mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-02-04 13:40:54 +03:00
327 lines
11 KiB
C
327 lines
11 KiB
C
/* PILusm, a gaussian blur and unsharp masking library for PIL
|
|
By Kevin Cazabon, copyright 2003
|
|
kevin_cazabon@hotmail.com
|
|
kevin@cazabon.com */
|
|
|
|
/* Originally released under LGPL. Graciously donated to PIL
|
|
for distribution under the standard PIL license in 2009." */
|
|
|
|
#include "Python.h"
|
|
#include "Imaging.h"
|
|
|
|
|
|
static Imaging
|
|
gblur(Imaging im, Imaging imOut, float radius, float effectiveScale, int channels)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
|
|
float *maskData = NULL;
|
|
int y = 0;
|
|
int x = 0;
|
|
float sum = 0.0;
|
|
|
|
float *buffer = NULL;
|
|
|
|
int *line = NULL;
|
|
UINT8 *line8 = NULL;
|
|
|
|
int pix = 0;
|
|
float newPixel[4];
|
|
int channel = 0;
|
|
int offset = 0;
|
|
|
|
int effectiveRadius = 0;
|
|
int window = 0;
|
|
int hasAlpha = 0;
|
|
|
|
/* Do the gaussian blur */
|
|
|
|
/* For a symmetrical gaussian blur, instead of doing a radius*radius
|
|
matrix lookup, you get the EXACT same results by doing a radius*1
|
|
transform, followed by a 1*radius transform. This reduces the
|
|
number of lookups exponentially (10 lookups per pixel for a
|
|
radius of 5 instead of 25 lookups). So, we blur the lines first,
|
|
then we blur the resulting columns. */
|
|
|
|
/* Only pixels in effective radius from source pixel are accounted.
|
|
The Gaussian values outside 3 x radius is near zero. */
|
|
effectiveRadius = (int) ceil(radius * effectiveScale);
|
|
/* Window is number of pixels forming the result pixel on one axis.
|
|
It is source pixel and effective radius in both directions. */
|
|
window = effectiveRadius * 2 + 1;
|
|
|
|
/* create the maskData for the gaussian curve */
|
|
maskData = malloc(window * sizeof(float));
|
|
for (pix = 0; pix < window; pix++) {
|
|
offset = pix - effectiveRadius;
|
|
if (radius) {
|
|
/* http://en.wikipedia.org/wiki/Gaussian_blur
|
|
"1 / sqrt(2 * pi * dev)" is constant and will be eliminated
|
|
by normalization. */
|
|
maskData[pix] = pow(2.718281828459,
|
|
-offset * offset / (2 * radius * radius));
|
|
} else {
|
|
maskData[pix] = 1;
|
|
}
|
|
sum += maskData[pix];
|
|
}
|
|
|
|
for (pix = 0; pix < window; pix++) {
|
|
maskData[pix] *= (1.0 / sum);
|
|
// printf("%d %f\n", pix, maskData[pix]);
|
|
}
|
|
// printf("\n");
|
|
|
|
/* create a temporary memory buffer for the data for the first pass
|
|
memset the buffer to 0 so we can use it directly with += */
|
|
|
|
/* don't bother about alpha */
|
|
buffer = calloc((size_t) (im->xsize * im->ysize * channels),
|
|
sizeof(float));
|
|
if (buffer == NULL)
|
|
return ImagingError_MemoryError();
|
|
|
|
/* be nice to other threads while you go off to lala land */
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
/* perform a blur on each line, and place in the temporary storage buffer */
|
|
for (y = 0; y < im->ysize; y++) {
|
|
if (channels == 1 && im->image8 != NULL) {
|
|
line8 = (UINT8 *) im->image8[y];
|
|
} else {
|
|
line = im->image32[y];
|
|
}
|
|
for (x = 0; x < im->xsize; x++) {
|
|
/* for each neighbor pixel, factor in its value/weighting to the
|
|
current pixel */
|
|
for (pix = 0; pix < window; pix++) {
|
|
/* figure the offset of this neighbor pixel */
|
|
offset = pix - effectiveRadius;
|
|
if (x + offset < 0)
|
|
offset = -x;
|
|
else if (x + offset >= im->xsize)
|
|
offset = im->xsize - x - 1;
|
|
|
|
/* add (neighbor pixel value * maskData[pix]) to the current
|
|
pixel value */
|
|
if (channels == 1) {
|
|
buffer[(y * im->xsize) + x] +=
|
|
((float) ((UINT8 *) & line8[x + offset])[0]) *
|
|
(maskData[pix]);
|
|
} else {
|
|
for (channel = 0; channel < channels; channel++) {
|
|
buffer[(y * im->xsize * channels) +
|
|
(x * channels) + channel] +=
|
|
((float) ((UINT8 *) & line[x + offset])
|
|
[channel]) * (maskData[pix]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
|
|
hasAlpha = 1;
|
|
}
|
|
|
|
/* perform a blur on each column in the buffer, and place in the
|
|
output image */
|
|
for (x = 0; x < im->xsize; x++) {
|
|
for (y = 0; y < im->ysize; y++) {
|
|
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = .5;
|
|
/* for each neighbor pixel, factor in its value/weighting to the
|
|
current pixel */
|
|
for (pix = 0; pix < window; pix++) {
|
|
/* figure the offset of this neighbor pixel */
|
|
offset = pix - effectiveRadius;
|
|
if (y + offset < 0)
|
|
offset = -y;
|
|
else if (y + offset >= im->ysize)
|
|
offset = im->ysize - y - 1;
|
|
|
|
/* add (neighbor pixel value * maskData[pix]) to the current
|
|
pixel value */
|
|
for (channel = 0; channel < channels; channel++) {
|
|
newPixel[channel] +=
|
|
(buffer
|
|
[((y + offset) * im->xsize * channels) +
|
|
(x * channels) + channel]) * (maskData[pix]);
|
|
}
|
|
}
|
|
|
|
if (channels == 1) {
|
|
imOut->image8[y][x] = (UINT8)(newPixel[0]);
|
|
} else {
|
|
/* if the image is RGBX or RGBA, copy the 4th channel data to
|
|
newPixel, so it gets put in imOut */
|
|
if (hasAlpha) {
|
|
newPixel[3] = (float) ((UINT8 *) & im->image32[y][x])[3];
|
|
}
|
|
|
|
/* for RGB, the fourth channel isn't used anyways, so just
|
|
pack a 0 in there, this saves checking the mode for each
|
|
pixel. */
|
|
/* this might don't work on little-endian machines... fix it! */
|
|
imOut->image32[y][x] =
|
|
(UINT8)(newPixel[0]) | (UINT8)(newPixel[1]) << 8 |
|
|
(UINT8)(newPixel[2]) << 16 | (UINT8)(newPixel[3]) << 24;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* free the buffer */
|
|
free(buffer);
|
|
|
|
/* get the GIL back so Python knows who you are */
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
return imOut;
|
|
}
|
|
|
|
static inline UINT8 clip(double in)
|
|
{
|
|
if (in >= 255.0)
|
|
return (UINT8) 255;
|
|
if (in <= 0.0)
|
|
return (UINT8) 0;
|
|
return (UINT8) (in + 0.5);
|
|
}
|
|
|
|
Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius,
|
|
float effectiveScale)
|
|
{
|
|
int channels = 0;
|
|
|
|
if (strcmp(im->mode, "RGB") == 0) {
|
|
channels = 3;
|
|
} else if (strcmp(im->mode, "RGBA") == 0) {
|
|
channels = 3;
|
|
} else if (strcmp(im->mode, "RGBX") == 0) {
|
|
channels = 3;
|
|
} else if (strcmp(im->mode, "CMYK") == 0) {
|
|
channels = 4;
|
|
} else if (strcmp(im->mode, "L") == 0) {
|
|
channels = 1;
|
|
} else
|
|
return ImagingError_ModeError();
|
|
|
|
return gblur(im, imOut, radius, effectiveScale, channels);
|
|
}
|
|
|
|
Imaging
|
|
ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|
int threshold)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
|
|
Imaging result;
|
|
int channel = 0;
|
|
int channels = 0;
|
|
int hasAlpha = 0;
|
|
|
|
int x = 0;
|
|
int y = 0;
|
|
|
|
int *lineIn = NULL;
|
|
int *lineOut = NULL;
|
|
UINT8 *lineIn8 = NULL;
|
|
UINT8 *lineOut8 = NULL;
|
|
|
|
int diff = 0;
|
|
|
|
INT32 newPixel = 0;
|
|
|
|
if (strcmp(im->mode, "RGB") == 0) {
|
|
channels = 3;
|
|
} else if (strcmp(im->mode, "RGBA") == 0) {
|
|
channels = 3;
|
|
} else if (strcmp(im->mode, "RGBX") == 0) {
|
|
channels = 3;
|
|
} else if (strcmp(im->mode, "CMYK") == 0) {
|
|
channels = 4;
|
|
} else if (strcmp(im->mode, "L") == 0) {
|
|
channels = 1;
|
|
} else
|
|
return ImagingError_ModeError();
|
|
|
|
/* first, do a gaussian blur on the image, putting results in imOut
|
|
temporarily */
|
|
result = gblur(im, imOut, radius, 2.6, channels);
|
|
if (!result)
|
|
return NULL;
|
|
|
|
/* now, go through each pixel, compare "normal" pixel to blurred
|
|
pixel. if the difference is more than threshold values, apply
|
|
the OPPOSITE correction to the amount of blur, multiplied by
|
|
percent. */
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
|
|
hasAlpha = 1;
|
|
}
|
|
|
|
for (y = 0; y < im->ysize; y++) {
|
|
if (channels == 1) {
|
|
lineIn8 = im->image8[y];
|
|
lineOut8 = imOut->image8[y];
|
|
} else {
|
|
lineIn = im->image32[y];
|
|
lineOut = imOut->image32[y];
|
|
}
|
|
for (x = 0; x < im->xsize; x++) {
|
|
newPixel = 0;
|
|
/* compare in/out pixels, apply sharpening */
|
|
if (channels == 1) {
|
|
diff =
|
|
((UINT8 *) & lineIn8[x])[0] -
|
|
((UINT8 *) & lineOut8[x])[0];
|
|
if (abs(diff) > threshold) {
|
|
/* add the diff*percent to the original pixel */
|
|
imOut->image8[y][x] =
|
|
clip((((UINT8 *) & lineIn8[x])[0]) +
|
|
(diff * ((float) percent) / 100.0));
|
|
} else {
|
|
/* newPixel is the same as imIn */
|
|
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
|
|
}
|
|
}
|
|
|
|
else {
|
|
for (channel = 0; channel < channels; channel++) {
|
|
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
|
|
(((UINT8 *) & lineOut[x])[channel]));
|
|
if (abs(diff) > threshold) {
|
|
/* add the diff*percent to the original pixel
|
|
this may not work for little-endian systems, fix it! */
|
|
newPixel =
|
|
newPixel |
|
|
clip((float) (((UINT8 *) & lineIn[x])[channel])
|
|
+
|
|
(diff *
|
|
(((float) percent /
|
|
100.0)))) << (channel * 8);
|
|
} else {
|
|
/* newPixel is the same as imIn
|
|
this may not work for little-endian systems, fix it! */
|
|
newPixel =
|
|
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
|
|
(channel * 8);
|
|
}
|
|
}
|
|
if (hasAlpha) {
|
|
/* preserve the alpha channel
|
|
this may not work for little-endian systems, fix it! */
|
|
newPixel =
|
|
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
|
|
}
|
|
imOut->image32[y][x] = newPixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
return imOut;
|
|
}
|