLIP(im, y) ( ((y) < 0) ? 0 : ((y) < im->ysize) ? (y) : im->ysize-1 )
|
|
|
|
#define BILINEAR(v, a, b, d)\
|
|
(v = (a) + ( (b) - (a) ) * (d))
|
|
|
|
#define BILINEAR_HEAD(type)\
|
|
int x, y;\
|
|
int x0, x1;\
|
|
double v1, v2;\
|
|
double dx, dy;\
|
|
type* in;\
|
|
if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize)\
|
|
return 0;\
|
|
xin -= 0.5;\
|
|
yin -= 0.5;\
|
|
x = FLOOR(xin);\
|
|
y = FLOOR(yin);\
|
|
dx = xin - x;\
|
|
dy = yin - y;
|
|
|
|
#define BILINEAR_BODY(type, image, step, offset) {\
|
|
in = (type*) ((image)[YCLIP(im, y)] + offset);\
|
|
x0 = XCLIP(im, x+0)*step;\
|
|
x1 = XCLIP(im, x+1)*step;\
|
|
BILINEAR(v1, in[x0], in[x1], dx);\
|
|
if (y+1 >= 0 && y+1 < im->ysize) {\
|
|
in = (type*) ((image)[y+1] + offset);\
|
|
BILINEAR(v2, in[x0], in[x1], dx);\
|
|
} else\
|
|
v2 = v1;\
|
|
BILINEAR(v1, v1, v2, dy);\
|
|
}
|
|
|
|
static int
|
|
bilinear_filter8(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BILINEAR_HEAD(UINT8);
|
|
BILINEAR_BODY(UINT8, im->image8, 1, 0);
|
|
((UINT8*)out)[0] = (UINT8) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bilinear_filter32I(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BILINEAR_HEAD(INT32);
|
|
BILINEAR_BODY(INT32, im->image32, 1, 0);
|
|
((INT32*)out)[0] = (INT32) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bilinear_filter32F(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BILINEAR_HEAD(FLOAT32);
|
|
BILINEAR_BODY(FLOAT32, im->image32, 1, 0);
|
|
((FLOAT32*)out)[0] = (FLOAT32) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bilinear_filter32LA(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BILINEAR_HEAD(UINT8);
|
|
BILINEAR_BODY(UINT8, im->image, 4, 0);
|
|
((UINT8*)out)[0] = (UINT8) v1;
|
|
((UINT8*)out)[1] = (UINT8) v1;
|
|
((UINT8*)out)[2] = (UINT8) v1;
|
|
BILINEAR_BODY(UINT8, im->image, 4, 3);
|
|
((UINT8*)out)[3] = (UINT8) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bilinear_filter32RGB(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
int b;
|
|
BILINEAR_HEAD(UINT8);
|
|
for (b = 0; b < im->bands; b++) {
|
|
BILINEAR_BODY(UINT8, im->image, 4, b);
|
|
((UINT8*)out)[b] = (UINT8) v1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#undef BILINEAR
|
|
#undef BILINEAR_HEAD
|
|
#undef BILINEAR_BODY
|
|
|
|
#define BICUBIC(v, v1, v2, v3, v4, d) {\
|
|
double p1 = v2;\
|
|
double p2 = -v1 + v3;\
|
|
double p3 = 2*(v1 - v2) + v3 - v4;\
|
|
double p4 = -v1 + v2 - v3 + v4;\
|
|
v = p1 + (d)*(p2 + (d)*(p3 + (d)*p4));\
|
|
}
|
|
|
|
#define BICUBIC_HEAD(type)\
|
|
int x = FLOOR(xin);\
|
|
int y = FLOOR(yin);\
|
|
int x0, x1, x2, x3;\
|
|
double v1, v2, v3, v4;\
|
|
double dx, dy;\
|
|
type* in;\
|
|
if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize)\
|
|
return 0;\
|
|
xin -= 0.5;\
|
|
yin -= 0.5;\
|
|
x = FLOOR(xin);\
|
|
y = FLOOR(yin);\
|
|
dx = xin - x;\
|
|
dy = yin - y;\
|
|
x--; y--;
|
|
|
|
#define BICUBIC_BODY(type, image, step, offset) {\
|
|
in = (type*) ((image)[YCLIP(im, y)] + offset);\
|
|
x0 = XCLIP(im, x+0)*step;\
|
|
x1 = XCLIP(im, x+1)*step;\
|
|
x2 = XCLIP(im, x+2)*step;\
|
|
x3 = XCLIP(im, x+3)*step;\
|
|
BICUBIC(v1, in[x0], in[x1], in[x2], in[x3], dx);\
|
|
if (y+1 >= 0 && y+1 < im->ysize) {\
|
|
in = (type*) ((image)[y+1] + offset);\
|
|
BICUBIC(v2, in[x0], in[x1], in[x2], in[x3], dx);\
|
|
} else\
|
|
v2 = v1;\
|
|
if (y+2 >= 0 && y+2 < im->ysize) {\
|
|
in = (type*) ((image)[y+2] + offset);\
|
|
BICUBIC(v3, in[x0], in[x1], in[x2], in[x3], dx);\
|
|
} else\
|
|
v3 = v2;\
|
|
if (y+3 >= 0 && y+3 < im->ysize) {\
|
|
in = (type*) ((image)[y+3] + offset);\
|
|
BICUBIC(v4, in[x0], in[x1], in[x2], in[x3], dx);\
|
|
} else\
|
|
v4 = v3;\
|
|
BICUBIC(v1, v1, v2, v3, v4, dy);\
|
|
}
|
|
|
|
|
|
static int
|
|
bicubic_filter8(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BICUBIC_HEAD(UINT8);
|
|
BICUBIC_BODY(UINT8, im->image8, 1, 0);
|
|
if (v1 <= 0.0)
|
|
((UINT8*)out)[0] = 0;
|
|
else if (v1 >= 255.0)
|
|
((UINT8*)out)[0] = 255;
|
|
else
|
|
((UINT8*)out)[0] = (UINT8) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bicubic_filter32I(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BICUBIC_HEAD(INT32);
|
|
BICUBIC_BODY(INT32, im->image32, 1, 0);
|
|
((INT32*)out)[0] = (INT32) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bicubic_filter32F(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BICUBIC_HEAD(FLOAT32);
|
|
BICUBIC_BODY(FLOAT32, im->image32, 1, 0);
|
|
((FLOAT32*)out)[0] = (FLOAT32) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bicubic_filter32LA(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
BICUBIC_HEAD(UINT8);
|
|
BICUBIC_BODY(UINT8, im->image, 4, 0);
|
|
if (v1 <= 0.0) {
|
|
((UINT8*)out)[0] = 0;
|
|
((UINT8*)out)[1] = 0;
|
|
((UINT8*)out)[2] = 0;
|
|
} else if (v1 >= 255.0) {
|
|
((UINT8*)out)[0] = 255;
|
|
((UINT8*)out)[1] = 255;
|
|
((UINT8*)out)[2] = 255;
|
|
} else {
|
|
((UINT8*)out)[0] = (UINT8) v1;
|
|
((UINT8*)out)[1] = (UINT8) v1;
|
|
((UINT8*)out)[2] = (UINT8) v1;
|
|
}
|
|
BICUBIC_BODY(UINT8, im->image, 4, 3);
|
|
if (v1 <= 0.0)
|
|
((UINT8*)out)[3] = 0;
|
|
else if (v1 >= 255.0)
|
|
((UINT8*)out)[3] = 255;
|
|
else
|
|
((UINT8*)out)[3] = (UINT8) v1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bicubic_filter32RGB(void* out, Imaging im, double xin, double yin)
|
|
{
|
|
int b;
|
|
BICUBIC_HEAD(UINT8);
|
|
for (b = 0; b < im->bands; b++) {
|
|
BICUBIC_BODY(UINT8, im->image, 4, b);
|
|
if (v1 <= 0.0)
|
|
((UINT8*)out)[b] = 0;
|
|
else if (v1 >= 255.0)
|
|
((UINT8*)out)[b] = 255;
|
|
else
|
|
((UINT8*)out)[b] = (UINT8) v1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#undef BICUBIC
|
|
#undef BICUBIC_HEAD
|
|
#undef BICUBIC_BODY
|
|
|
|
static ImagingTransformFilter
|
|
getfilter(Imaging im, int filterid)
|
|
{
|
|
switch (filterid) {
|
|
case IMAGING_TRANSFORM_NEAREST:
|
|
if (im->image8)
|
|
switch (im->type) {
|
|
case IMAGING_TYPE_UINT8:
|
|
return nearest_filter8;
|
|
case IMAGING_TYPE_SPECIAL:
|
|
switch (im->pixelsize) {
|
|
case 1:
|
|
return nearest_filter8;
|
|
case 2:
|
|
return nearest_filter16;
|
|
case 4:
|
|
return nearest_filter32;
|
|
}
|
|
}
|
|
else
|
|
return nearest_filter32;
|
|
break;
|
|
case IMAGING_TRANSFORM_BILINEAR:
|
|
if (im->image8)
|
|
return bilinear_filter8;
|
|
else if (im->image32) {
|
|
switch (im->type) {
|
|
case IMAGING_TYPE_UINT8:
|
|
if (im->bands == 2)
|
|
return bilinear_filter32LA;
|
|
else
|
|
return bilinear_filter32RGB;
|
|
case IMAGING_TYPE_INT32:
|
|
return bilinear_filter32I;
|
|
case IMAGING_TYPE_FLOAT32:
|
|
return bilinear_filter32F;
|
|
}
|
|
}
|
|
break;
|
|
case IMAGING_TRANSFORM_BICUBIC:
|
|
if (im->image8)
|
|
return bicubic_filter8;
|
|
else if (im->image32) {
|
|
switch (im->type) {
|
|
case IMAGING_TYPE_UINT8:
|
|
if (im->bands == 2)
|
|
return bicubic_filter32LA;
|
|
else
|
|
return bicubic_filter32RGB;
|
|
case IMAGING_TYPE_INT32:
|
|
return bicubic_filter32I;
|
|
case IMAGING_TYPE_FLOAT32:
|
|
return bicubic_filter32F;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
/* no such filter */
|
|
return NULL;
|
|
}
|
|
|
|
/* transformation engines */
|
|
|
|
Imaging
|
|
ImagingGenericTransform(
|
|
Imaging imOut, Imaging imIn, int x0, int y0, int x1, int y1,
|
|
ImagingTransformMap transform, void* transform_data,
|
|
int filterid, int fill)
|
|
{
|
|
/* slow generic transformation. use ImagingTransformAffine or
|
|
ImagingScaleAffine where possible. */
|
|
|
|
ImagingSectionCookie cookie;
|
|
int x, y;
|
|
char *out;
|
|
double xx, yy;
|
|
|
|
ImagingTransformFilter filter = getfilter(imIn, filterid);
|
|
if (!filter)
|
|
return (Imaging) ImagingError_ValueError("bad filter number");
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (x0 < 0)
|
|
x0 = 0;
|
|
if (y0 < 0)
|
|
y0 = 0;
|
|
if (x1 > imOut->xsize)
|
|
x1 = imOut->xsize;
|
|
if (y1 > imOut->ysize)
|
|
y1 = imOut->ysize;
|
|
|
|
for (y = y0; y < y1; y++) {
|
|
out = imOut->image[y] + x0*imOut->pixelsize;
|
|
for (x = x0; x < x1; x++) {
|
|
if ( ! transform(&xx, &yy, x-x0, y-y0, transform_data) ||
|
|
! filter(out, imIn, xx, yy)) {
|
|
if (fill)
|
|
memset(out, 0, imOut->pixelsize);
|
|
}
|
|
out += imOut->pixelsize;
|
|
}
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
return imOut;
|
|
}
|
|
|
|
static Imaging
|
|
ImagingScaleAffine(Imaging imOut, Imaging imIn,
|
|
int x0, int y0, int x1, int y1,
|
|
double a[6], int fill)
|
|
{
|
|
/* scale, nearest neighbour resampling */
|
|
|
|
ImagingSectionCookie cookie;
|
|
int x, y;
|
|
int xin;
|
|
double xo, yo;
|
|
int xmin, xmax;
|
|
int *xintab;
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
if (x0 < 0)
|
|
x0 = 0;
|
|
if (y0 < 0)
|
|
y0 = 0;
|
|
if (x1 > imOut->xsize)
|
|
x1 = imOut->xsize;
|
|
if (y1 > imOut->ysize)
|
|
y1 = imOut->ysize;
|
|
|
|
/* malloc check ok, uses calloc for overflow */
|
|
xintab = (int*) calloc(imOut->xsize, sizeof(int));
|
|
if (!xintab) {
|
|
ImagingDelete(imOut);
|
|
return (Imaging) ImagingError_MemoryError();
|
|
}
|
|
|
|
xo = a[2] + a[0] * 0.5;
|
|
yo = a[5] + a[4] * 0.5;
|
|
|
|
xmin = x1;
|
|
xmax = x0;
|
|
|
|
/* Pretabulate horizontal pixel positions */
|
|
for (x = x0; x < x1; x++) {
|
|
xin = COORD(xo);
|
|
if (xin >= 0 && xin < (int) imIn->xsize) {
|
|
xmax = x+1;
|
|
if (x < xmin)
|
|
xmin = x;
|
|
xintab[x] = xin;
|
|
}
|
|
xo += a[0];
|
|
}
|
|
|
|
#define AFFINE_SCALE(pixel, image)\
|
|
for (y = y0; y < y1; y++) {\
|
|
int yi = COORD(yo);\
|
|
pixel *in, *out;\
|
|
out = imOut->image[y];\
|
|
if (fill && x1 > x0)\
|
|
memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
|
|
if (yi >= 0 && yi < imIn->ysize) {\
|
|
in = imIn->image[yi];\
|
|
for (x = xmin; x < xmax; x++)\
|
|
out[x] = in[xintab[x]];\
|
|
}\
|
|
yo += a[4];\
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (imIn->image8) {
|
|
AFFINE_SCALE(UINT8, image8);
|
|
} else {
|
|
AFFINE_SCALE(INT32, image32);
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef AFFINE_SCALE
|
|
|
|
free(xintab);
|
|
|
|
return imOut;
|
|
}
|
|
|
|
static inline int
|
|
check_fixed(double a[6], int x, int y)
|
|
{
|
|
return (fabs(x*a[0] + y*a[1] + a[2]) < 32768.0 &&
|
|
fabs(x*a[3] + y*a[4] + a[5]) < 32768.0);
|
|
}
|
|
|
|
static inline Imaging
|
|
affine_fixed(Imaging imOut, Imaging imIn,
|
|
int x0, int y0, int x1, int y1,
|
|
double a[6], int filterid, int fill)
|
|
{
|
|
/* affine transform, nearest neighbour resampling, fixed point
|
|
arithmetics */
|
|
|
|
ImagingSectionCookie cookie;
|
|
int x, y;
|
|
int xin, yin;
|
|
int xsize, ysize;
|
|
int xx, yy;
|
|
int a0, a1, a2, a3, a4, a5;
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
xsize = (int) imIn->xsize;
|
|
ysize = (int) imIn->ysize;
|
|
|
|
/* use 16.16 fixed point arithmetics */
|
|
#define FIX(v) FLOOR((v)*65536.0 + 0.5)
|
|
|
|
a0 = FIX(a[0]); a1 = FIX(a[1]);
|
|
a3 = FIX(a[3]); a4 = FIX(a[4]);
|
|
a2 = FIX(a[2] + a[0] * 0.5 + a[1] * 0.5);
|
|
a5 = FIX(a[5] + a[3] * 0.5 + a[4] * 0.5);
|
|
|
|
#undef FIX
|
|
|
|
#define AFFINE_TRANSFORM_FIXED(pixel, image)\
|
|
for (y = y0; y < y1; y++) {\
|
|
pixel *out;\
|
|
xx = a2;\
|
|
yy = a5;\
|
|
out = imOut->image[y];\
|
|
if (fill && x1 > x0)\
|
|
memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
|
|
for (x = x0; x < x1; x++, out++) {\
|
|
xin = xx >> 16;\
|
|
if (xin >= 0 && xin < xsize) {\
|
|
yin = yy >> 16;\
|
|
if (yin >= 0 && yin < ysize)\
|
|
*out = imIn->image[yin][xin];\
|
|
}\
|
|
xx += a0;\
|
|
yy += a3;\
|
|
}\
|
|
a2 += a1;\
|
|
a5 += a4;\
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (imIn->image8)
|
|
AFFINE_TRANSFORM_FIXED(UINT8, image8)
|
|
else
|
|
AFFINE_TRANSFORM_FIXED(INT32, image32)
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef AFFINE_TRANSFORM_FIXED
|
|
|
|
return imOut;
|
|
}
|
|
|
|
Imaging
|
|
ImagingTransformAffine(Imaging imOut, Imaging imIn,
|
|
int x0, int y0, int x1, int y1,
|
|
double a[6], int filterid, int fill)
|
|
{
|
|
/* affine transform, nearest neighbour resampling, floating point
|
|
arithmetics*/
|
|
|
|
ImagingSectionCookie cookie;
|
|
int x, y;
|
|
int xin, yin;
|
|
int xsize, ysize;
|
|
double xx, yy;
|
|
double xo, yo;
|
|
|
|
if (filterid || imIn->type == IMAGING_TYPE_SPECIAL) {
|
|
return ImagingGenericTransform(
|
|
imOut, imIn,
|
|
x0, y0, x1, y1,
|
|
affine_transform, a,
|
|
filterid, fill);
|
|
}
|
|
|
|
if (a[1] == 0 && a[3] == 0) {
|
|
/* Scaling */
|
|
return ImagingScaleAffine(imOut, imIn, x0, y0, x1, y1, a, fill);
|
|
}
|
|
|
|
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
|
|
return (Imaging) ImagingError_ModeError();
|
|
|
|
if (x0 < 0)
|
|
x0 = 0;
|
|
if (y0 < 0)
|
|
y0 = 0;
|
|
if (x1 > imOut->xsize)
|
|
x1 = imOut->xsize;
|
|
if (y1 > imOut->ysize)
|
|
y1 = imOut->ysize;
|
|
|
|
/* translate all four corners to check if they are within the
|
|
range that can be represented by the fixed point arithmetics */
|
|
|
|
if (check_fixed(a, 0, 0) && check_fixed(a, x1-x0, y1-y0) &&
|
|
check_fixed(a, 0, y1-y0) && check_fixed(a, x1-x0, 0))
|
|
return affine_fixed(imOut, imIn, x0, y0, x1, y1, a, filterid, fill);
|
|
|
|
/* FIXME: cannot really think of any reasonable case when the
|
|
following code is used. maybe we should fall back on the slow
|
|
generic transform engine in this case? */
|
|
|
|
ImagingCopyInfo(imOut, imIn);
|
|
|
|
xsize = (int) imIn->xsize;
|
|
ysize = (int) imIn->ysize;
|
|
|
|
xo = a[2] + a[1] * 0.5 + a[0] * 0.5;
|
|
yo = a[5] + a[4] * 0.5 + a[3] * 0.5;
|
|
|
|
#define AFFINE_TRANSFORM(pixel, image)\
|
|
for (y = y0; y < y1; y++) {\
|
|
pixel *out;\
|
|
xx = xo;\
|
|
yy = yo;\
|
|
out = imOut->image[y];\
|
|
if (fill && x1 > x0)\
|
|
memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
|
|
for (x = x0; x < x1; x++, out++) {\
|
|
xin = COORD(xx);\
|
|
if (xin >= 0 && xin < xsize) {\
|
|
yin = COORD(yy);\
|
|
if (yin >= 0 && yin < ysize)\
|
|
*out = imIn->image[yin][xin];\
|
|
}\
|
|
xx += a[0];\
|
|
yy += a[3];\
|
|
}\
|
|
xo += a[1];\
|
|
yo += a[4];\
|
|
}
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (imIn->image8)
|
|
AFFINE_TRANSFORM(UINT8, image8)
|
|
else
|
|
AFFINE_TRANSFORM(INT32, image32)
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
#undef AFFINE_TRANSFORM
|
|
|
|
return imOut;
|
|
}
|
|
|
|
Imaging
|
|
ImagingTransform(Imaging imOut, Imaging imIn, int method,
|
|
int x0, int y0, int x1, int y1,
|
|
double a[8], int filterid, int fill)
|
|
{
|
|
ImagingTransformMap transform;
|
|
|
|
switch(method) {
|
|
case IMAGING_TRANSFORM_AFFINE:
|
|
return ImagingTransformAffine(
|
|
imOut, imIn, x0, y0, x1, y1, a, filterid, fill);
|
|
break;
|
|
case IMAGING_TRANSFORM_PERSPECTIVE:
|
|
transform = perspective_transform;
|
|
break;
|
|
case IMAGING_TRANSFORM_QUAD:
|
|
transform = quad_transform;
|
|
break;
|
|
default:
|
|
return (Imaging) ImagingError_ValueError("bad transform method");
|
|
}
|
|
|
|
return ImagingGenericTransform(
|
|
imOut, imIn,
|
|
x0, y0, x1, y1,
|
|
transform, a, filterid, fill);
|
|
}
|