mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-11-01 00:17:27 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			399 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			399 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* PILusm, a gaussian blur and unsharp masking library for PIL
 | |
|    By Kevin Cazabon, copyright 2003
 | |
|    kevin_cazabon@hotmail.com
 | |
|    kevin@cazabon.com */
 | |
| 
 | |
| /* Originally released under LGPL.  Graciously donated to PIL
 | |
|    for distribution under the standard PIL license in 2009." */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include "Imaging.h"
 | |
| 
 | |
| #define PILUSMVERSION "0.6.1"
 | |
| 
 | |
| /* version history
 | |
| 
 | |
| 0.6.1   converted to C and added to PIL 1.1.7
 | |
| 
 | |
| 0.6.0   fixed/improved float radius support (oops!)
 | |
|         now that radius can be a float (properly), changed radius value to
 | |
|             be an actual radius (instead of diameter).  So, you should get
 | |
|             similar results from PIL_usm as from other paint programs when
 | |
|             using the SAME values (no doubling of radius required any more).
 | |
|             Be careful, this may "break" software if you had it set for 2x
 | |
|             or 5x the radius as was recommended with earlier versions.
 | |
|         made PILusm thread-friendly (release GIL before lengthly operations,
 | |
|             and re-acquire it before returning to Python).  This makes a huge
 | |
|             difference with multi-threaded applications on dual-processor
 | |
|             or "Hyperthreading"-enabled systems (Pentium4, Xeon, etc.)
 | |
| 
 | |
| 0.5.0   added support for float radius values!
 | |
| 
 | |
| 0.4.0   tweaked gaussian curve calculation to be closer to consistent shape
 | |
|             across a wide range of radius values
 | |
| 
 | |
| 0.3.0   changed deviation calculation in gausian algorithm to be dynamic
 | |
|         _gblur now adds 1 to the user-supplied radius before using it so
 | |
|             that a value of "0" returns the original image instead of a
 | |
|             black one.
 | |
|         fixed handling of alpha channel in RGBX, RGBA images
 | |
|         improved speed of gblur by reducing unnecessary checks and assignments
 | |
| 
 | |
| 0.2.0   fixed L-mode image support
 | |
| 
 | |
| 0.1.0   initial release
 | |
| 
 | |
| */
 | |
| 
 | |
| static inline UINT8 clip(double in)
 | |
| {
 | |
|     if (in >= 255.0)
 | |
| 	return (UINT8) 255;
 | |
|     if (in <= 0.0)
 | |
| 	return (UINT8) 0;
 | |
|     return (UINT8) in;
 | |
| }
 | |
| 
 | |
| static Imaging
 | |
| gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
| 
 | |
|     float *maskData = NULL;
 | |
|     int y = 0;
 | |
|     int x = 0;
 | |
|     float z = 0;
 | |
|     float sum = 0.0;
 | |
|     float dev = 0.0;
 | |
| 
 | |
|     float *buffer = NULL;
 | |
| 
 | |
|     int *line = NULL;
 | |
|     UINT8 *line8 = NULL;
 | |
| 
 | |
|     int pix = 0;
 | |
|     float newPixel[4];
 | |
|     int channel = 0;
 | |
|     int offset = 0;
 | |
|     INT32 newPixelFinals;
 | |
| 
 | |
|     int radius = 0;
 | |
|     float remainder = 0.0;
 | |
| 
 | |
|     int i;
 | |
| 
 | |
|     /* Do the gaussian blur */
 | |
| 
 | |
|     /* For a symmetrical gaussian blur, instead of doing a radius*radius
 | |
|        matrix lookup, you get the EXACT same results by doing a radius*1
 | |
|        transform, followed by a 1*radius transform.  This reduces the
 | |
|        number of lookups exponentially (10 lookups per pixel for a
 | |
|        radius of 5 instead of 25 lookups).  So, we blur the lines first,
 | |
|        then we blur the resulting columns. */
 | |
| 
 | |
|     /* first, round radius off to the next higher integer and hold the
 | |
|        remainder this is used so we can support float radius values
 | |
|        properly. */
 | |
| 
 | |
|     remainder = floatRadius - ((int) floatRadius);
 | |
|     floatRadius = ceil(floatRadius);
 | |
| 
 | |
|     /* Next, double the radius and offset by 2.0... that way "0" returns
 | |
|        the original image instead of a black one.  We multiply it by 2.0
 | |
|        so that it is a true "radius", not a diameter (the results match
 | |
|        other paint programs closer that way too). */
 | |
|     radius = (int) ((floatRadius * 2.0) + 2.0);
 | |
| 
 | |
|     /* create the maskData for the gaussian curve */
 | |
|     maskData = malloc(radius * sizeof(float));
 | |
|     /* FIXME: error checking */
 | |
|     for (x = 0; x < radius; x++) {
 | |
| 	z = ((float) (x + 2) / ((float) radius));
 | |
| 	dev = 0.5 + (((float) (radius * radius)) * 0.001);
 | |
| 	/* you can adjust this factor to change the shape/center-weighting
 | |
| 	   of the gaussian */
 | |
| 	maskData[x] = (float) pow((1.0 / sqrt(2.0 * 3.14159265359 * dev)),
 | |
| 				  ((-(z - 1.0) * -(x - 1.0)) /
 | |
| 				   (2.0 * dev)));
 | |
|     }
 | |
| 
 | |
|     /* if there's any remainder, multiply the first/last values in
 | |
|        MaskData it.  this allows us to support float radius values. */
 | |
|     if (remainder > 0.0) {
 | |
| 	maskData[0] *= remainder;
 | |
| 	maskData[radius - 1] *= remainder;
 | |
|     }
 | |
| 
 | |
|     for (x = 0; x < radius; x++) {
 | |
| 	/* this is done separately now due to the correction for float
 | |
| 	   radius values above */
 | |
| 	sum += maskData[x];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < radius; i++) {
 | |
| 	maskData[i] *= (1.0 / sum);
 | |
| 	/* printf("%f\n", maskData[i]); */
 | |
|     }
 | |
| 
 | |
|     /* create a temporary memory buffer for the data for the first pass
 | |
|        memset the buffer to 0 so we can use it directly with += */
 | |
| 
 | |
|     /* don't bother about alpha/padding */
 | |
|     buffer = calloc((size_t) (im->xsize * im->ysize * channels),
 | |
| 		    sizeof(float));
 | |
|     if (buffer == NULL)
 | |
| 	return ImagingError_MemoryError();
 | |
| 
 | |
|     /* be nice to other threads while you go off to lala land */
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     /* memset(buffer, 0, sizeof(buffer)); */
 | |
| 
 | |
|     newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
 | |
| 
 | |
|     /* perform a blur on each line, and place in the temporary storage buffer */
 | |
|     for (y = 0; y < im->ysize; y++) {
 | |
| 	if (channels == 1 && im->image8 != NULL) {
 | |
| 	    line8 = (UINT8 *) im->image8[y];
 | |
| 	} else {
 | |
| 	    line = im->image32[y];
 | |
| 	}
 | |
| 	for (x = 0; x < im->xsize; x++) {
 | |
| 	    newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
 | |
| 	    /* for each neighbor pixel, factor in its value/weighting to the
 | |
| 	       current pixel */
 | |
| 	    for (pix = 0; pix < radius; pix++) {
 | |
| 		/* figure the offset of this neighbor pixel */
 | |
| 		offset =
 | |
| 		    (int) ((-((float) radius / 2.0) + (float) pix) + 0.5);
 | |
| 		if (x + offset < 0)
 | |
| 		    offset = -x;
 | |
| 		else if (x + offset >= im->xsize)
 | |
| 		    offset = im->xsize - x - 1;
 | |
| 
 | |
| 		/* add (neighbor pixel value * maskData[pix]) to the current
 | |
| 		   pixel value */
 | |
| 		if (channels == 1) {
 | |
| 		    buffer[(y * im->xsize) + x] +=
 | |
| 			((float) ((UINT8 *) & line8[x + offset])[0]) *
 | |
| 			(maskData[pix]);
 | |
| 		} else {
 | |
| 		    for (channel = 0; channel < channels; channel++) {
 | |
| 			buffer[(y * im->xsize * channels) +
 | |
| 			       (x * channels) + channel] +=
 | |
| 			    ((float) ((UINT8 *) & line[x + offset])
 | |
| 			     [channel]) * (maskData[pix]);
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* perform a blur on each column in the buffer, and place in the
 | |
|        output image */
 | |
|     for (x = 0; x < im->xsize; x++) {
 | |
| 	for (y = 0; y < im->ysize; y++) {
 | |
| 	    newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
 | |
| 	    /* for each neighbor pixel, factor in its value/weighting to the
 | |
| 	       current pixel */
 | |
| 	    for (pix = 0; pix < radius; pix++) {
 | |
| 		/* figure the offset of this neighbor pixel */
 | |
| 		offset =
 | |
| 		    (int) (-((float) radius / 2.0) + (float) pix + 0.5);
 | |
| 		if (y + offset < 0)
 | |
| 		    offset = -y;
 | |
| 		else if (y + offset >= im->ysize)
 | |
| 		    offset = im->ysize - y - 1;
 | |
| 		/* add (neighbor pixel value * maskData[pix]) to the current
 | |
| 		   pixel value */
 | |
| 		for (channel = 0; channel < channels; channel++) {
 | |
| 		    newPixel[channel] +=
 | |
| 			(buffer
 | |
| 			 [((y + offset) * im->xsize * channels) +
 | |
| 			  (x * channels) + channel]) * (maskData[pix]);
 | |
| 		}
 | |
| 	    }
 | |
| 	    /* if the image is RGBX or RGBA, copy the 4th channel data to
 | |
| 	       newPixel, so it gets put in imOut */
 | |
| 	    if (strcmp(im->mode, "RGBX") == 0
 | |
| 		|| strcmp(im->mode, "RGBA") == 0) {
 | |
| 	      newPixel[3] = (float) ((UINT8 *) & line[x + offset])[3];
 | |
| 	    }
 | |
| 
 | |
| 	    /* pack the channels into an INT32 so we can put them back in
 | |
| 	       the PIL image */
 | |
| 	    newPixelFinals = 0;
 | |
| 	    if (channels == 1) {
 | |
| 		newPixelFinals = clip(newPixel[0]);
 | |
| 	    } else {
 | |
| 		/* for RGB, the fourth channel isn't used anyways, so just
 | |
| 		   pack a 0 in there, this saves checking the mode for each
 | |
| 		   pixel. */
 | |
| 		/* this doesn't work on little-endian machines... fix it! */
 | |
| 		newPixelFinals =
 | |
| 		    clip(newPixel[0]) | clip(newPixel[1]) << 8 |
 | |
| 		    clip(newPixel[2]) << 16 | clip(newPixel[3]) << 24;
 | |
| 	    }
 | |
| 	    /* set the resulting pixel in imOut */
 | |
| 	    if (channels == 1) {
 | |
| 		imOut->image8[y][x] = (UINT8) newPixelFinals;
 | |
| 	    } else {
 | |
| 		imOut->image32[y][x] = newPixelFinals;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* free the buffer */
 | |
|     free(buffer);
 | |
| 
 | |
|     /* get the GIL back so Python knows who you are */
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 | |
| 
 | |
| Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius)
 | |
| {
 | |
|     int channels = 0;
 | |
|     int padding = 0;
 | |
| 
 | |
|     if (strcmp(im->mode, "RGB") == 0) {
 | |
| 	channels = 3;
 | |
| 	padding = 1;
 | |
|     } else if (strcmp(im->mode, "RGBA") == 0) {
 | |
| 	channels = 3;
 | |
| 	padding = 1;
 | |
|     } else if (strcmp(im->mode, "RGBX") == 0) {
 | |
| 	channels = 3;
 | |
| 	padding = 1;
 | |
|     } else if (strcmp(im->mode, "CMYK") == 0) {
 | |
| 	channels = 4;
 | |
| 	padding = 0;
 | |
|     } else if (strcmp(im->mode, "L") == 0) {
 | |
| 	channels = 1;
 | |
| 	padding = 0;
 | |
|     } else
 | |
| 	return ImagingError_ModeError();
 | |
| 
 | |
|     return gblur(im, imOut, radius, channels, padding);
 | |
| }
 | |
| 
 | |
| Imaging
 | |
| ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
 | |
| 		   int threshold)
 | |
| {
 | |
|     ImagingSectionCookie cookie;
 | |
| 
 | |
|     Imaging result;
 | |
|     int channel = 0;
 | |
|     int channels = 0;
 | |
|     int padding = 0;
 | |
| 
 | |
|     int x = 0;
 | |
|     int y = 0;
 | |
| 
 | |
|     int *lineIn = NULL;
 | |
|     int *lineOut = NULL;
 | |
|     UINT8 *lineIn8 = NULL;
 | |
|     UINT8 *lineOut8 = NULL;
 | |
| 
 | |
|     int diff = 0;
 | |
| 
 | |
|     INT32 newPixel = 0;
 | |
| 
 | |
|     if (strcmp(im->mode, "RGB") == 0) {
 | |
| 	channels = 3;
 | |
| 	padding = 1;
 | |
|     } else if (strcmp(im->mode, "RGBA") == 0) {
 | |
| 	channels = 3;
 | |
| 	padding = 1;
 | |
|     } else if (strcmp(im->mode, "RGBX") == 0) {
 | |
| 	channels = 3;
 | |
| 	padding = 1;
 | |
|     } else if (strcmp(im->mode, "CMYK") == 0) {
 | |
| 	channels = 4;
 | |
| 	padding = 0;
 | |
|     } else if (strcmp(im->mode, "L") == 0) {
 | |
| 	channels = 1;
 | |
| 	padding = 0;
 | |
|     } else
 | |
| 	return ImagingError_ModeError();
 | |
| 
 | |
|     /* first, do a gaussian blur on the image, putting results in imOut
 | |
|        temporarily */
 | |
|     result = gblur(im, imOut, radius, channels, padding);
 | |
|     if (!result)
 | |
| 	return NULL;
 | |
| 
 | |
|     /* now, go through each pixel, compare "normal" pixel to blurred
 | |
|        pixel.  if the difference is more than threshold values, apply
 | |
|        the OPPOSITE correction to the amount of blur, multiplied by
 | |
|        percent. */
 | |
| 
 | |
|     ImagingSectionEnter(&cookie);
 | |
| 
 | |
|     for (y = 0; y < im->ysize; y++) {
 | |
| 	if (channels == 1) {
 | |
| 	    lineIn8 = im->image8[y];
 | |
| 	    lineOut8 = imOut->image8[y];
 | |
| 	} else {
 | |
| 	    lineIn = im->image32[y];
 | |
| 	    lineOut = imOut->image32[y];
 | |
| 	}
 | |
| 	for (x = 0; x < im->xsize; x++) {
 | |
| 	    newPixel = 0;
 | |
| 	    /* compare in/out pixels, apply sharpening */
 | |
| 	    if (channels == 1) {
 | |
| 		diff =
 | |
| 		    ((UINT8 *) & lineIn8[x])[0] -
 | |
| 		    ((UINT8 *) & lineOut8[x])[0];
 | |
| 		if (abs(diff) > threshold) {
 | |
| 		    /* add the diff*percent to the original pixel */
 | |
| 		    imOut->image8[y][x] =
 | |
| 			clip((((UINT8 *) & lineIn8[x])[0]) +
 | |
| 			     (diff * ((float) percent) / 100.0));
 | |
| 		} else {
 | |
| 		    /* newPixel is the same as imIn */
 | |
| 		    imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    else {
 | |
| 		for (channel = 0; channel < channels; channel++) {
 | |
| 		    diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
 | |
| 				  (((UINT8 *) & lineOut[x])[channel]));
 | |
| 		    if (abs(diff) > threshold) {
 | |
| 			/* add the diff*percent to the original pixel
 | |
| 			   this may not work for little-endian systems, fix it! */
 | |
| 			newPixel =
 | |
| 			    newPixel |
 | |
| 			    clip((float) (((UINT8 *) & lineIn[x])[channel])
 | |
| 				 +
 | |
| 				 (diff *
 | |
| 				  (((float) percent /
 | |
| 				    100.0)))) << (channel * 8);
 | |
| 		    } else {
 | |
| 			/* newPixel is the same as imIn
 | |
| 			   this may not work for little-endian systems, fix it! */
 | |
| 			newPixel =
 | |
| 			    newPixel | ((UINT8 *) & lineIn[x])[channel] <<
 | |
| 			    (channel * 8);
 | |
| 		    }
 | |
| 		}
 | |
| 		if (strcmp(im->mode, "RGBX") == 0
 | |
| 		    || strcmp(im->mode, "RGBA") == 0) {
 | |
| 		    /* preserve the alpha channel
 | |
| 		       this may not work for little-endian systems, fix it! */
 | |
| 		    newPixel =
 | |
| 			newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
 | |
| 		}
 | |
| 		imOut->image32[y][x] = newPixel;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     ImagingSectionLeave(&cookie);
 | |
| 
 | |
|     return imOut;
 | |
| }
 |