Pillow/Tests/test_numpy.py

121 lines
3.7 KiB
Python

from tester import *
from PIL import Image
import struct
try:
import site
import numpy
except ImportError:
skip()
def test_numpy_to_image():
def to_image(dtype, bands=1, bool=0):
if bands == 1:
if bool:
data = [0, 1] * 50
else:
data = list(range(100))
a = numpy.array(data, dtype=dtype)
a.shape = 10, 10
i = Image.fromarray(a)
if list(i.getdata()) != data:
print("data mismatch for", dtype)
else:
data = list(range(100))
a = numpy.array([[x]*bands for x in data], dtype=dtype)
a.shape = 10, 10, bands
i = Image.fromarray(a)
if list(i.split()[0].getdata()) != list(range(100)):
print("data mismatch for", dtype)
# print dtype, list(i.getdata())
return i
# assert_image(to_image(numpy.bool, bool=1), "1", (10, 10))
# assert_image(to_image(numpy.bool8, bool=1), "1", (10, 10))
assert_exception(TypeError, lambda: to_image(numpy.uint))
assert_image(to_image(numpy.uint8), "L", (10, 10))
assert_exception(TypeError, lambda: to_image(numpy.uint16))
assert_exception(TypeError, lambda: to_image(numpy.uint32))
assert_exception(TypeError, lambda: to_image(numpy.uint64))
assert_image(to_image(numpy.int8), "I", (10, 10))
if Image._ENDIAN == '<': # Little endian
assert_image(to_image(numpy.int16), "I;16", (10, 10))
else:
assert_image(to_image(numpy.int16), "I;16B", (10, 10))
assert_image(to_image(numpy.int32), "I", (10, 10))
assert_exception(TypeError, lambda: to_image(numpy.int64))
assert_image(to_image(numpy.float), "F", (10, 10))
assert_image(to_image(numpy.float32), "F", (10, 10))
assert_image(to_image(numpy.float64), "F", (10, 10))
assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10))
assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10))
# based on an erring example at http://is.gd/6F0esS (which resolves to)
# http://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function
def test_3d_array():
a = numpy.ones((10, 10, 10), dtype=numpy.uint8)
assert_image(Image.fromarray(a[1, :, :]), "L", (10, 10))
assert_image(Image.fromarray(a[:, 1, :]), "L", (10, 10))
assert_image(Image.fromarray(a[:, :, 1]), "L", (10, 10))
def _test_img_equals_nparray(img, np):
assert_equal(img.size, np.shape[0:2])
px = img.load()
for x in range(0, img.size[0], int(img.size[0]/10)):
for y in range(0, img.size[1], int(img.size[1]/10)):
assert_deep_equal(px[x,y], np[y,x])
def test_16bit():
img = Image.open('Tests/images/16bit.cropped.tif')
np_img = numpy.array(img)
_test_img_equals_nparray(img, np_img)
assert_equal(np_img.dtype, numpy.dtype('<u2'))
def test_to_array():
def _to_array(mode, dtype):
img = lena(mode)
np_img = numpy.array(img)
_test_img_equals_nparray(img, np_img)
assert_equal(np_img.dtype, numpy.dtype(dtype))
modes = [("L", 'uint8'),
("I", 'int32'),
("F", 'float32'),
("RGB", 'uint8'),
("RGBA", 'uint8'),
("RGBX", 'uint8'),
("CMYK", 'uint8'),
("YCbCr", 'uint8'),
("I;16", '<u2'),
("I;16B", '>u2'),
("I;16L", '<u2'),
]
for mode in modes:
assert_no_exception(lambda: _to_array(*mode))
def test_point_lut():
# see https://github.com/python-pillow/Pillow/issues/439
data = list(range(256))*3
lut = numpy.array(data, dtype='uint8')
im = lena()
assert_no_exception(lambda: im.point(lut))