Pillow/libImaging/Unpack.c
2017-12-20 13:53:14 +00:00

1451 lines
41 KiB
C

/*
* The Python Imaging Library.
* $Id$
*
* code to unpack raw data from various file formats
*
* history:
* 1996-03-07 fl Created (from various decoders)
* 1996-04-19 fl Added band unpackers
* 1996-05-12 fl Published RGB unpackers
* 1996-05-27 fl Added nibble unpacker
* 1996-12-10 fl Added complete set of PNG unpackers
* 1996-12-29 fl Set alpha byte in RGB unpackers
* 1997-01-05 fl Added remaining TGA unpackers
* 1997-01-18 fl Added inverting band unpackers
* 1997-01-25 fl Added FlashPix unpackers
* 1997-05-31 fl Added floating point unpackers
* 1998-02-08 fl Added I unpacker
* 1998-07-01 fl Added YCbCr unpacker
* 1998-07-02 fl Added full set of integer unpackers
* 1998-12-29 fl Added mode field, I;16 unpackers
* 1998-12-30 fl Added RGBX modes
* 1999-02-04 fl Fixed I;16 unpackers
* 2003-05-13 fl Added L/RGB reversed unpackers
* 2003-09-26 fl Added LA/PA and RGBa->RGB unpackers
*
* Copyright (c) 1997-2003 by Secret Labs AB.
* Copyright (c) 1996-1997 by Fredrik Lundh.
*
* See the README file for information on usage and redistribution.
*/
#include "Imaging.h"
#define R 0
#define G 1
#define B 2
#define X 3
#define A 3
#define C 0
#define M 1
#define Y 2
#define K 3
#define CLIP(x) ((x) <= 0 ? 0 : (x) < 256 ? (x) : 255)
/* byte-swapping macros */
#define C16N\
(tmp[0]=in[0], tmp[1]=in[1]);
#define C16S\
(tmp[1]=in[0], tmp[0]=in[1]);
#define C32N\
(tmp[0]=in[0], tmp[1]=in[1], tmp[2]=in[2], tmp[3]=in[3]);
#define C32S\
(tmp[3]=in[0], tmp[2]=in[1], tmp[1]=in[2], tmp[0]=in[3]);
#define C64N\
(tmp[0]=in[0], tmp[1]=in[1], tmp[2]=in[2], tmp[3]=in[3],\
tmp[4]=in[4], tmp[5]=in[5], tmp[6]=in[6], tmp[7]=in[7]);
#define C64S\
(tmp[7]=in[0], tmp[6]=in[1], tmp[5]=in[2], tmp[4]=in[3],\
tmp[3]=in[4], tmp[2]=in[5], tmp[1]=in[6], tmp[0]=in[7]);
#ifdef WORDS_BIGENDIAN
#define C16B C16N
#define C16L C16S
#define C32B C32N
#define C32L C32S
#define C64B C64N
#define C64L C64S
#else
#define C16B C16S
#define C16L C16N
#define C32B C32S
#define C32L C32N
#define C64B C64S
#define C64L C64N
#endif
/* bit-swapping */
static UINT8 BITFLIP[] = {
0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112,
240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184,
120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52,
180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220,
60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82,
210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154,
90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22,
150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238,
30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97,
225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169,
105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37,
165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205,
45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67,
195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139,
75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7,
135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127,
255
};
/* Unpack to "1" image */
static void
unpack1(UINT8* out, const UINT8* in, int pixels)
{
/* bits (msb first, white is non-zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = (byte & 128) ? 255 : 0; byte <<= 1;
case 7: *out++ = (byte & 128) ? 255 : 0; byte <<= 1;
case 6: *out++ = (byte & 128) ? 255 : 0; byte <<= 1;
case 5: *out++ = (byte & 128) ? 255 : 0; byte <<= 1;
case 4: *out++ = (byte & 128) ? 255 : 0; byte <<= 1;
case 3: *out++ = (byte & 128) ? 255 : 0; byte <<= 1;
case 2: *out++ = (byte & 128) ? 255 : 0; byte <<= 1;
case 1: *out++ = (byte & 128) ? 255 : 0;
}
pixels -= 8;
}
}
static void
unpack1I(UINT8* out, const UINT8* in, int pixels)
{
/* bits (msb first, white is zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = (byte & 128) ? 0 : 255; byte <<= 1;
case 7: *out++ = (byte & 128) ? 0 : 255; byte <<= 1;
case 6: *out++ = (byte & 128) ? 0 : 255; byte <<= 1;
case 5: *out++ = (byte & 128) ? 0 : 255; byte <<= 1;
case 4: *out++ = (byte & 128) ? 0 : 255; byte <<= 1;
case 3: *out++ = (byte & 128) ? 0 : 255; byte <<= 1;
case 2: *out++ = (byte & 128) ? 0 : 255; byte <<= 1;
case 1: *out++ = (byte & 128) ? 0 : 255;
}
pixels -= 8;
}
}
static void
unpack1R(UINT8* out, const UINT8* in, int pixels)
{
/* bits (lsb first, white is non-zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = (byte & 1) ? 255 : 0; byte >>= 1;
case 7: *out++ = (byte & 1) ? 255 : 0; byte >>= 1;
case 6: *out++ = (byte & 1) ? 255 : 0; byte >>= 1;
case 5: *out++ = (byte & 1) ? 255 : 0; byte >>= 1;
case 4: *out++ = (byte & 1) ? 255 : 0; byte >>= 1;
case 3: *out++ = (byte & 1) ? 255 : 0; byte >>= 1;
case 2: *out++ = (byte & 1) ? 255 : 0; byte >>= 1;
case 1: *out++ = (byte & 1) ? 255 : 0;
}
pixels -= 8;
}
}
static void
unpack1IR(UINT8* out, const UINT8* in, int pixels)
{
/* bits (lsb first, white is zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = (byte & 1) ? 0 : 255; byte >>= 1;
case 7: *out++ = (byte & 1) ? 0 : 255; byte >>= 1;
case 6: *out++ = (byte & 1) ? 0 : 255; byte >>= 1;
case 5: *out++ = (byte & 1) ? 0 : 255; byte >>= 1;
case 4: *out++ = (byte & 1) ? 0 : 255; byte >>= 1;
case 3: *out++ = (byte & 1) ? 0 : 255; byte >>= 1;
case 2: *out++ = (byte & 1) ? 0 : 255; byte >>= 1;
case 1: *out++ = (byte & 1) ? 0 : 255;
}
pixels -= 8;
}
}
static void
unpack18(UINT8* out, const UINT8* in, int pixels)
{
/* Unpack a '|b1' image, which is a numpy boolean.
1 == true, 0==false, in bytes */
int i;
for (i = 0; i < pixels; i++) {
out[i] = in[i] > 0 ? 255 : 0;
}
}
/* Unpack to "L" image */
static void
unpackL2(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (msb first, white is non-zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = ((byte >> 6) & 0x03U) * 0x55U; byte <<= 2;
case 3: *out++ = ((byte >> 6) & 0x03U) * 0x55U; byte <<= 2;
case 2: *out++ = ((byte >> 6) & 0x03U) * 0x55U; byte <<= 2;
case 1: *out++ = ((byte >> 6) & 0x03U) * 0x55U;
}
pixels -= 4;
}
}
static void
unpackL2I(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (msb first, white is zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U); byte <<= 2;
case 3: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U); byte <<= 2;
case 2: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U); byte <<= 2;
case 1: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U);
}
pixels -= 4;
}
}
static void
unpackL2R(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (bit order reversed, white is non-zero) */
while (pixels > 0) {
UINT8 byte = *in++;
byte = BITFLIP[byte];
switch (pixels) {
default: *out++ = ((byte >> 6) & 0x03U) * 0x55U; byte <<= 2;
case 3: *out++ = ((byte >> 6) & 0x03U) * 0x55U; byte <<= 2;
case 2: *out++ = ((byte >> 6) & 0x03U) * 0x55U; byte <<= 2;
case 1: *out++ = ((byte >> 6) & 0x03U) * 0x55U;
}
pixels -= 4;
}
}
static void
unpackL2IR(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (bit order reversed, white is zero) */
while (pixels > 0) {
UINT8 byte = *in++;
byte = BITFLIP[byte];
switch (pixels) {
default: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U); byte <<= 2;
case 3: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U); byte <<= 2;
case 2: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U); byte <<= 2;
case 1: *out++ = 0xFFU - (UINT8)(((byte >> 6) & 0x03U) * 0x55U);
}
pixels -= 4;
}
}
static void
unpackL4(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (msb first, white is non-zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = ((byte >> 4) & 0x0FU) * 0x11U; byte <<= 4;
case 1: *out++ = ((byte >> 4) & 0x0FU) * 0x11U;
}
pixels -= 2;
}
}
static void
unpackL4I(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (msb first, white is zero) */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = 0xFFU - (UINT8)(((byte >> 4) & 0x0FU) * 0x11U); byte <<= 4;
case 1: *out++ = 0xFFU - (UINT8)(((byte >> 4) & 0x0FU) * 0x11U);
}
pixels -= 2;
}
}
static void
unpackL4R(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (bit order reversed, white is non-zero) */
while (pixels > 0) {
UINT8 byte = *in++;
byte = BITFLIP[byte];
switch (pixels) {
default: *out++ = ((byte >> 4) & 0x0FU) * 0x11U; byte <<= 4;
case 1: *out++ = ((byte >> 4) & 0x0FU) * 0x11U;
}
pixels -= 2;
}
}
static void
unpackL4IR(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles (bit order reversed, white is zero) */
while (pixels > 0) {
UINT8 byte = *in++;
byte = BITFLIP[byte];
switch (pixels) {
default: *out++ = 0xFFU - (UINT8)(((byte >> 4) & 0x0FU) * 0x11U); byte <<= 4;
case 1: *out++ = 0xFFU - (UINT8)(((byte >> 4) & 0x0FU) * 0x11U);
}
pixels -= 2;
}
}
static void
unpackLA(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* LA, pixel interleaved */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[0], in[0], in[0], in[1]);
in += 2;
}
}
static void
unpackLAL(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* LA, line interleaved */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[i], in[i], in[i], in[i+pixels]);
}
}
static void
unpackLI(UINT8* out, const UINT8* in, int pixels)
{
/* negative */
int i;
for (i = 0; i < pixels; i++)
out[i] = ~in[i];
}
static void
unpackLR(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* RGB, bit reversed */
for (i = 0; i < pixels; i++) {
out[i] = BITFLIP[in[i]];
}
}
static void
unpackL16(UINT8* out, const UINT8* in, int pixels)
{
/* int16 (upper byte, little endian) */
int i;
for (i = 0; i < pixels; i++) {
out[i] = in[1];
in += 2;
}
}
static void
unpackL16B(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* int16 (upper byte, big endian) */
for (i = 0; i < pixels; i++) {
out[i] = in[0];
in += 2;
}
}
/* Unpack to "P" image */
static void
unpackP1(UINT8* out, const UINT8* in, int pixels)
{
/* bits */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = (byte >> 7) & 1; byte <<= 1;
case 7: *out++ = (byte >> 7) & 1; byte <<= 1;
case 6: *out++ = (byte >> 7) & 1; byte <<= 1;
case 5: *out++ = (byte >> 7) & 1; byte <<= 1;
case 4: *out++ = (byte >> 7) & 1; byte <<= 1;
case 3: *out++ = (byte >> 7) & 1; byte <<= 1;
case 2: *out++ = (byte >> 7) & 1; byte <<= 1;
case 1: *out++ = (byte >> 7) & 1;
}
pixels -= 8;
}
}
static void
unpackP2(UINT8* out, const UINT8* in, int pixels)
{
/* bit pairs */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = (byte >> 6) & 3; byte <<= 2;
case 3: *out++ = (byte >> 6) & 3; byte <<= 2;
case 2: *out++ = (byte >> 6) & 3; byte <<= 2;
case 1: *out++ = (byte >> 6) & 3;
}
pixels -= 4;
}
}
static void
unpackP4(UINT8* out, const UINT8* in, int pixels)
{
/* nibbles */
while (pixels > 0) {
UINT8 byte = *in++;
switch (pixels) {
default: *out++ = (byte >> 4) & 15; byte <<= 4;
case 1: *out++ = (byte >> 4) & 15;
}
pixels -= 2;
}
}
static void
unpackP2L(UINT8* out, const UINT8* in, int pixels)
{
int i, j, m, s;
/* bit layers */
m = 128;
s = (pixels+7)/8;
for (i = j = 0; i < pixels; i++) {
out[i] = ((in[j] & m) ? 1 : 0) + ((in[j + s] & m) ? 2 : 0);
if ((m >>= 1) == 0) {
m = 128;
j++;
}
}
}
static void
unpackP4L(UINT8* out, const UINT8* in, int pixels)
{
int i, j, m, s;
/* bit layers (trust the optimizer ;-) */
m = 128;
s = (pixels+7)/8;
for (i = j = 0; i < pixels; i++) {
out[i] = ((in[j] & m) ? 1 : 0) + ((in[j + s] & m) ? 2 : 0) +
((in[j + 2*s] & m) ? 4 : 0) + ((in[j + 3*s] & m) ? 8 : 0);
if ((m >>= 1) == 0) {
m = 128;
j++;
}
}
}
/* Unpack to "RGB" image */
void
ImagingUnpackRGB(UINT8* _out, const UINT8* in, int pixels)
{
int i = 0;
UINT32* out = (UINT32*) _out;
/* RGB triplets */
for (; i < pixels-1; i++) {
out[i] = MASK_UINT32_CHANNEL_3 | *(UINT32*)&in[0];
in += 3;
}
for (; i < pixels; i++) {
out[i] = MAKE_UINT32(in[0], in[1], in[2], 255);
in += 3;
}
}
void
unpackRGB16L(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* 16-bit RGB triplets, little-endian order */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[1], in[3], in[5], 255);
in += 6;
}
}
void
unpackRGB16B(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* 16-bit RGB triplets, big-endian order */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[0], in[2], in[4], 255);
in += 6;
}
}
static void
unpackRGBL(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGB, line interleaved */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[i], in[i+pixels], in[i+pixels+pixels], 255);
}
}
static void
unpackRGBR(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGB, bit reversed */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(BITFLIP[in[0]], BITFLIP[in[1]],
BITFLIP[in[2]], 255);
in += 3;
}
}
void
ImagingUnpackBGR(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGB, reversed bytes */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[2], in[1], in[0], 255);
in += 3;
}
}
void
ImagingUnpackRGB15(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGB, 5 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[R] = (pixel & 31) * 255 / 31;
out[G] = ((pixel>>5) & 31) * 255 / 31;
out[B] = ((pixel>>10) & 31) * 255 / 31;
out[A] = 255;
out += 4; in += 2;
}
}
void
ImagingUnpackRGBA15(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGB, 5/5/5/1 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[R] = (pixel & 31) * 255 / 31;
out[G] = ((pixel>>5) & 31) * 255 / 31;
out[B] = ((pixel>>10) & 31) * 255 / 31;
out[A] = (pixel>>15) * 255;
out += 4; in += 2;
}
}
void
ImagingUnpackBGR15(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGB, reversed bytes, 5 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[B] = (pixel & 31) * 255 / 31;
out[G] = ((pixel>>5) & 31) * 255 / 31;
out[R] = ((pixel>>10) & 31) * 255 / 31;
out[A] = 255;
out += 4; in += 2;
}
}
void
ImagingUnpackBGRA15(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGB, reversed bytes, 5/5/5/1 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[B] = (pixel & 31) * 255 / 31;
out[G] = ((pixel>>5) & 31) * 255 / 31;
out[R] = ((pixel>>10) & 31) * 255 / 31;
out[A] = (pixel>>15) * 255;
out += 4; in += 2;
}
}
void
ImagingUnpackRGB16(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGB, 5/6/5 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[R] = (pixel & 31) * 255 / 31;
out[G] = ((pixel>>5) & 63) * 255 / 63;
out[B] = ((pixel>>11) & 31) * 255 / 31;
out[A] = 255;
out += 4; in += 2;
}
}
void
ImagingUnpackBGR16(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGB, reversed bytes, 5/6/5 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[B] = (pixel & 31) * 255 / 31;
out[G] = ((pixel>>5) & 63) * 255 / 63;
out[R] = ((pixel>>11) & 31) * 255 / 31;
out[A] = 255;
out += 4; in += 2;
}
}
void
ImagingUnpackRGB4B(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGB, 4 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[R] = (pixel & 15) * 17;
out[G] = ((pixel>>4) & 15) * 17;
out[B] = ((pixel>>8) & 15) * 17;
out[A] = 255;
out += 4; in += 2;
}
}
void
ImagingUnpackRGBA4B(UINT8* out, const UINT8* in, int pixels)
{
int i, pixel;
/* RGBA, 4 bits per pixel */
for (i = 0; i < pixels; i++) {
pixel = in[0] + (in[1] << 8);
out[R] = (pixel & 15) * 17;
out[G] = ((pixel>>4) & 15) * 17;
out[B] = ((pixel>>8) & 15) * 17;
out[A] = ((pixel>>12) & 15) * 17;
out += 4; in += 2;
}
}
static void
ImagingUnpackBGRX(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGB, reversed bytes with padding */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[2], in[1], in[0], 255);
in += 4;
}
}
static void
ImagingUnpackXRGB(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGB, leading pad */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[1], in[2], in[3], 255);
in += 4;
}
}
static void
ImagingUnpackXBGR(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGB, reversed bytes, leading pad */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[3], in[2], in[1], 255);
in += 4;
}
}
/* Unpack to "RGBA" image */
static void
unpackRGBALA(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* greyscale with alpha */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[0], in[0], in[0], in[1]);
in += 2;
}
}
static void
unpackRGBALA16B(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* 16-bit greyscale with alpha, big-endian */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[0], in[0], in[0], in[2]);
in += 4;
}
}
static void
unpackRGBa16L(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* premultiplied 16-bit RGBA, little-endian */
for (i = 0; i < pixels; i++) {
int a = in[7];
if ( ! a) {
out[i] = 0;
} else if (a == 255) {
out[i] = MAKE_UINT32(in[1], in[3], in[5], a);
} else {
out[i] = MAKE_UINT32(CLIP(in[1] * 255 / a),
CLIP(in[3] * 255 / a),
CLIP(in[5] * 255 / a), a);
}
in += 8;
}
}
static void
unpackRGBa16B(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* premultiplied 16-bit RGBA, big-endian */
for (i = 0; i < pixels; i++) {
int a = in[6];
if ( ! a) {
out[i] = 0;
} else if (a == 255) {
out[i] = MAKE_UINT32(in[0], in[2], in[4], a);
} else {
out[i] = MAKE_UINT32(CLIP(in[0] * 255 / a),
CLIP(in[2] * 255 / a),
CLIP(in[4] * 255 / a), a);
}
in += 8;
}
}
static void
unpackRGBa(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* premultiplied RGBA */
for (i = 0; i < pixels; i++) {
int a = in[3];
if ( ! a) {
out[i] = 0;
} else if (a == 255) {
out[i] = MAKE_UINT32(in[0], in[1], in[2], a);
} else {
out[i] = MAKE_UINT32(CLIP(in[0] * 255 / a),
CLIP(in[1] * 255 / a),
CLIP(in[2] * 255 / a), a);
}
in += 4;
}
}
static void
unpackBGRa(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* premultiplied BGRA */
for (i = 0; i < pixels; i++) {
int a = in[3];
if ( ! a) {
out[i] = 0;
} else if (a == 255) {
out[i] = MAKE_UINT32(in[2], in[1], in[0], a);
} else {
out[i] = MAKE_UINT32(CLIP(in[2] * 255 / a),
CLIP(in[1] * 255 / a),
CLIP(in[0] * 255 / a), a);
}
in += 4;
}
}
static void
unpackRGBAI(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* RGBA, inverted RGB bytes (FlashPix) */
for (i = 0; i < pixels; i++) {
out[R] = ~in[0];
out[G] = ~in[1];
out[B] = ~in[2];
out[A] = in[3];
out += 4; in += 4;
}
}
static void
unpackRGBAL(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGBA, line interleaved */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[i], in[i+pixels], in[i+pixels+pixels],
in[i+pixels+pixels+pixels]);
}
}
void
unpackRGBA16L(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* 16-bit RGBA, little-endian order */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[1], in[3], in[5], in[7]);
in += 8;
}
}
void
unpackRGBA16B(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* 16-bit RGBA, big-endian order */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[0], in[2], in[4], in[6]);
in += 8;
}
}
static void
unpackARGB(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGBA, leading pad */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[1], in[2], in[3], in[0]);
in += 4;
}
}
static void
unpackABGR(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGBA, reversed bytes */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[3], in[2], in[1], in[0]);
in += 4;
}
}
static void
unpackBGRA(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* RGBA, reversed bytes */
for (i = 0; i < pixels; i++) {
out[i] = MAKE_UINT32(in[2], in[1], in[0], in[3]);
in += 4;
}
}
/* Unpack to "CMYK" image */
static void
unpackCMYKI(UINT8* _out, const UINT8* in, int pixels)
{
int i;
UINT32* out = (UINT32*) _out;
/* CMYK, inverted bytes (Photoshop 2.5) */
for (i = 0; i < pixels; i++) {
out[i] = ~MAKE_UINT32(in[0], in[1], in[2], in[3]);
in += 4;
}
}
/* Unpack to "LAB" image */
/* There are two representations of LAB images for whatever precision:
L: Uint (in PS, it's 0-100)
A: Int (in ps, -128 .. 128, or elsewhere 0..255, with 128 as middle.
Channels in PS display a 0 value as middle grey,
LCMS appears to use 128 as the 0 value for these channels)
B: Int (as above)
Since we don't have any signed ints, we're going with the shifted versions
internally, and we'll unshift for saving and whatnot.
*/
void
ImagingUnpackLAB(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* LAB triplets */
for (i = 0; i < pixels; i++) {
out[0] = in[0];
out[1] = in[1] ^ 128; /* signed in outside world */
out[2] = in[2] ^ 128;
out[3] = 255;
out += 4; in += 3;
}
}
static void
unpackI16N_I16B(UINT8* out, const UINT8* in, int pixels){
int i;
UINT8* tmp = (UINT8*) out;
for (i = 0; i < pixels; i++) {
C16B;
in += 2; tmp += 2;
}
}
static void
unpackI16N_I16(UINT8* out, const UINT8* in, int pixels){
int i;
UINT8* tmp = (UINT8*) out;
for (i = 0; i < pixels; i++) {
C16L;
in += 2; tmp += 2;
}
}
static void
unpackI12_I16(UINT8* out, const UINT8* in, int pixels){
/* Fillorder 1/MSB -> LittleEndian, for 12bit integer greyscale tiffs.
According to the TIFF spec:
FillOrder = 2 should be used only when BitsPerSample = 1 and
the data is either uncompressed or compressed using CCITT 1D
or 2D compression, to avoid potentially ambiguous situations.
Yeah. I thought so. We'll see how well people read the spec.
We've got several fillorder=2 modes in TiffImagePlugin.py
There's no spec I can find. It appears that the in storage
layout is: 00 80 00 ... -> (128 , 0 ...). The samples are
stored in a single big bitian 12bit block, but need to be
pulled out to little endian format to be stored in a 2 byte
int.
*/
int i;
UINT16 pixel;
#ifdef WORDS_BIGENDIAN
UINT8* tmp = (UINT8 *)&pixel;
#endif
UINT16* out16 = (UINT16 *)out;
for (i = 0; i < pixels-1; i+=2) {
pixel = (((UINT16) in[0]) << 4 ) + (in[1] >>4);
#ifdef WORDS_BIGENDIAN
out[0] = tmp[1]; out[1] = tmp[0];
#else
out16[0] = pixel;
#endif
pixel = (((UINT16) (in[1] & 0x0F)) << 8) + in[2];
#ifdef WORDS_BIGENDIAN
out[2] = tmp[1]; out[3] = tmp[0];
#else
out16[1] = pixel;
#endif
in += 3; out16 += 2; out+=4;
}
if (i == pixels-1) {
pixel = (((UINT16) in[0]) << 4 ) + (in[1] >>4);
#ifdef WORDS_BIGENDIAN
out[0] = tmp[1]; out[1] = tmp[0];
#else
out16[0] = pixel;
#endif
}
}
static void
copy1(UINT8* out, const UINT8* in, int pixels)
{
/* L, P */
memcpy(out, in, pixels);
}
static void
copy2(UINT8* out, const UINT8* in, int pixels)
{
/* I;16 */
memcpy(out, in, pixels*2);
}
static void
copy4(UINT8* out, const UINT8* in, int pixels)
{
/* RGBA, CMYK quadruples */
memcpy(out, in, 4 * pixels);
}
/* Unpack to "I" and "F" images */
#define UNPACK_RAW(NAME, GET, INTYPE, OUTTYPE)\
static void NAME(UINT8* out_, const UINT8* in, int pixels)\
{\
int i;\
OUTTYPE* out = (OUTTYPE*) out_;\
for (i = 0; i < pixels; i++, in += sizeof(INTYPE))\
out[i] = (OUTTYPE) ((INTYPE) GET);\
}
#define UNPACK(NAME, COPY, INTYPE, OUTTYPE)\
static void NAME(UINT8* out_, const UINT8* in, int pixels)\
{\
int i;\
OUTTYPE* out = (OUTTYPE*) out_;\
INTYPE tmp_;\
UINT8* tmp = (UINT8*) &tmp_;\
for (i = 0; i < pixels; i++, in += sizeof(INTYPE)) {\
COPY;\
out[i] = (OUTTYPE) tmp_;\
}\
}
UNPACK_RAW(unpackI8, in[0], UINT8, INT32)
UNPACK_RAW(unpackI8S, in[0], INT8, INT32)
UNPACK(unpackI16, C16L, UINT16, INT32)
UNPACK(unpackI16S, C16L, INT16, INT32)
UNPACK(unpackI16B, C16B, UINT16, INT32)
UNPACK(unpackI16BS, C16B, INT16, INT32)
UNPACK(unpackI16N, C16N, UINT16, INT32)
UNPACK(unpackI16NS, C16N, INT16, INT32)
UNPACK(unpackI32, C32L, UINT32, INT32)
UNPACK(unpackI32S, C32L, INT32, INT32)
UNPACK(unpackI32B, C32B, UINT32, INT32)
UNPACK(unpackI32BS, C32B, INT32, INT32)
UNPACK(unpackI32N, C32N, UINT32, INT32)
UNPACK(unpackI32NS, C32N, INT32, INT32)
UNPACK_RAW(unpackF8, in[0], UINT8, FLOAT32)
UNPACK_RAW(unpackF8S, in[0], INT8, FLOAT32)
UNPACK(unpackF16, C16L, UINT16, FLOAT32)
UNPACK(unpackF16S, C16L, INT16, FLOAT32)
UNPACK(unpackF16B, C16B, UINT16, FLOAT32)
UNPACK(unpackF16BS, C16B, INT16, FLOAT32)
UNPACK(unpackF16N, C16N, UINT16, FLOAT32)
UNPACK(unpackF16NS, C16N, INT16, FLOAT32)
UNPACK(unpackF32, C32L, UINT32, FLOAT32)
UNPACK(unpackF32S, C32L, INT32, FLOAT32)
UNPACK(unpackF32B, C32B, UINT32, FLOAT32)
UNPACK(unpackF32BS, C32B, INT32, FLOAT32)
UNPACK(unpackF32N, C32N, UINT32, FLOAT32)
UNPACK(unpackF32NS, C32N, INT32, FLOAT32)
UNPACK(unpackF32F, C32L, FLOAT32, FLOAT32)
UNPACK(unpackF32BF, C32B, FLOAT32, FLOAT32)
UNPACK(unpackF32NF, C32N, FLOAT32, FLOAT32)
#ifdef FLOAT64
UNPACK(unpackF64F, C64L, FLOAT64, FLOAT32)
UNPACK(unpackF64BF, C64B, FLOAT64, FLOAT32)
UNPACK(unpackF64NF, C64N, FLOAT64, FLOAT32)
#endif
/* Misc. unpackers */
static void
band0(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* band 0 only */
for (i = 0; i < pixels; i++) {
out[0] = in[i];
out += 4;
}
}
static void
band1(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* band 1 only */
for (i = 0; i < pixels; i++) {
out[1] = in[i];
out += 4;
}
}
static void
band2(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* band 2 only */
for (i = 0; i < pixels; i++) {
out[2] = in[i];
out += 4;
}
}
static void
band3(UINT8* out, const UINT8* in, int pixels)
{
/* band 3 only */
int i;
for (i = 0; i < pixels; i++) {
out[3] = in[i];
out += 4;
}
}
static void
band0I(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* band 0 only */
for (i = 0; i < pixels; i++) {
out[0] = ~in[i];
out += 4;
}
}
static void
band1I(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* band 1 only */
for (i = 0; i < pixels; i++) {
out[1] = ~in[i];
out += 4;
}
}
static void
band2I(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* band 2 only */
for (i = 0; i < pixels; i++) {
out[2] = ~in[i];
out += 4;
}
}
static void
band3I(UINT8* out, const UINT8* in, int pixels)
{
/* band 3 only */
int i;
for (i = 0; i < pixels; i++) {
out[3] = ~in[i];
out += 4;
}
}
static struct {
const char* mode;
const char* rawmode;
int bits;
ImagingShuffler unpack;
} unpackers[] = {
/* raw mode syntax is "<mode>;<bits><flags>" where "bits" defaults
depending on mode (1 for "1", 8 for "P" and "L", etc), and
"flags" should be given in alphabetical order. if both bits
and flags have their default values, the ; should be left out */
/* flags: "I" inverted data; "R" reversed bit order; "B" big
endian byte order (default is little endian); "L" line
interleave, "S" signed, "F" floating point */
/* exception: rawmodes "I" and "F" are always native endian byte order */
/* bilevel */
{"1", "1", 1, unpack1},
{"1", "1;I", 1, unpack1I},
{"1", "1;R", 1, unpack1R},
{"1", "1;IR", 1, unpack1IR},
{"1", "1;8", 1, unpack18},
/* greyscale */
{"L", "L;2", 2, unpackL2},
{"L", "L;2I", 2, unpackL2I},
{"L", "L;2R", 2, unpackL2R},
{"L", "L;2IR", 2, unpackL2IR},
{"L", "L;4", 4, unpackL4},
{"L", "L;4I", 4, unpackL4I},
{"L", "L;4R", 4, unpackL4R},
{"L", "L;4IR", 4, unpackL4IR},
{"L", "L", 8, copy1},
{"L", "L;I", 8, unpackLI},
{"L", "L;R", 8, unpackLR},
{"L", "L;16", 16, unpackL16},
{"L", "L;16B", 16, unpackL16B},
/* greyscale w. alpha */
{"LA", "LA", 16, unpackLA},
{"LA", "LA;L", 16, unpackLAL},
/* palette */
{"P", "P;1", 1, unpackP1},
{"P", "P;2", 2, unpackP2},
{"P", "P;2L", 2, unpackP2L},
{"P", "P;4", 4, unpackP4},
{"P", "P;4L", 4, unpackP4L},
{"P", "P", 8, copy1},
{"P", "P;R", 8, unpackLR},
/* palette w. alpha */
{"PA", "PA", 16, unpackLA},
{"PA", "PA;L", 16, unpackLAL},
/* true colour */
{"RGB", "RGB", 24, ImagingUnpackRGB},
{"RGB", "RGB;L", 24, unpackRGBL},
{"RGB", "RGB;R", 24, unpackRGBR},
{"RGB", "RGB;16L", 48, unpackRGB16L},
{"RGB", "RGB;16B", 48, unpackRGB16B},
{"RGB", "BGR", 24, ImagingUnpackBGR},
{"RGB", "RGB;15", 16, ImagingUnpackRGB15},
{"RGB", "BGR;15", 16, ImagingUnpackBGR15},
{"RGB", "RGB;16", 16, ImagingUnpackRGB16},
{"RGB", "BGR;16", 16, ImagingUnpackBGR16},
{"RGB", "RGB;4B", 16, ImagingUnpackRGB4B},
{"RGB", "BGR;5", 16, ImagingUnpackBGR15}, /* compat */
{"RGB", "RGBX", 32, copy4},
{"RGB", "RGBX;L", 32, unpackRGBAL},
{"RGB", "BGRX", 32, ImagingUnpackBGRX},
{"RGB", "XRGB", 24, ImagingUnpackXRGB},
{"RGB", "XBGR", 32, ImagingUnpackXBGR},
{"RGB", "YCC;P", 24, ImagingUnpackYCC},
{"RGB", "R", 8, band0},
{"RGB", "G", 8, band1},
{"RGB", "B", 8, band2},
/* true colour w. alpha */
{"RGBA", "LA", 16, unpackRGBALA},
{"RGBA", "LA;16B", 32, unpackRGBALA16B},
{"RGBA", "RGBA", 32, copy4},
{"RGBA", "RGBa", 32, unpackRGBa},
{"RGBA", "RGBa;16L", 64, unpackRGBa16L},
{"RGBA", "RGBa;16B", 64, unpackRGBa16B},
{"RGBA", "BGRa", 32, unpackBGRa},
{"RGBA", "RGBA;I", 32, unpackRGBAI},
{"RGBA", "RGBA;L", 32, unpackRGBAL},
{"RGBA", "RGBA;15", 16, ImagingUnpackRGBA15},
{"RGBA", "BGRA;15", 16, ImagingUnpackBGRA15},
{"RGBA", "RGBA;4B", 16, ImagingUnpackRGBA4B},
{"RGBA", "RGBA;16L", 64, unpackRGBA16L},
{"RGBA", "RGBA;16B", 64, unpackRGBA16B},
{"RGBA", "BGRA", 32, unpackBGRA},
{"RGBA", "ARGB", 32, unpackARGB},
{"RGBA", "ABGR", 32, unpackABGR},
{"RGBA", "YCCA;P", 32, ImagingUnpackYCCA},
{"RGBA", "R", 8, band0},
{"RGBA", "G", 8, band1},
{"RGBA", "B", 8, band2},
{"RGBA", "A", 8, band3},
#ifdef WORDS_BIGENDIAN
{"RGB", "RGB;16N", 64, unpackRGB16B},
{"RGBA", "RGBa;16N", 64, unpackRGBa16B},
{"RGBA", "RGBA;16N", 64, unpackRGBA16B},
{"RGBX", "RGBX;16N", 64, unpackRGBA16B},
#else
{"RGB", "RGB;16N", 64, unpackRGB16L},
{"RGBA", "RGBa;16N", 64, unpackRGBa16L},
{"RGBA", "RGBA;16N", 64, unpackRGBA16L},
{"RGBX", "RGBX;16N", 64, unpackRGBA16B},
#endif
/* true colour w. alpha premultiplied */
{"RGBa", "RGBa", 32, copy4},
{"RGBa", "BGRa", 32, unpackBGRA},
{"RGBa", "aRGB", 32, unpackARGB},
{"RGBa", "aBGR", 32, unpackABGR},
/* true colour w. padding */
{"RGBX", "RGB", 24, ImagingUnpackRGB},
{"RGBX", "RGB;L", 24, unpackRGBL},
{"RGBX", "RGB;16B", 48, unpackRGB16B},
{"RGBX", "BGR", 24, ImagingUnpackBGR},
{"RGBX", "RGB;15", 16, ImagingUnpackRGB15},
{"RGBX", "BGR;15", 16, ImagingUnpackBGR15},
{"RGBX", "RGB;4B", 16, ImagingUnpackRGB4B},
{"RGBX", "BGR;5", 16, ImagingUnpackBGR15}, /* compat */
{"RGBX", "RGBX", 32, copy4},
{"RGBX", "RGBX;L", 32, unpackRGBAL},
{"RGBX", "RGBX;16L", 64, unpackRGBA16L},
{"RGBX", "RGBX;16B", 64, unpackRGBA16B},
{"RGBX", "BGRX", 32, ImagingUnpackBGRX},
{"RGBX", "XRGB", 24, ImagingUnpackXRGB},
{"RGBX", "XBGR", 32, ImagingUnpackXBGR},
{"RGBX", "YCC;P", 24, ImagingUnpackYCC},
{"RGBX", "R", 8, band0},
{"RGBX", "G", 8, band1},
{"RGBX", "B", 8, band2},
{"RGBX", "X", 8, band3},
/* colour separation */
{"CMYK", "CMYK", 32, copy4},
{"CMYK", "CMYK;I", 32, unpackCMYKI},
{"CMYK", "CMYK;L", 32, unpackRGBAL},
{"CMYK", "C", 8, band0},
{"CMYK", "M", 8, band1},
{"CMYK", "Y", 8, band2},
{"CMYK", "K", 8, band3},
{"CMYK", "C;I", 8, band0I},
{"CMYK", "M;I", 8, band1I},
{"CMYK", "Y;I", 8, band2I},
{"CMYK", "K;I", 8, band3I},
/* video (YCbCr) */
{"YCbCr", "YCbCr", 24, ImagingUnpackRGB},
{"YCbCr", "YCbCr;L", 24, unpackRGBL},
{"YCbCr", "YCbCrX", 32, copy4},
{"YCbCr", "YCbCrK", 32, copy4},
/* LAB Color */
{"LAB", "LAB", 24, ImagingUnpackLAB},
{"LAB", "L", 8, band0},
{"LAB", "A", 8, band1},
{"LAB", "B", 8, band2},
/* HSV Color */
{"HSV", "HSV", 24, ImagingUnpackRGB},
{"HSV", "H", 8, band0},
{"HSV", "S", 8, band1},
{"HSV", "V", 8, band2},
/* integer variations */
{"I", "I", 32, copy4},
{"I", "I;8", 8, unpackI8},
{"I", "I;8S", 8, unpackI8S},
{"I", "I;16", 16, unpackI16},
{"I", "I;16S", 16, unpackI16S},
{"I", "I;16B", 16, unpackI16B},
{"I", "I;16BS", 16, unpackI16BS},
{"I", "I;16N", 16, unpackI16N},
{"I", "I;16NS", 16, unpackI16NS},
{"I", "I;32", 32, unpackI32},
{"I", "I;32S", 32, unpackI32S},
{"I", "I;32B", 32, unpackI32B},
{"I", "I;32BS", 32, unpackI32BS},
{"I", "I;32N", 32, unpackI32N},
{"I", "I;32NS", 32, unpackI32NS},
/* floating point variations */
{"F", "F", 32, copy4},
{"F", "F;8", 8, unpackF8},
{"F", "F;8S", 8, unpackF8S},
{"F", "F;16", 16, unpackF16},
{"F", "F;16S", 16, unpackF16S},
{"F", "F;16B", 16, unpackF16B},
{"F", "F;16BS", 16, unpackF16BS},
{"F", "F;16N", 16, unpackF16N},
{"F", "F;16NS", 16, unpackF16NS},
{"F", "F;32", 32, unpackF32},
{"F", "F;32S", 32, unpackF32S},
{"F", "F;32B", 32, unpackF32B},
{"F", "F;32BS", 32, unpackF32BS},
{"F", "F;32N", 32, unpackF32N},
{"F", "F;32NS", 32, unpackF32NS},
{"F", "F;32F", 32, unpackF32F},
{"F", "F;32BF", 32, unpackF32BF},
{"F", "F;32NF", 32, unpackF32NF},
#ifdef FLOAT64
{"F", "F;64F", 64, unpackF64F},
{"F", "F;64BF", 64, unpackF64BF},
{"F", "F;64NF", 64, unpackF64NF},
#endif
/* storage modes */
{"I;16", "I;16", 16, copy2},
{"I;16B", "I;16B", 16, copy2},
{"I;16L", "I;16L", 16, copy2},
{"I;16", "I;16N", 16, unpackI16N_I16}, // LibTiff native->image endian.
{"I;16L", "I;16N", 16, unpackI16N_I16}, // LibTiff native->image endian.
{"I;16B", "I;16N", 16, unpackI16N_I16B},
{"I;16", "I;12", 12, unpackI12_I16}, // 12 bit Tiffs stored in 16bits.
{NULL} /* sentinel */
};
ImagingShuffler
ImagingFindUnpacker(const char* mode, const char* rawmode, int* bits_out)
{
int i;
/* find a suitable pixel unpacker */
for (i = 0; unpackers[i].rawmode; i++)
if (strcmp(unpackers[i].mode, mode) == 0 &&
strcmp(unpackers[i].rawmode, rawmode) == 0) {
if (bits_out)
*bits_out = unpackers[i].bits;
return unpackers[i].unpack;
}
/* FIXME: configure a general unpacker based on the type codes... */
return NULL;
}