Pillow/src/encode.c
Benjamin Gilbert 4b422db243 Add keep_rgb option to prevent RGB -> YCbCr conversion during JPEG write
libjpeg automatically converts RGB to YCbCr by default.  Add a keep_rgb
option to disable libjpeg's automatic conversion of RGB images during
write.
2023-12-13 18:26:35 -06:00

1383 lines
41 KiB
C

/*
* The Python Imaging Library.
*
* standard encoder interfaces for the Imaging library
*
* History:
* 1996-04-19 fl Based on decoders.c
* 1996-05-12 fl Compile cleanly as C++
* 1996-12-30 fl Plugged potential memory leak for tiled images
* 1997-01-03 fl Added GIF encoder
* 1997-01-05 fl Plugged encoder buffer leaks
* 1997-01-11 fl Added encode_to_file method
* 1998-03-09 fl Added mode/rawmode argument to encoders
* 1998-07-09 fl Added interlace argument to GIF encoder
* 1999-02-07 fl Added PCX encoder
*
* Copyright (c) 1997-2001 by Secret Labs AB
* Copyright (c) 1996-1997 by Fredrik Lundh
*
* See the README file for information on usage and redistribution.
*/
/* FIXME: make these pluggable! */
#define PY_SSIZE_T_CLEAN
#include "Python.h"
#include "libImaging/Imaging.h"
#include "libImaging/Gif.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h> /* write */
#endif
/* -------------------------------------------------------------------- */
/* Common */
/* -------------------------------------------------------------------- */
typedef struct {
PyObject_HEAD int (*encode)(
Imaging im, ImagingCodecState state, UINT8 *buffer, int bytes);
int (*cleanup)(ImagingCodecState state);
struct ImagingCodecStateInstance state;
Imaging im;
PyObject *lock;
int pushes_fd;
} ImagingEncoderObject;
static PyTypeObject ImagingEncoderType;
static ImagingEncoderObject *
PyImaging_EncoderNew(int contextsize) {
ImagingEncoderObject *encoder;
void *context;
if (PyType_Ready(&ImagingEncoderType) < 0) {
return NULL;
}
encoder = PyObject_New(ImagingEncoderObject, &ImagingEncoderType);
if (encoder == NULL) {
return NULL;
}
/* Clear the encoder state */
memset(&encoder->state, 0, sizeof(encoder->state));
/* Allocate encoder context */
if (contextsize > 0) {
context = (void *)calloc(1, contextsize);
if (!context) {
Py_DECREF(encoder);
(void)ImagingError_MemoryError();
return NULL;
}
} else {
context = 0;
}
/* Initialize encoder context */
encoder->state.context = context;
/* Most encoders don't need this */
encoder->cleanup = NULL;
/* Target image */
encoder->lock = NULL;
encoder->im = NULL;
encoder->pushes_fd = 0;
return encoder;
}
static void
_dealloc(ImagingEncoderObject *encoder) {
if (encoder->cleanup) {
encoder->cleanup(&encoder->state);
}
free(encoder->state.buffer);
free(encoder->state.context);
Py_XDECREF(encoder->lock);
Py_XDECREF(encoder->state.fd);
PyObject_Del(encoder);
}
static PyObject *
_encode_cleanup(ImagingEncoderObject *encoder, PyObject *args) {
int status = 0;
if (encoder->cleanup) {
status = encoder->cleanup(&encoder->state);
}
return Py_BuildValue("i", status);
}
static PyObject *
_encode(ImagingEncoderObject *encoder, PyObject *args) {
PyObject *buf;
PyObject *result;
int status;
/* Encode to a Python string (allocated by this method) */
Py_ssize_t bufsize = 16384;
if (!PyArg_ParseTuple(args, "|n", &bufsize)) {
return NULL;
}
buf = PyBytes_FromStringAndSize(NULL, bufsize);
if (!buf) {
return NULL;
}
status = encoder->encode(
encoder->im, &encoder->state, (UINT8 *)PyBytes_AsString(buf), bufsize);
/* adjust string length to avoid slicing in encoder */
if (_PyBytes_Resize(&buf, (status > 0) ? status : 0) < 0) {
return NULL;
}
result = Py_BuildValue("iiO", status, encoder->state.errcode, buf);
Py_DECREF(buf); /* must release buffer!!! */
return result;
}
static PyObject *
_encode_to_pyfd(ImagingEncoderObject *encoder) {
PyObject *result;
int status;
if (!encoder->pushes_fd) {
// UNDONE, appropriate errcode???
result = Py_BuildValue("ii", 0, IMAGING_CODEC_CONFIG);
return result;
}
status = encoder->encode(encoder->im, &encoder->state, (UINT8 *)NULL, 0);
result = Py_BuildValue("ii", status, encoder->state.errcode);
return result;
}
static PyObject *
_encode_to_file(ImagingEncoderObject *encoder, PyObject *args) {
UINT8 *buf;
int status;
ImagingSectionCookie cookie;
/* Encode to a file handle */
Py_ssize_t fh;
Py_ssize_t bufsize = 16384;
if (!PyArg_ParseTuple(args, "n|n", &fh, &bufsize)) {
return NULL;
}
/* Allocate an encoder buffer */
/* malloc check ok, either constant int, or checked by PyArg_ParseTuple */
buf = (UINT8 *)malloc(bufsize);
if (!buf) {
return ImagingError_MemoryError();
}
ImagingSectionEnter(&cookie);
do {
/* This replaces the inner loop in the ImageFile _save
function. */
status = encoder->encode(encoder->im, &encoder->state, buf, bufsize);
if (status > 0) {
if (write(fh, buf, status) < 0) {
ImagingSectionLeave(&cookie);
free(buf);
return PyErr_SetFromErrno(PyExc_OSError);
}
}
} while (encoder->state.errcode == 0);
ImagingSectionLeave(&cookie);
free(buf);
return Py_BuildValue("i", encoder->state.errcode);
}
extern Imaging
PyImaging_AsImaging(PyObject *op);
static PyObject *
_setimage(ImagingEncoderObject *encoder, PyObject *args) {
PyObject *op;
Imaging im;
ImagingCodecState state;
Py_ssize_t x0, y0, x1, y1;
/* Define where image data should be stored */
x0 = y0 = x1 = y1 = 0;
/* FIXME: should publish the ImagingType descriptor */
if (!PyArg_ParseTuple(args, "O|(nnnn)", &op, &x0, &y0, &x1, &y1)) {
return NULL;
}
im = PyImaging_AsImaging(op);
if (!im) {
return NULL;
}
encoder->im = im;
state = &encoder->state;
if (x0 == 0 && x1 == 0) {
state->xsize = im->xsize;
state->ysize = im->ysize;
} else {
state->xoff = x0;
state->yoff = y0;
state->xsize = x1 - x0;
state->ysize = y1 - y0;
}
if (state->xsize <= 0 || state->xsize + state->xoff > im->xsize ||
state->ysize <= 0 || state->ysize + state->yoff > im->ysize) {
PyErr_SetString(PyExc_SystemError, "tile cannot extend outside image");
return NULL;
}
/* Allocate memory buffer (if bits field is set) */
if (state->bits > 0) {
if (state->xsize > ((INT_MAX / state->bits) - 7)) {
return ImagingError_MemoryError();
}
state->bytes = (state->bits * state->xsize + 7) / 8;
/* malloc check ok, overflow checked above */
state->buffer = (UINT8 *)calloc(1, state->bytes);
if (!state->buffer) {
return ImagingError_MemoryError();
}
}
/* Keep a reference to the image object, to make sure it doesn't
go away before we do */
Py_INCREF(op);
Py_XDECREF(encoder->lock);
encoder->lock = op;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
_setfd(ImagingEncoderObject *encoder, PyObject *args) {
PyObject *fd;
ImagingCodecState state;
if (!PyArg_ParseTuple(args, "O", &fd)) {
return NULL;
}
state = &encoder->state;
Py_XINCREF(fd);
state->fd = fd;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
_get_pushes_fd(ImagingEncoderObject *encoder, void *closure) {
return PyBool_FromLong(encoder->pushes_fd);
}
static struct PyMethodDef methods[] = {
{"encode", (PyCFunction)_encode, METH_VARARGS},
{"cleanup", (PyCFunction)_encode_cleanup, METH_VARARGS},
{"encode_to_file", (PyCFunction)_encode_to_file, METH_VARARGS},
{"encode_to_pyfd", (PyCFunction)_encode_to_pyfd, METH_NOARGS},
{"setimage", (PyCFunction)_setimage, METH_VARARGS},
{"setfd", (PyCFunction)_setfd, METH_VARARGS},
{NULL, NULL} /* sentinel */
};
static struct PyGetSetDef getseters[] = {
{"pushes_fd",
(getter)_get_pushes_fd,
NULL,
"True if this decoder expects to push directly to self.fd",
NULL},
{NULL, NULL, NULL, NULL, NULL} /* sentinel */
};
static PyTypeObject ImagingEncoderType = {
PyVarObject_HEAD_INIT(NULL, 0) "ImagingEncoder", /*tp_name*/
sizeof(ImagingEncoderObject), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
(destructor)_dealloc, /*tp_dealloc*/
0, /*tp_vectorcall_offset*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_as_async*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
methods, /*tp_methods*/
0, /*tp_members*/
getseters, /*tp_getset*/
};
/* -------------------------------------------------------------------- */
int
get_packer(ImagingEncoderObject *encoder, const char *mode, const char *rawmode) {
int bits;
ImagingShuffler pack;
pack = ImagingFindPacker(mode, rawmode, &bits);
if (!pack) {
Py_DECREF(encoder);
PyErr_Format(PyExc_ValueError, "No packer found from %s to %s", mode, rawmode);
return -1;
}
encoder->state.shuffle = pack;
encoder->state.bits = bits;
return 0;
}
/* -------------------------------------------------------------------- */
/* EPS */
/* -------------------------------------------------------------------- */
PyObject *
PyImaging_EpsEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL) {
return NULL;
}
encoder->encode = ImagingEpsEncode;
return (PyObject *)encoder;
}
/* -------------------------------------------------------------------- */
/* GIF */
/* -------------------------------------------------------------------- */
PyObject *
PyImaging_GifEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
char *rawmode;
Py_ssize_t bits = 8;
Py_ssize_t interlace = 0;
if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &bits, &interlace)) {
return NULL;
}
encoder = PyImaging_EncoderNew(sizeof(GIFENCODERSTATE));
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
encoder->encode = ImagingGifEncode;
((GIFENCODERSTATE *)encoder->state.context)->bits = bits;
((GIFENCODERSTATE *)encoder->state.context)->interlace = interlace;
return (PyObject *)encoder;
}
/* -------------------------------------------------------------------- */
/* PCX */
/* -------------------------------------------------------------------- */
PyObject *
PyImaging_PcxEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
char *rawmode;
Py_ssize_t bits = 8;
if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &bits)) {
return NULL;
}
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
encoder->encode = ImagingPcxEncode;
return (PyObject *)encoder;
}
/* -------------------------------------------------------------------- */
/* RAW */
/* -------------------------------------------------------------------- */
PyObject *
PyImaging_RawEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
char *rawmode;
Py_ssize_t stride = 0;
Py_ssize_t ystep = 1;
if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &stride, &ystep)) {
return NULL;
}
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
encoder->encode = ImagingRawEncode;
encoder->state.ystep = ystep;
encoder->state.count = stride;
return (PyObject *)encoder;
}
/* -------------------------------------------------------------------- */
/* TGA */
/* -------------------------------------------------------------------- */
PyObject *
PyImaging_TgaRleEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
char *rawmode;
Py_ssize_t ystep = 1;
if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &ystep)) {
return NULL;
}
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
encoder->encode = ImagingTgaRleEncode;
encoder->state.ystep = ystep;
return (PyObject *)encoder;
}
/* -------------------------------------------------------------------- */
/* XBM */
/* -------------------------------------------------------------------- */
PyObject *
PyImaging_XbmEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, "1", "1;R") < 0) {
return NULL;
}
encoder->encode = ImagingXbmEncode;
return (PyObject *)encoder;
}
/* -------------------------------------------------------------------- */
/* ZIP */
/* -------------------------------------------------------------------- */
#ifdef HAVE_LIBZ
#include "libImaging/ZipCodecs.h"
PyObject *
PyImaging_ZipEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
char *rawmode;
Py_ssize_t optimize = 0;
Py_ssize_t compress_level = -1;
Py_ssize_t compress_type = -1;
char *dictionary = NULL;
Py_ssize_t dictionary_size = 0;
if (!PyArg_ParseTuple(
args,
"ss|nnny#",
&mode,
&rawmode,
&optimize,
&compress_level,
&compress_type,
&dictionary,
&dictionary_size)) {
return NULL;
}
/* Copy to avoid referencing Python's memory */
if (dictionary && dictionary_size > 0) {
/* malloc check ok, size comes from PyArg_ParseTuple */
char *p = malloc(dictionary_size);
if (!p) {
return ImagingError_MemoryError();
}
memcpy(p, dictionary, dictionary_size);
dictionary = p;
} else {
dictionary = NULL;
}
encoder = PyImaging_EncoderNew(sizeof(ZIPSTATE));
if (encoder == NULL) {
free(dictionary);
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0) {
free(dictionary);
return NULL;
}
encoder->encode = ImagingZipEncode;
encoder->cleanup = ImagingZipEncodeCleanup;
if (rawmode[0] == 'P') {
/* disable filtering */
((ZIPSTATE *)encoder->state.context)->mode = ZIP_PNG_PALETTE;
}
((ZIPSTATE *)encoder->state.context)->optimize = optimize;
((ZIPSTATE *)encoder->state.context)->compress_level = compress_level;
((ZIPSTATE *)encoder->state.context)->compress_type = compress_type;
((ZIPSTATE *)encoder->state.context)->dictionary = dictionary;
((ZIPSTATE *)encoder->state.context)->dictionary_size = dictionary_size;
return (PyObject *)encoder;
}
#endif
/* -------------------------------------------------------------------- */
/* LibTiff */
/* -------------------------------------------------------------------- */
#ifdef HAVE_LIBTIFF
#include "libImaging/TiffDecode.h"
#include <string.h>
PyObject *
PyImaging_LibTiffEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
char *rawmode;
char *compname;
char *filename;
Py_ssize_t fp;
PyObject *tags, *types;
PyObject *key, *value;
Py_ssize_t pos = 0;
int key_int, status, is_core_tag, is_var_length, num_core_tags, i;
TIFFDataType type = TIFF_NOTYPE;
// This list also exists in TiffTags.py
const int core_tags[] = {256, 257, 258, 259, 262, 263, 266, 269, 274,
277, 278, 280, 281, 340, 341, 282, 283, 284,
286, 287, 296, 297, 320, 321, 338, 32995, 32998,
32996, 339, 32997, 330, 531, 530, 65537, 301, 532};
Py_ssize_t tags_size;
PyObject *item;
if (!PyArg_ParseTuple(
args,
"sssnsOO",
&mode,
&rawmode,
&compname,
&fp,
&filename,
&tags,
&types)) {
return NULL;
}
if (!PyList_Check(tags)) {
PyErr_SetString(PyExc_ValueError, "Invalid tags list");
return NULL;
} else {
tags_size = PyList_Size(tags);
TRACE(("tags size: %d\n", (int)tags_size));
for (pos = 0; pos < tags_size; pos++) {
item = PyList_GetItem(tags, pos);
if (!PyTuple_Check(item) || PyTuple_Size(item) != 2) {
PyErr_SetString(PyExc_ValueError, "Invalid tags list");
return NULL;
}
}
pos = 0;
}
if (!PyDict_Check(types)) {
PyErr_SetString(PyExc_ValueError, "Invalid types dictionary");
return NULL;
}
TRACE(("new tiff encoder %s fp: %d, filename: %s \n", compname, fp, filename));
encoder = PyImaging_EncoderNew(sizeof(TIFFSTATE));
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
if (!ImagingLibTiffEncodeInit(&encoder->state, filename, fp)) {
Py_DECREF(encoder);
PyErr_SetString(PyExc_RuntimeError, "tiff codec initialization failed");
return NULL;
}
num_core_tags = sizeof(core_tags) / sizeof(int);
for (pos = 0; pos < tags_size; pos++) {
item = PyList_GetItem(tags, pos);
// We already checked that tags is a 2-tuple list.
key = PyTuple_GetItem(item, 0);
key_int = (int)PyLong_AsLong(key);
value = PyTuple_GetItem(item, 1);
status = 0;
is_core_tag = 0;
is_var_length = 0;
type = TIFF_NOTYPE;
for (i = 0; i < num_core_tags; i++) {
if (core_tags[i] == key_int) {
is_core_tag = 1;
break;
}
}
if (!is_core_tag) {
PyObject *tag_type = PyDict_GetItem(types, key);
if (tag_type) {
int type_int = PyLong_AsLong(tag_type);
if (type_int >= TIFF_BYTE && type_int <= TIFF_DOUBLE) {
type = (TIFFDataType)type_int;
}
}
}
if (type == TIFF_NOTYPE) {
// Autodetect type. Types should not be changed for backwards
// compatibility.
if (PyLong_Check(value)) {
type = TIFF_LONG;
} else if (PyFloat_Check(value)) {
type = TIFF_DOUBLE;
} else if (PyBytes_Check(value)) {
type = TIFF_ASCII;
}
}
if (PyTuple_Check(value)) {
Py_ssize_t len;
len = PyTuple_Size(value);
is_var_length = 1;
if (!len) {
continue;
}
if (type == TIFF_NOTYPE) {
// Autodetect type based on first item. Types should not be
// changed for backwards compatibility.
if (PyLong_Check(PyTuple_GetItem(value, 0))) {
type = TIFF_LONG;
} else if (PyFloat_Check(PyTuple_GetItem(value, 0))) {
type = TIFF_FLOAT;
}
}
}
if (!is_core_tag) {
// Register field for non core tags.
if (type == TIFF_BYTE) {
is_var_length = 1;
}
if (ImagingLibTiffMergeFieldInfo(
&encoder->state, type, key_int, is_var_length)) {
continue;
}
}
if (type == TIFF_BYTE || type == TIFF_UNDEFINED) {
status = ImagingLibTiffSetField(
&encoder->state,
(ttag_t)key_int,
PyBytes_Size(value),
PyBytes_AsString(value));
} else if (is_var_length) {
Py_ssize_t len, i;
TRACE(("Setting from Tuple: %d \n", key_int));
len = PyTuple_Size(value);
if (key_int == TIFFTAG_COLORMAP) {
int stride = 256;
if (len != 768) {
PyErr_SetString(
PyExc_ValueError, "Requiring 768 items for Colormap");
return NULL;
}
UINT16 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(UINT16));
if (av) {
for (i = 0; i < len; i++) {
av[i] = (UINT16)PyLong_AsLong(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state,
(ttag_t)key_int,
av,
av + stride,
av + stride * 2);
free(av);
}
} else if (key_int == TIFFTAG_YCBCRSUBSAMPLING) {
status = ImagingLibTiffSetField(
&encoder->state,
(ttag_t)key_int,
(UINT16)PyLong_AsLong(PyTuple_GetItem(value, 0)),
(UINT16)PyLong_AsLong(PyTuple_GetItem(value, 1)));
} else if (type == TIFF_SHORT) {
UINT16 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(UINT16));
if (av) {
for (i = 0; i < len; i++) {
av[i] = (UINT16)PyLong_AsLong(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, len, av);
free(av);
}
} else if (type == TIFF_LONG) {
UINT32 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(UINT32));
if (av) {
for (i = 0; i < len; i++) {
av[i] = (UINT32)PyLong_AsLong(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, len, av);
free(av);
}
} else if (type == TIFF_SBYTE) {
INT8 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(INT8));
if (av) {
for (i = 0; i < len; i++) {
av[i] = (INT8)PyLong_AsLong(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, len, av);
free(av);
}
} else if (type == TIFF_SSHORT) {
INT16 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(INT16));
if (av) {
for (i = 0; i < len; i++) {
av[i] = (INT16)PyLong_AsLong(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, len, av);
free(av);
}
} else if (type == TIFF_SLONG) {
INT32 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(INT32));
if (av) {
for (i = 0; i < len; i++) {
av[i] = (INT32)PyLong_AsLong(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, len, av);
free(av);
}
} else if (type == TIFF_FLOAT) {
FLOAT32 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(FLOAT32));
if (av) {
for (i = 0; i < len; i++) {
av[i] = (FLOAT32)PyFloat_AsDouble(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, len, av);
free(av);
}
} else if (type == TIFF_DOUBLE) {
FLOAT64 *av;
/* malloc check ok, calloc checks for overflow */
av = calloc(len, sizeof(FLOAT64));
if (av) {
for (i = 0; i < len; i++) {
av[i] = PyFloat_AsDouble(PyTuple_GetItem(value, i));
}
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, len, av);
free(av);
}
}
} else {
if (type == TIFF_SHORT) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, (UINT16)PyLong_AsLong(value));
} else if (type == TIFF_LONG) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, PyLong_AsLongLong(value));
} else if (type == TIFF_SSHORT) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, (INT16)PyLong_AsLong(value));
} else if (type == TIFF_SLONG) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, (INT32)PyLong_AsLong(value));
} else if (type == TIFF_FLOAT) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, (FLOAT32)PyFloat_AsDouble(value));
} else if (type == TIFF_DOUBLE) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, (FLOAT64)PyFloat_AsDouble(value));
} else if (type == TIFF_SBYTE) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, (INT8)PyLong_AsLong(value));
} else if (type == TIFF_ASCII) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, PyBytes_AsString(value));
} else if (type == TIFF_RATIONAL) {
status = ImagingLibTiffSetField(
&encoder->state, (ttag_t)key_int, (FLOAT64)PyFloat_AsDouble(value));
} else {
TRACE(
("Unhandled type for key %d : %s \n",
key_int,
PyBytes_AsString(PyObject_Str(value))));
}
}
if (!status) {
TRACE(("Error setting Field\n"));
Py_DECREF(encoder);
PyErr_SetString(PyExc_RuntimeError, "Error setting from dictionary");
return NULL;
}
}
encoder->encode = ImagingLibTiffEncode;
return (PyObject *)encoder;
}
#endif
/* -------------------------------------------------------------------- */
/* JPEG */
/* -------------------------------------------------------------------- */
#ifdef HAVE_LIBJPEG
/* We better define this encoder last in this file, so the following
undef's won't mess things up for the Imaging library proper. */
#undef HAVE_PROTOTYPES
#undef HAVE_STDDEF_H
#undef HAVE_STDLIB_H
#undef UINT8
#undef UINT16
#undef UINT32
#undef INT8
#undef INT16
#undef INT32
#include "libImaging/Jpeg.h"
static unsigned int *
get_qtables_arrays(PyObject *qtables, int *qtablesLen) {
PyObject *tables;
PyObject *table;
PyObject *table_data;
int i, j, num_tables;
unsigned int *qarrays;
if ((qtables == NULL) || (qtables == Py_None)) {
return NULL;
}
if (!PySequence_Check(qtables)) {
PyErr_SetString(PyExc_ValueError, "Invalid quantization tables");
return NULL;
}
tables = PySequence_Fast(qtables, "expected a sequence");
num_tables = PySequence_Size(qtables);
if (num_tables < 1 || num_tables > NUM_QUANT_TBLS) {
PyErr_SetString(
PyExc_ValueError,
"Not a valid number of quantization tables. Should be between 1 and 4.");
Py_DECREF(tables);
return NULL;
}
/* malloc check ok, num_tables <4, DCTSIZE2 == 64 from jpeglib.h */
qarrays = (unsigned int *)malloc(num_tables * DCTSIZE2 * sizeof(unsigned int));
if (!qarrays) {
Py_DECREF(tables);
return ImagingError_MemoryError();
}
for (i = 0; i < num_tables; i++) {
table = PySequence_Fast_GET_ITEM(tables, i);
if (!PySequence_Check(table)) {
PyErr_SetString(PyExc_ValueError, "Invalid quantization tables");
goto JPEG_QTABLES_ERR;
}
if (PySequence_Size(table) != DCTSIZE2) {
PyErr_SetString(PyExc_ValueError, "Invalid quantization table size");
goto JPEG_QTABLES_ERR;
}
table_data = PySequence_Fast(table, "expected a sequence");
for (j = 0; j < DCTSIZE2; j++) {
qarrays[i * DCTSIZE2 + j] =
PyLong_AS_LONG(PySequence_Fast_GET_ITEM(table_data, j));
}
Py_DECREF(table_data);
}
*qtablesLen = num_tables;
JPEG_QTABLES_ERR:
Py_DECREF(tables); // Run on both error and not error
if (PyErr_Occurred()) {
free(qarrays);
qarrays = NULL;
return NULL;
}
return qarrays;
}
PyObject *
PyImaging_JpegEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
char *rawmode;
Py_ssize_t quality = 0;
Py_ssize_t progressive = 0;
Py_ssize_t smooth = 0;
Py_ssize_t optimize = 0;
int keep_rgb = 0;
Py_ssize_t streamtype = 0; /* 0=interchange, 1=tables only, 2=image only */
Py_ssize_t xdpi = 0, ydpi = 0;
Py_ssize_t subsampling = -1; /* -1=default, 0=none, 1=medium, 2=high */
Py_ssize_t restart_marker_blocks = 0;
Py_ssize_t restart_marker_rows = 0;
PyObject *qtables = NULL;
unsigned int *qarrays = NULL;
int qtablesLen = 0;
char *comment = NULL;
Py_ssize_t comment_size;
char *extra = NULL;
Py_ssize_t extra_size;
char *rawExif = NULL;
Py_ssize_t rawExifLen = 0;
if (!PyArg_ParseTuple(
args,
"ss|nnnnpnnnnnnOz#y#y#",
&mode,
&rawmode,
&quality,
&progressive,
&smooth,
&optimize,
&keep_rgb,
&streamtype,
&xdpi,
&ydpi,
&subsampling,
&restart_marker_blocks,
&restart_marker_rows,
&qtables,
&comment,
&comment_size,
&extra,
&extra_size,
&rawExif,
&rawExifLen)) {
return NULL;
}
encoder = PyImaging_EncoderNew(sizeof(JPEGENCODERSTATE));
if (encoder == NULL) {
return NULL;
}
// libjpeg-turbo supports different output formats.
// We are choosing Pillow's native format (3 color bytes + 1 padding)
// to avoid extra conversion in Pack.c.
if (ImagingJpegUseJCSExtensions() && strcmp(rawmode, "RGB") == 0) {
rawmode = "RGBX";
}
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
// Freed in JpegEncode, Case 6
qarrays = get_qtables_arrays(qtables, &qtablesLen);
if (comment && comment_size > 0) {
/* malloc check ok, length is from python parsearg */
char *p = malloc(comment_size); // Freed in JpegEncode, Case 6
if (!p) {
return ImagingError_MemoryError();
}
memcpy(p, comment, comment_size);
comment = p;
} else {
comment = NULL;
}
if (extra && extra_size > 0) {
/* malloc check ok, length is from python parsearg */
char *p = malloc(extra_size); // Freed in JpegEncode, Case 6
if (!p) {
if (comment) {
free(comment);
}
return ImagingError_MemoryError();
}
memcpy(p, extra, extra_size);
extra = p;
} else {
extra = NULL;
}
if (rawExif && rawExifLen > 0) {
/* malloc check ok, length is from python parsearg */
char *pp = malloc(rawExifLen); // Freed in JpegEncode, Case 6
if (!pp) {
if (comment) {
free(comment);
}
if (extra) {
free(extra);
}
return ImagingError_MemoryError();
}
memcpy(pp, rawExif, rawExifLen);
rawExif = pp;
} else {
rawExif = NULL;
}
encoder->encode = ImagingJpegEncode;
strncpy(((JPEGENCODERSTATE *)encoder->state.context)->rawmode, rawmode, 8);
((JPEGENCODERSTATE *)encoder->state.context)->keep_rgb = keep_rgb;
((JPEGENCODERSTATE *)encoder->state.context)->quality = quality;
((JPEGENCODERSTATE *)encoder->state.context)->qtables = qarrays;
((JPEGENCODERSTATE *)encoder->state.context)->qtablesLen = qtablesLen;
((JPEGENCODERSTATE *)encoder->state.context)->subsampling = subsampling;
((JPEGENCODERSTATE *)encoder->state.context)->progressive = progressive;
((JPEGENCODERSTATE *)encoder->state.context)->smooth = smooth;
((JPEGENCODERSTATE *)encoder->state.context)->optimize = optimize;
((JPEGENCODERSTATE *)encoder->state.context)->streamtype = streamtype;
((JPEGENCODERSTATE *)encoder->state.context)->xdpi = xdpi;
((JPEGENCODERSTATE *)encoder->state.context)->ydpi = ydpi;
((JPEGENCODERSTATE *)encoder->state.context)->restart_marker_blocks = restart_marker_blocks;
((JPEGENCODERSTATE *)encoder->state.context)->restart_marker_rows = restart_marker_rows;
((JPEGENCODERSTATE *)encoder->state.context)->comment = comment;
((JPEGENCODERSTATE *)encoder->state.context)->comment_size = comment_size;
((JPEGENCODERSTATE *)encoder->state.context)->extra = extra;
((JPEGENCODERSTATE *)encoder->state.context)->extra_size = extra_size;
((JPEGENCODERSTATE *)encoder->state.context)->rawExif = rawExif;
((JPEGENCODERSTATE *)encoder->state.context)->rawExifLen = rawExifLen;
return (PyObject *)encoder;
}
#endif
/* -------------------------------------------------------------------- */
/* JPEG 2000 */
/* -------------------------------------------------------------------- */
#ifdef HAVE_OPENJPEG
#include "libImaging/Jpeg2K.h"
static void
j2k_decode_coord_tuple(PyObject *tuple, int *x, int *y) {
*x = *y = 0;
if (tuple && PyTuple_Check(tuple) && PyTuple_GET_SIZE(tuple) == 2) {
*x = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 0));
*y = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 1));
if (*x < 0) {
*x = 0;
}
if (*y < 0) {
*y = 0;
}
}
}
PyObject *
PyImaging_Jpeg2KEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
JPEG2KENCODESTATE *context;
char *mode;
char *format;
OPJ_CODEC_FORMAT codec_format;
PyObject *offset = NULL, *tile_offset = NULL, *tile_size = NULL;
char *quality_mode = "rates";
PyObject *quality_layers = NULL;
Py_ssize_t num_resolutions = 0;
PyObject *cblk_size = NULL, *precinct_size = NULL;
PyObject *irreversible = NULL;
char *progression = "LRCP";
OPJ_PROG_ORDER prog_order;
char *cinema_mode = "no";
OPJ_CINEMA_MODE cine_mode;
char mct = 0;
int sgnd = 0;
Py_ssize_t fd = -1;
char *comment;
Py_ssize_t comment_size;
int plt = 0;
if (!PyArg_ParseTuple(
args,
"ss|OOOsOnOOOssbbnz#p",
&mode,
&format,
&offset,
&tile_offset,
&tile_size,
&quality_mode,
&quality_layers,
&num_resolutions,
&cblk_size,
&precinct_size,
&irreversible,
&progression,
&cinema_mode,
&mct,
&sgnd,
&fd,
&comment,
&comment_size,
&plt)) {
return NULL;
}
if (strcmp(format, "j2k") == 0) {
codec_format = OPJ_CODEC_J2K;
} else if (strcmp(format, "jpt") == 0) {
codec_format = OPJ_CODEC_JPT;
} else if (strcmp(format, "jp2") == 0) {
codec_format = OPJ_CODEC_JP2;
} else {
return NULL;
}
if (strcmp(progression, "LRCP") == 0) {
prog_order = OPJ_LRCP;
} else if (strcmp(progression, "RLCP") == 0) {
prog_order = OPJ_RLCP;
} else if (strcmp(progression, "RPCL") == 0) {
prog_order = OPJ_RPCL;
} else if (strcmp(progression, "PCRL") == 0) {
prog_order = OPJ_PCRL;
} else if (strcmp(progression, "CPRL") == 0) {
prog_order = OPJ_CPRL;
} else {
return NULL;
}
if (strcmp(cinema_mode, "no") == 0) {
cine_mode = OPJ_OFF;
} else if (strcmp(cinema_mode, "cinema2k-24") == 0) {
cine_mode = OPJ_CINEMA2K_24;
} else if (strcmp(cinema_mode, "cinema2k-48") == 0) {
cine_mode = OPJ_CINEMA2K_48;
} else if (strcmp(cinema_mode, "cinema4k-24") == 0) {
cine_mode = OPJ_CINEMA4K_24;
} else {
return NULL;
}
encoder = PyImaging_EncoderNew(sizeof(JPEG2KENCODESTATE));
if (!encoder) {
return NULL;
}
encoder->encode = ImagingJpeg2KEncode;
encoder->cleanup = ImagingJpeg2KEncodeCleanup;
encoder->pushes_fd = 1;
context = (JPEG2KENCODESTATE *)encoder->state.context;
context->fd = fd;
context->format = codec_format;
context->offset_x = context->offset_y = 0;
j2k_decode_coord_tuple(offset, &context->offset_x, &context->offset_y);
j2k_decode_coord_tuple(
tile_offset, &context->tile_offset_x, &context->tile_offset_y);
j2k_decode_coord_tuple(tile_size, &context->tile_size_x, &context->tile_size_y);
/* Error on illegal tile offsets */
if (context->tile_size_x && context->tile_size_y) {
if (context->tile_offset_x <= context->offset_x - context->tile_size_x ||
context->tile_offset_y <= context->offset_y - context->tile_size_y) {
PyErr_SetString(
PyExc_ValueError,
"JPEG 2000 tile offset too small; top left tile must "
"intersect image area");
Py_DECREF(encoder);
return NULL;
}
if (context->tile_offset_x > context->offset_x ||
context->tile_offset_y > context->offset_y) {
PyErr_SetString(
PyExc_ValueError,
"JPEG 2000 tile offset too large to cover image area");
Py_DECREF(encoder);
return NULL;
}
}
if (comment && comment_size > 0) {
/* Size is stored as as an uint16, subtract 4 bytes for the header */
if (comment_size >= 65532) {
PyErr_SetString(
PyExc_ValueError,
"JPEG 2000 comment is too long");
Py_DECREF(encoder);
return NULL;
}
char *p = malloc(comment_size + 1);
if (!p) {
Py_DECREF(encoder);
return ImagingError_MemoryError();
}
memcpy(p, comment, comment_size);
p[comment_size] = '\0';
context->comment = p;
}
if (quality_layers && PySequence_Check(quality_layers)) {
context->quality_is_in_db = strcmp(quality_mode, "dB") == 0;
context->quality_layers = quality_layers;
Py_INCREF(quality_layers);
}
context->num_resolutions = num_resolutions;
j2k_decode_coord_tuple(cblk_size, &context->cblk_width, &context->cblk_height);
j2k_decode_coord_tuple(
precinct_size, &context->precinct_width, &context->precinct_height);
context->irreversible = PyObject_IsTrue(irreversible);
context->progression = prog_order;
context->cinema_mode = cine_mode;
context->mct = mct;
context->sgnd = sgnd;
context->plt = plt;
return (PyObject *)encoder;
}
#endif
/*
* Local Variables:
* c-basic-offset: 4
* End:
*
*/