Pillow/mp_compile.py
2014-06-24 15:57:24 -07:00

51 lines
1.6 KiB
Python

# A monkey patch of the base distutils.ccompiler to use parallel builds
# Tested on 2.7, looks to be identical to 3.3.
from multiprocessing import Pool, cpu_count
from distutils.ccompiler import CCompiler
import os
# hideous monkeypatching. but. but. but.
def _mp_compile_one(tp):
(self, obj, build, cc_args, extra_postargs, pp_opts) = tp
try:
src, ext = build[obj]
except KeyError:
return
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
return
def _mp_compile(self, sources, output_dir=None, macros=None,
include_dirs=None, debug=0, extra_preargs=None,
extra_postargs=None, depends=None):
"""Compile one or more source files.
see distutils.ccompiler.CCompiler.compile for comments.
"""
# A concrete compiler class can either override this method
# entirely or implement _compile().
macros, objects, extra_postargs, pp_opts, build = \
self._setup_compile(output_dir, macros, include_dirs, sources,
depends, extra_postargs)
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
try:
max_procs = int(os.environ.get('MAX_CONCURRENCY', cpu_count()))
except:
max_procs = None
pool = Pool(max_procs)
try:
print ("Building using %d processes" % pool._processes)
except: pass
arr = [(self, obj, build, cc_args, extra_postargs, pp_opts) for obj in objects]
results = pool.map_async(_mp_compile_one,arr)
pool.close()
pool.join()
# Return *all* object filenames, not just the ones we just built.
return objects
CCompiler.compile = _mp_compile