Pillow/src/_imaging.c
2020-12-22 16:06:44 +11:00

4256 lines
109 KiB
C

/*
* The Python Imaging Library.
*
* the imaging library bindings
*
* history:
* 1995-09-24 fl Created
* 1996-03-24 fl Ready for first public release (release 0.0)
* 1996-03-25 fl Added fromstring (for Jack's "img" library)
* 1996-03-28 fl Added channel operations
* 1996-03-31 fl Added point operation
* 1996-04-08 fl Added new/new_block/new_array factories
* 1996-04-13 fl Added decoders
* 1996-05-04 fl Added palette hack
* 1996-05-12 fl Compile cleanly as C++
* 1996-05-19 fl Added matrix conversions, gradient fills
* 1996-05-27 fl Added display_mode
* 1996-07-22 fl Added getbbox, offset
* 1996-07-23 fl Added sequence semantics
* 1996-08-13 fl Added logical operators, point mode
* 1996-08-16 fl Modified paste interface
* 1996-09-06 fl Added putdata methods, use abstract interface
* 1996-11-01 fl Added xbm encoder
* 1996-11-04 fl Added experimental path stuff, draw_lines, etc
* 1996-12-10 fl Added zip decoder, crc32 interface
* 1996-12-14 fl Added modulo arithmetics
* 1996-12-29 fl Added zip encoder
* 1997-01-03 fl Added fli and msp decoders
* 1997-01-04 fl Added experimental sun_rle and tga_rle decoders
* 1997-01-05 fl Added gif encoder, getpalette hack
* 1997-02-23 fl Added histogram mask
* 1997-05-12 fl Minor tweaks to match the IFUNC95 interface
* 1997-05-21 fl Added noise generator, spread effect
* 1997-06-05 fl Added mandelbrot generator
* 1997-08-02 fl Modified putpalette to coerce image mode if necessary
* 1998-01-11 fl Added INT32 support
* 1998-01-22 fl Fixed draw_points to draw the last point too
* 1998-06-28 fl Added getpixel, getink, draw_ink
* 1998-07-12 fl Added getextrema
* 1998-07-17 fl Added point conversion to arbitrary formats
* 1998-09-21 fl Added support for resampling filters
* 1998-09-22 fl Added support for quad transform
* 1998-12-29 fl Added support for arcs, chords, and pieslices
* 1999-01-10 fl Added some experimental arrow graphics stuff
* 1999-02-06 fl Added draw_bitmap, font acceleration stuff
* 2001-04-17 fl Fixed some egcs compiler nits
* 2001-09-17 fl Added screen grab primitives (win32)
* 2002-03-09 fl Added stretch primitive
* 2002-03-10 fl Fixed filter handling in rotate
* 2002-06-06 fl Added I, F, and RGB support to putdata
* 2002-06-08 fl Added rankfilter
* 2002-06-09 fl Added support for user-defined filter kernels
* 2002-11-19 fl Added clipboard grab primitives (win32)
* 2002-12-11 fl Added draw context
* 2003-04-26 fl Tweaks for Python 2.3 beta 1
* 2003-05-21 fl Added createwindow primitive (win32)
* 2003-09-13 fl Added thread section hooks
* 2003-09-15 fl Added expand helper
* 2003-09-26 fl Added experimental LA support
* 2004-02-21 fl Handle zero-size images in quantize
* 2004-06-05 fl Added ptr attribute (used to access Imaging objects)
* 2004-06-05 fl Don't crash when fetching pixels from zero-wide images
* 2004-09-17 fl Added getcolors
* 2004-10-04 fl Added modefilter
* 2005-10-02 fl Added access proxy
* 2006-06-18 fl Always draw last point in polyline
*
* Copyright (c) 1997-2006 by Secret Labs AB
* Copyright (c) 1995-2006 by Fredrik Lundh
*
* See the README file for information on usage and redistribution.
*/
#define PY_SSIZE_T_CLEAN
#include "Python.h"
#ifdef HAVE_LIBJPEG
#include "jconfig.h"
#endif
#ifdef HAVE_LIBZ
#include "zlib.h"
#endif
#ifdef HAVE_LIBTIFF
#ifndef _TIFFIO_
#include <tiffio.h>
#endif
#endif
#include "libImaging/Imaging.h"
#define _USE_MATH_DEFINES
#include <math.h>
/* Configuration stuff. Feel free to undef things you don't need. */
#define WITH_IMAGECHOPS /* ImageChops support */
#define WITH_IMAGEDRAW /* ImageDraw support */
#define WITH_MAPPING /* use memory mapping to read some file formats */
#define WITH_IMAGEPATH /* ImagePath stuff */
#define WITH_ARROW /* arrow graphics stuff (experimental) */
#define WITH_EFFECTS /* special effects */
#define WITH_QUANTIZE /* quantization support */
#define WITH_RANKFILTER /* rank filter */
#define WITH_MODEFILTER /* mode filter */
#define WITH_THREADING /* "friendly" threading support */
#define WITH_UNSHARPMASK /* Kevin Cazabon's unsharpmask module */
#undef VERBOSE
#define B16(p, i) ((((int)p[(i)]) << 8) + p[(i)+1])
#define L16(p, i) ((((int)p[(i)+1]) << 8) + p[(i)])
#define S16(v) ((v) < 32768 ? (v) : ((v) - 65536))
/* -------------------------------------------------------------------- */
/* OBJECT ADMINISTRATION */
/* -------------------------------------------------------------------- */
typedef struct {
PyObject_HEAD
Imaging image;
ImagingAccess access;
} ImagingObject;
static PyTypeObject Imaging_Type;
#ifdef WITH_IMAGEDRAW
typedef struct
{
/* to write a character, cut out sxy from glyph data, place
at current position plus dxy, and advance by (dx, dy) */
int dx, dy;
int dx0, dy0, dx1, dy1;
int sx0, sy0, sx1, sy1;
} Glyph;
typedef struct {
PyObject_HEAD
ImagingObject* ref;
Imaging bitmap;
int ysize;
int baseline;
Glyph glyphs[256];
} ImagingFontObject;
static PyTypeObject ImagingFont_Type;
typedef struct {
PyObject_HEAD
ImagingObject* image;
UINT8 ink[4];
int blend;
} ImagingDrawObject;
static PyTypeObject ImagingDraw_Type;
#endif
typedef struct {
PyObject_HEAD
ImagingObject* image;
int readonly;
} PixelAccessObject;
static PyTypeObject PixelAccess_Type;
PyObject*
PyImagingNew(Imaging imOut)
{
ImagingObject* imagep;
if (!imOut) {
return NULL;
}
imagep = PyObject_New(ImagingObject, &Imaging_Type);
if (imagep == NULL) {
ImagingDelete(imOut);
return NULL;
}
#ifdef VERBOSE
printf("imaging %p allocated\n", imagep);
#endif
imagep->image = imOut;
imagep->access = ImagingAccessNew(imOut);
return (PyObject*) imagep;
}
static void
_dealloc(ImagingObject* imagep)
{
#ifdef VERBOSE
printf("imaging %p deleted\n", imagep);
#endif
if (imagep->access) {
ImagingAccessDelete(imagep->image, imagep->access);
}
ImagingDelete(imagep->image);
PyObject_Del(imagep);
}
#define PyImaging_Check(op) (Py_TYPE(op) == &Imaging_Type)
Imaging PyImaging_AsImaging(PyObject *op)
{
if (!PyImaging_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((ImagingObject *)op)->image;
}
/* -------------------------------------------------------------------- */
/* THREAD HANDLING */
/* -------------------------------------------------------------------- */
void ImagingSectionEnter(ImagingSectionCookie* cookie)
{
#ifdef WITH_THREADING
*cookie = (PyThreadState *) PyEval_SaveThread();
#endif
}
void ImagingSectionLeave(ImagingSectionCookie* cookie)
{
#ifdef WITH_THREADING
PyEval_RestoreThread((PyThreadState*) *cookie);
#endif
}
/* -------------------------------------------------------------------- */
/* BUFFER HANDLING */
/* -------------------------------------------------------------------- */
/* Python compatibility API */
int PyImaging_CheckBuffer(PyObject* buffer)
{
return PyObject_CheckBuffer(buffer);
}
int PyImaging_GetBuffer(PyObject* buffer, Py_buffer *view)
{
/* must call check_buffer first! */
return PyObject_GetBuffer(buffer, view, PyBUF_SIMPLE);
}
/* -------------------------------------------------------------------- */
/* EXCEPTION REROUTING */
/* -------------------------------------------------------------------- */
/* error messages */
static const char* must_be_sequence = "argument must be a sequence";
static const char* must_be_two_coordinates =
"coordinate list must contain exactly 2 coordinates";
static const char* wrong_mode = "unrecognized image mode";
static const char* wrong_raw_mode = "unrecognized raw mode";
static const char* outside_image = "image index out of range";
static const char* outside_palette = "palette index out of range";
static const char* wrong_palette_size = "invalid palette size";
static const char* no_palette = "image has no palette";
static const char* readonly = "image is readonly";
/* static const char* no_content = "image has no content"; */
void *
ImagingError_OSError(void)
{
PyErr_SetString(PyExc_OSError, "error when accessing file");
return NULL;
}
void *
ImagingError_MemoryError(void)
{
return PyErr_NoMemory();
}
void *
ImagingError_Mismatch(void)
{
PyErr_SetString(PyExc_ValueError, "images do not match");
return NULL;
}
void *
ImagingError_ModeError(void)
{
PyErr_SetString(PyExc_ValueError, "image has wrong mode");
return NULL;
}
void *
ImagingError_ValueError(const char *message)
{
PyErr_SetString(
PyExc_ValueError,
(message) ? (char*) message : "unrecognized argument value"
);
return NULL;
}
void
ImagingError_Clear(void)
{
PyErr_Clear();
}
/* -------------------------------------------------------------------- */
/* HELPERS */
/* -------------------------------------------------------------------- */
static int
getbands(const char* mode)
{
Imaging im;
int bands;
/* FIXME: add primitive to libImaging to avoid extra allocation */
im = ImagingNew(mode, 0, 0);
if (!im) {
return -1;
}
bands = im->bands;
ImagingDelete(im);
return bands;
}
#define TYPE_UINT8 (0x100|sizeof(UINT8))
#define TYPE_INT32 (0x200|sizeof(INT32))
#define TYPE_FLOAT16 (0x500|sizeof(FLOAT16))
#define TYPE_FLOAT32 (0x300|sizeof(FLOAT32))
#define TYPE_DOUBLE (0x400|sizeof(double))
static void*
getlist(PyObject* arg, Py_ssize_t* length, const char* wrong_length, int type)
{
/* - allocates and returns a c array of the items in the
python sequence arg.
- the size of the returned array is in length
- all of the arg items must be numeric items of the type
specified in type
- sequence length is checked against the length parameter IF
an error parameter is passed in wrong_length
- caller is responsible for freeing the memory
*/
Py_ssize_t i, n;
int itemp;
double dtemp;
FLOAT32 ftemp;
UINT8* list;
PyObject* seq;
PyObject* op;
if ( ! PySequence_Check(arg)) {
PyErr_SetString(PyExc_TypeError, must_be_sequence);
return NULL;
}
n = PySequence_Size(arg);
if (length && wrong_length && n != *length) {
PyErr_SetString(PyExc_ValueError, wrong_length);
return NULL;
}
/* malloc check ok, type & ff is just a sizeof(something)
calloc checks for overflow */
list = calloc(n, type & 0xff);
if ( ! list) {
return ImagingError_MemoryError();
}
seq = PySequence_Fast(arg, must_be_sequence);
if ( ! seq) {
free(list);
return NULL;
}
for (i = 0; i < n; i++) {
op = PySequence_Fast_GET_ITEM(seq, i);
// DRY, branch prediction is going to work _really_ well
// on this switch. And 3 fewer loops to copy/paste.
switch (type) {
case TYPE_UINT8:
itemp = PyLong_AsLong(op);
list[i] = CLIP8(itemp);
break;
case TYPE_INT32:
itemp = PyLong_AsLong(op);
memcpy(list + i * sizeof(INT32), &itemp, sizeof(itemp));
break;
case TYPE_FLOAT32:
ftemp = (FLOAT32)PyFloat_AsDouble(op);
memcpy(list + i * sizeof(ftemp), &ftemp, sizeof(ftemp));
break;
case TYPE_DOUBLE:
dtemp = PyFloat_AsDouble(op);
memcpy(list + i * sizeof(dtemp), &dtemp, sizeof(dtemp));
break;
}
}
Py_DECREF(seq);
if (PyErr_Occurred()) {
free(list);
return NULL;
}
if (length) {
*length = n;
}
return list;
}
FLOAT32
float16tofloat32(const FLOAT16 in) {
UINT32 t1;
UINT32 t2;
UINT32 t3;
FLOAT32 out[1] = {0};
t1 = in & 0x7fff; // Non-sign bits
t2 = in & 0x8000; // Sign bit
t3 = in & 0x7c00; // Exponent
t1 <<= 13; // Align mantissa on MSB
t2 <<= 16; // Shift sign bit into position
t1 += 0x38000000; // Adjust bias
t1 = (t3 == 0 ? 0 : t1); // Denormals-as-zero
t1 |= t2; // Re-insert sign bit
memcpy(out, &t1, 4);
return out[0];
}
static inline PyObject*
getpixel(Imaging im, ImagingAccess access, int x, int y)
{
union {
UINT8 b[4];
UINT16 h;
INT32 i;
FLOAT32 f;
} pixel;
if (x < 0) {
x = im->xsize + x;
}
if (y < 0) {
y = im->ysize + y;
}
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) {
PyErr_SetString(PyExc_IndexError, outside_image);
return NULL;
}
access->get_pixel(im, x, y, &pixel);
switch (im->type) {
case IMAGING_TYPE_UINT8:
switch (im->bands) {
case 1:
return PyLong_FromLong(pixel.b[0]);
case 2:
return Py_BuildValue("BB", pixel.b[0], pixel.b[1]);
case 3:
return Py_BuildValue("BBB", pixel.b[0], pixel.b[1], pixel.b[2]);
case 4:
return Py_BuildValue("BBBB", pixel.b[0], pixel.b[1], pixel.b[2], pixel.b[3]);
}
break;
case IMAGING_TYPE_INT32:
return PyLong_FromLong(pixel.i);
case IMAGING_TYPE_FLOAT32:
return PyFloat_FromDouble(pixel.f);
case IMAGING_TYPE_SPECIAL:
if (strncmp(im->mode, "I;16", 4) == 0) {
return PyLong_FromLong(pixel.h);
}
break;
}
/* unknown type */
Py_INCREF(Py_None);
return Py_None;
}
static char*
getink(PyObject* color, Imaging im, char* ink)
{
int g=0, b=0, a=0;
double f=0;
/* Windows 64 bit longs are 32 bits, and 0xFFFFFFFF (white) is a
python long (not int) that raises an overflow error when trying
to return it into a 32 bit C long
*/
PY_LONG_LONG r = 0;
FLOAT32 ftmp;
INT32 itmp;
/* fill ink buffer (four bytes) with something that can
be cast to either UINT8 or INT32 */
int rIsInt = 0;
if (PyTuple_Check(color) && PyTuple_Size(color) == 1) {
color = PyTuple_GetItem(color, 0);
}
if (im->type == IMAGING_TYPE_UINT8 ||
im->type == IMAGING_TYPE_INT32 ||
im->type == IMAGING_TYPE_SPECIAL) {
if (PyLong_Check(color)) {
r = PyLong_AsLongLong(color);
if (r == -1 && PyErr_Occurred()) {
return NULL;
}
rIsInt = 1;
} else if (im->type == IMAGING_TYPE_UINT8) {
if (!PyTuple_Check(color)) {
PyErr_SetString(PyExc_TypeError, "color must be int or tuple");
return NULL;
}
} else {
PyErr_SetString(PyExc_TypeError, "color must be int or single-element tuple");
return NULL;
}
}
switch (im->type) {
case IMAGING_TYPE_UINT8:
/* unsigned integer */
if (im->bands == 1) {
/* unsigned integer, single layer */
if (rIsInt != 1) {
if (!PyArg_ParseTuple(color, "L", &r)) {
return NULL;
}
}
ink[0] = (char) CLIP8(r);
ink[1] = ink[2] = ink[3] = 0;
} else {
a = 255;
if (rIsInt) {
/* compatibility: ABGR */
a = (UINT8) (r >> 24);
b = (UINT8) (r >> 16);
g = (UINT8) (r >> 8);
r = (UINT8) r;
} else {
if (im->bands == 2) {
if (!PyArg_ParseTuple(color, "L|i", &r, &a)) {
return NULL;
}
g = b = r;
} else {
if (!PyArg_ParseTuple(color, "Lii|i", &r, &g, &b, &a)) {
return NULL;
}
}
}
ink[0] = (char) CLIP8(r);
ink[1] = (char) CLIP8(g);
ink[2] = (char) CLIP8(b);
ink[3] = (char) CLIP8(a);
}
return ink;
case IMAGING_TYPE_INT32:
/* signed integer */
itmp = r;
memcpy(ink, &itmp, sizeof(itmp));
return ink;
case IMAGING_TYPE_FLOAT32:
/* floating point */
f = PyFloat_AsDouble(color);
if (f == -1.0 && PyErr_Occurred()) {
return NULL;
}
ftmp = f;
memcpy(ink, &ftmp, sizeof(ftmp));
return ink;
case IMAGING_TYPE_SPECIAL:
if (strncmp(im->mode, "I;16", 4) == 0) {
ink[0] = (UINT8) r;
ink[1] = (UINT8) (r >> 8);
ink[2] = ink[3] = 0;
return ink;
}
}
PyErr_SetString(PyExc_ValueError, wrong_mode);
return NULL;
}
/* -------------------------------------------------------------------- */
/* FACTORIES */
/* -------------------------------------------------------------------- */
static PyObject*
_fill(PyObject* self, PyObject* args)
{
char* mode;
int xsize, ysize;
PyObject* color;
char buffer[4];
Imaging im;
xsize = ysize = 256;
color = NULL;
if (!PyArg_ParseTuple(args, "s|(ii)O", &mode, &xsize, &ysize, &color)) {
return NULL;
}
im = ImagingNewDirty(mode, xsize, ysize);
if (!im) {
return NULL;
}
buffer[0] = buffer[1] = buffer[2] = buffer[3] = 0;
if (color) {
if (!getink(color, im, buffer)) {
ImagingDelete(im);
return NULL;
}
}
(void) ImagingFill(im, buffer);
return PyImagingNew(im);
}
static PyObject*
_new(PyObject* self, PyObject* args)
{
char* mode;
int xsize, ysize;
if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) {
return NULL;
}
return PyImagingNew(ImagingNew(mode, xsize, ysize));
}
static PyObject*
_new_block(PyObject* self, PyObject* args)
{
char* mode;
int xsize, ysize;
if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) {
return NULL;
}
return PyImagingNew(ImagingNewBlock(mode, xsize, ysize));
}
static PyObject*
_linear_gradient(PyObject* self, PyObject* args)
{
char* mode;
if (!PyArg_ParseTuple(args, "s", &mode)) {
return NULL;
}
return PyImagingNew(ImagingFillLinearGradient(mode));
}
static PyObject*
_radial_gradient(PyObject* self, PyObject* args)
{
char* mode;
if (!PyArg_ParseTuple(args, "s", &mode)) {
return NULL;
}
return PyImagingNew(ImagingFillRadialGradient(mode));
}
static PyObject*
_alpha_composite(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep1;
ImagingObject* imagep2;
if (!PyArg_ParseTuple(args, "O!O!",
&Imaging_Type, &imagep1,
&Imaging_Type, &imagep2)) {
return NULL;
}
return PyImagingNew(ImagingAlphaComposite(imagep1->image, imagep2->image));
}
static PyObject*
_blend(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep1;
ImagingObject* imagep2;
double alpha;
alpha = 0.5;
if (!PyArg_ParseTuple(args, "O!O!|d",
&Imaging_Type, &imagep1,
&Imaging_Type, &imagep2,
&alpha)) {
return NULL;
}
return PyImagingNew(ImagingBlend(imagep1->image, imagep2->image,
(float) alpha));
}
/* -------------------------------------------------------------------- */
/* METHODS */
/* -------------------------------------------------------------------- */
static INT16*
_prepare_lut_table(PyObject* table, Py_ssize_t table_size)
{
int i;
Py_buffer buffer_info;
INT32 data_type = TYPE_FLOAT32;
float item = 0;
void* table_data = NULL;
int free_table_data = 0;
INT16* prepared;
/* NOTE: This value should be the same as in ColorLUT.c */
#define PRECISION_BITS (16 - 8 - 2)
const char* wrong_size = ("The table should have table_channels * "
"size1D * size2D * size3D float items.");
if (PyObject_CheckBuffer(table)) {
if ( ! PyObject_GetBuffer(table, &buffer_info,
PyBUF_CONTIG_RO | PyBUF_FORMAT)) {
if (buffer_info.ndim == 1 && buffer_info.shape[0] == table_size) {
if (strlen(buffer_info.format) == 1) {
switch (buffer_info.format[0]) {
case 'e':
data_type = TYPE_FLOAT16;
table_data = buffer_info.buf;
break;
case 'f':
data_type = TYPE_FLOAT32;
table_data = buffer_info.buf;
break;
case 'd':
data_type = TYPE_DOUBLE;
table_data = buffer_info.buf;
break;
}
}
}
PyBuffer_Release(&buffer_info);
}
}
if ( ! table_data) {
free_table_data = 1;
table_data = getlist(table, &table_size, wrong_size, TYPE_FLOAT32);
if ( ! table_data) {
return NULL;
}
}
/* malloc check ok, max is 2 * 4 * 65**3 = 2197000 */
prepared = (INT16*) malloc(sizeof(INT16) * table_size);
if ( ! prepared) {
if (free_table_data) {
free(table_data);
}
return (INT16*) ImagingError_MemoryError();
}
for (i = 0; i < table_size; i++) {
FLOAT16 htmp;
double dtmp;
switch (data_type) {
case TYPE_FLOAT16:
memcpy(&htmp, ((char*) table_data) + i * sizeof(htmp), sizeof(htmp));
item = float16tofloat32(htmp);
break;
case TYPE_FLOAT32:
memcpy(&item, ((char*) table_data) + i * sizeof(FLOAT32), sizeof(FLOAT32));
break;
case TYPE_DOUBLE:
memcpy(&dtmp, ((char*) table_data) + i * sizeof(dtmp), sizeof(dtmp));
item = (FLOAT32) dtmp;
break;
}
/* Max value for INT16 */
if (item >= (0x7fff - 0.5) / (255 << PRECISION_BITS)) {
prepared[i] = 0x7fff;
continue;
}
/* Min value for INT16 */
if (item <= (-0x8000 + 0.5) / (255 << PRECISION_BITS)) {
prepared[i] = -0x8000;
continue;
}
if (item < 0) {
prepared[i] = item * (255 << PRECISION_BITS) - 0.5;
} else {
prepared[i] = item * (255 << PRECISION_BITS) + 0.5;
}
}
#undef PRECISION_BITS
if (free_table_data) {
free(table_data);
}
return prepared;
}
static PyObject*
_color_lut_3d(ImagingObject* self, PyObject* args)
{
char* mode;
int filter;
int table_channels;
int size1D, size2D, size3D;
PyObject* table;
INT16* prepared_table;
Imaging imOut;
if ( ! PyArg_ParseTuple(args, "siiiiiO:color_lut_3d", &mode, &filter,
&table_channels, &size1D, &size2D, &size3D,
&table)) {
return NULL;
}
/* actually, it is trilinear */
if (filter != IMAGING_TRANSFORM_BILINEAR) {
PyErr_SetString(PyExc_ValueError,
"Only LINEAR filter is supported.");
return NULL;
}
if (1 > table_channels || table_channels > 4) {
PyErr_SetString(PyExc_ValueError,
"table_channels should be from 1 to 4");
return NULL;
}
if (2 > size1D || size1D > 65 ||
2 > size2D || size2D > 65 ||
2 > size3D || size3D > 65
) {
PyErr_SetString(PyExc_ValueError,
"Table size in any dimension should be from 2 to 65");
return NULL;
}
prepared_table = _prepare_lut_table(
table, table_channels * size1D * size2D * size3D);
if ( ! prepared_table) {
return NULL;
}
imOut = ImagingNewDirty(mode, self->image->xsize, self->image->ysize);
if ( ! imOut) {
free(prepared_table);
return NULL;
}
if ( ! ImagingColorLUT3D_linear(imOut, self->image,
table_channels, size1D, size2D, size3D,
prepared_table)) {
free(prepared_table);
ImagingDelete(imOut);
return NULL;
}
free(prepared_table);
return PyImagingNew(imOut);
}
static PyObject*
_convert(ImagingObject* self, PyObject* args)
{
char* mode;
int dither = 0;
ImagingObject *paletteimage = NULL;
if (!PyArg_ParseTuple(args, "s|iO", &mode, &dither, &paletteimage)) {
return NULL;
}
if (paletteimage != NULL) {
if (!PyImaging_Check(paletteimage)) {
PyObject_Print((PyObject *)paletteimage, stderr, 0);
PyErr_SetString(PyExc_ValueError, "palette argument must be image with mode 'P'");
return NULL;
}
if (paletteimage->image->palette == NULL) {
PyErr_SetString(PyExc_ValueError, "null palette");
return NULL;
}
}
return PyImagingNew(ImagingConvert(self->image, mode, paletteimage ? paletteimage->image->palette : NULL, dither));
}
static PyObject*
_convert2(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep1;
ImagingObject* imagep2;
if (!PyArg_ParseTuple(args, "O!O!",
&Imaging_Type, &imagep1,
&Imaging_Type, &imagep2)) {
return NULL;
}
if (!ImagingConvert2(imagep1->image, imagep2->image)) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_convert_matrix(ImagingObject* self, PyObject* args)
{
char* mode;
float m[12];
if (!PyArg_ParseTuple(args, "s(ffff)", &mode, m+0, m+1, m+2, m+3)) {
PyErr_Clear();
if (!PyArg_ParseTuple(args, "s(ffffffffffff)", &mode,
m+0, m+1, m+2, m+3,
m+4, m+5, m+6, m+7,
m+8, m+9, m+10, m+11)){
return NULL;
}
}
return PyImagingNew(ImagingConvertMatrix(self->image, mode, m));
}
static PyObject*
_convert_transparent(ImagingObject* self, PyObject* args)
{
char* mode;
int r,g,b;
if (PyArg_ParseTuple(args, "s(iii)", &mode, &r, &g, &b)) {
return PyImagingNew(ImagingConvertTransparent(self->image, mode, r, g, b));
}
PyErr_Clear();
if (PyArg_ParseTuple(args, "si", &mode, &r)) {
return PyImagingNew(ImagingConvertTransparent(self->image, mode, r, 0, 0));
}
return NULL;
}
static PyObject*
_copy(ImagingObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, "")) {
return NULL;
}
return PyImagingNew(ImagingCopy(self->image));
}
static PyObject*
_crop(ImagingObject* self, PyObject* args)
{
int x0, y0, x1, y1;
if (!PyArg_ParseTuple(args, "(iiii)", &x0, &y0, &x1, &y1)) {
return NULL;
}
return PyImagingNew(ImagingCrop(self->image, x0, y0, x1, y1));
}
static PyObject*
_expand_image(ImagingObject* self, PyObject* args)
{
int x, y;
int mode = 0;
if (!PyArg_ParseTuple(args, "ii|i", &x, &y, &mode)) {
return NULL;
}
return PyImagingNew(ImagingExpand(self->image, x, y, mode));
}
static PyObject*
_filter(ImagingObject* self, PyObject* args)
{
PyObject* imOut;
Py_ssize_t kernelsize;
FLOAT32* kerneldata;
int xsize, ysize, i;
float divisor, offset;
PyObject* kernel = NULL;
if (!PyArg_ParseTuple(args, "(ii)ffO", &xsize, &ysize,
&divisor, &offset, &kernel)) {
return NULL;
}
/* get user-defined kernel */
kerneldata = getlist(kernel, &kernelsize, NULL, TYPE_FLOAT32);
if (!kerneldata) {
return NULL;
}
if (kernelsize != (Py_ssize_t) xsize * (Py_ssize_t) ysize) {
free(kerneldata);
return ImagingError_ValueError("bad kernel size");
}
for (i = 0; i < kernelsize; ++i) {
kerneldata[i] /= divisor;
}
imOut = PyImagingNew(
ImagingFilter(self->image, xsize, ysize, kerneldata, offset)
);
free(kerneldata);
return imOut;
}
#ifdef WITH_UNSHARPMASK
static PyObject*
_gaussian_blur(ImagingObject* self, PyObject* args)
{
Imaging imIn;
Imaging imOut;
float radius = 0;
int passes = 3;
if (!PyArg_ParseTuple(args, "f|i", &radius, &passes)) {
return NULL;
}
imIn = self->image;
imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize);
if (!imOut) {
return NULL;
}
if (!ImagingGaussianBlur(imOut, imIn, radius, passes)) {
ImagingDelete(imOut);
return NULL;
}
return PyImagingNew(imOut);
}
#endif
static PyObject*
_getpalette(ImagingObject* self, PyObject* args)
{
PyObject* palette;
int palettesize = 256;
int bits;
ImagingShuffler pack;
char* mode = "RGB";
char* rawmode = "RGB";
if (!PyArg_ParseTuple(args, "|ss", &mode, &rawmode)) {
return NULL;
}
if (!self->image->palette) {
PyErr_SetString(PyExc_ValueError, no_palette);
return NULL;
}
pack = ImagingFindPacker(mode, rawmode, &bits);
if (!pack) {
PyErr_SetString(PyExc_ValueError, wrong_raw_mode);
return NULL;
}
palette = PyBytes_FromStringAndSize(NULL, palettesize * bits / 8);
if (!palette) {
return NULL;
}
pack((UINT8*) PyBytes_AsString(palette),
self->image->palette->palette, palettesize);
return palette;
}
static PyObject*
_getpalettemode(ImagingObject* self, PyObject* args)
{
if (!self->image->palette) {
PyErr_SetString(PyExc_ValueError, no_palette);
return NULL;
}
return PyUnicode_FromString(self->image->palette->mode);
}
static inline int
_getxy(PyObject* xy, int* x, int *y)
{
PyObject* value;
if (!PyTuple_Check(xy) || PyTuple_GET_SIZE(xy) != 2) {
goto badarg;
}
value = PyTuple_GET_ITEM(xy, 0);
if (PyLong_Check(value)) {
*x = PyLong_AS_LONG(value);
} else if (PyFloat_Check(value)) {
*x = (int) PyFloat_AS_DOUBLE(value);
} else {
goto badval;
}
value = PyTuple_GET_ITEM(xy, 1);
if (PyLong_Check(value)) {
*y = PyLong_AS_LONG(value);
} else if (PyFloat_Check(value)) {
*y = (int) PyFloat_AS_DOUBLE(value);
} else {
goto badval;
}
return 0;
badarg:
PyErr_SetString(
PyExc_TypeError,
"argument must be sequence of length 2"
);
return -1;
badval:
PyErr_SetString(
PyExc_TypeError,
"an integer is required"
);
return -1;
}
static PyObject*
_getpixel(ImagingObject* self, PyObject* args)
{
PyObject* xy;
int x, y;
if (PyTuple_GET_SIZE(args) != 1) {
PyErr_SetString(
PyExc_TypeError,
"argument 1 must be sequence of length 2"
);
return NULL;
}
xy = PyTuple_GET_ITEM(args, 0);
if (_getxy(xy, &x, &y)) {
return NULL;
}
if (self->access == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
return getpixel(self->image, self->access, x, y);
}
union hist_extrema {
UINT8 u[2];
INT32 i[2];
FLOAT32 f[2];
};
static union hist_extrema*
parse_histogram_extremap(ImagingObject* self, PyObject* extremap,
union hist_extrema* ep)
{
int i0, i1;
double f0, f1;
if (extremap) {
switch (self->image->type) {
case IMAGING_TYPE_UINT8:
if (!PyArg_ParseTuple(extremap, "ii", &i0, &i1)) {
return NULL;
}
ep->u[0] = CLIP8(i0);
ep->u[1] = CLIP8(i1);
break;
case IMAGING_TYPE_INT32:
if (!PyArg_ParseTuple(extremap, "ii", &i0, &i1)) {
return NULL;
}
ep->i[0] = i0;
ep->i[1] = i1;
break;
case IMAGING_TYPE_FLOAT32:
if (!PyArg_ParseTuple(extremap, "dd", &f0, &f1)) {
return NULL;
}
ep->f[0] = (FLOAT32) f0;
ep->f[1] = (FLOAT32) f1;
break;
default:
return NULL;
}
} else {
return NULL;
}
return ep;
}
static PyObject*
_histogram(ImagingObject* self, PyObject* args)
{
ImagingHistogram h;
PyObject* list;
int i;
union hist_extrema extrema;
union hist_extrema* ep;
PyObject* extremap = NULL;
ImagingObject* maskp = NULL;
if (!PyArg_ParseTuple(args, "|OO!", &extremap, &Imaging_Type, &maskp)) {
return NULL;
}
/* Using a var to avoid allocations. */
ep = parse_histogram_extremap(self, extremap, &extrema);
h = ImagingGetHistogram(self->image, (maskp) ? maskp->image : NULL, ep);
if (!h) {
return NULL;
}
/* Build an integer list containing the histogram */
list = PyList_New(h->bands * 256);
for (i = 0; i < h->bands * 256; i++) {
PyObject* item;
item = PyLong_FromLong(h->histogram[i]);
if (item == NULL) {
Py_DECREF(list);
list = NULL;
break;
}
PyList_SetItem(list, i, item);
}
/* Destroy the histogram structure */
ImagingHistogramDelete(h);
return list;
}
static PyObject*
_entropy(ImagingObject* self, PyObject* args)
{
ImagingHistogram h;
int idx, length;
long sum;
double entropy, fsum, p;
union hist_extrema extrema;
union hist_extrema* ep;
PyObject* extremap = NULL;
ImagingObject* maskp = NULL;
if (!PyArg_ParseTuple(args, "|OO!", &extremap, &Imaging_Type, &maskp)) {
return NULL;
}
/* Using a local var to avoid allocations. */
ep = parse_histogram_extremap(self, extremap, &extrema);
h = ImagingGetHistogram(self->image, (maskp) ? maskp->image : NULL, ep);
if (!h) {
return NULL;
}
/* Calculate the histogram entropy */
/* First, sum the histogram data */
length = h->bands * 256;
sum = 0;
for (idx = 0; idx < length; idx++) {
sum += h->histogram[idx];
}
/* Next, normalize the histogram data, */
/* using the histogram sum value */
fsum = (double)sum;
entropy = 0.0;
for (idx = 0; idx < length; idx++) {
p = (double)h->histogram[idx] / fsum;
if (p != 0.0) {
entropy += p * log(p) * M_LOG2E;
}
}
/* Destroy the histogram structure */
ImagingHistogramDelete(h);
return PyFloat_FromDouble(-entropy);
}
#ifdef WITH_MODEFILTER
static PyObject*
_modefilter(ImagingObject* self, PyObject* args)
{
int size;
if (!PyArg_ParseTuple(args, "i", &size)) {
return NULL;
}
return PyImagingNew(ImagingModeFilter(self->image, size));
}
#endif
static PyObject*
_offset(ImagingObject* self, PyObject* args)
{
int xoffset, yoffset;
if (!PyArg_ParseTuple(args, "ii", &xoffset, &yoffset)) {
return NULL;
}
return PyImagingNew(ImagingOffset(self->image, xoffset, yoffset));
}
static PyObject*
_paste(ImagingObject* self, PyObject* args)
{
int status;
char ink[4];
PyObject* source;
int x0, y0, x1, y1;
ImagingObject* maskp = NULL;
if (!PyArg_ParseTuple(args, "O(iiii)|O!",
&source,
&x0, &y0, &x1, &y1,
&Imaging_Type, &maskp)) {
return NULL;
}
if (PyImaging_Check(source)) {
status = ImagingPaste(
self->image, PyImaging_AsImaging(source),
(maskp) ? maskp->image : NULL,
x0, y0, x1, y1
);
} else {
if (!getink(source, self->image, ink)) {
return NULL;
}
status = ImagingFill2(
self->image, ink,
(maskp) ? maskp->image : NULL,
x0, y0, x1, y1
);
}
if (status < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_point(ImagingObject* self, PyObject* args)
{
static const char* wrong_number = "wrong number of lut entries";
Py_ssize_t n;
int i, bands;
Imaging im;
PyObject* list;
char* mode;
if (!PyArg_ParseTuple(args, "Oz", &list, &mode)) {
return NULL;
}
if (mode && !strcmp(mode, "F")) {
FLOAT32* data;
/* map from 8-bit data to floating point */
n = 256;
data = getlist(list, &n, wrong_number, TYPE_FLOAT32);
if (!data) {
return NULL;
}
im = ImagingPoint(self->image, mode, (void*) data);
free(data);
} else if (!strcmp(self->image->mode, "I") && mode && !strcmp(mode, "L")) {
UINT8* data;
/* map from 16-bit subset of 32-bit data to 8-bit */
/* FIXME: support arbitrary number of entries (requires API change) */
n = 65536;
data = getlist(list, &n, wrong_number, TYPE_UINT8);
if (!data) {
return NULL;
}
im = ImagingPoint(self->image, mode, (void*) data);
free(data);
} else {
INT32* data;
UINT8 lut[1024];
if (mode) {
bands = getbands(mode);
if (bands < 0) {
return NULL;
}
} else {
bands = self->image->bands;
}
/* map to integer data */
n = 256 * bands;
data = getlist(list, &n, wrong_number, TYPE_INT32);
if (!data) {
return NULL;
}
if (mode && !strcmp(mode, "I")) {
im = ImagingPoint(self->image, mode, (void*) data);
} else if (mode && bands > 1) {
for (i = 0; i < 256; i++) {
lut[i*4] = CLIP8(data[i]);
lut[i*4+1] = CLIP8(data[i+256]);
lut[i*4+2] = CLIP8(data[i+512]);
if (n > 768) {
lut[i*4+3] = CLIP8(data[i+768]);
}
}
im = ImagingPoint(self->image, mode, (void*) lut);
} else {
/* map individual bands */
for (i = 0; i < n; i++) {
lut[i] = CLIP8(data[i]);
}
im = ImagingPoint(self->image, mode, (void*) lut);
}
free(data);
}
return PyImagingNew(im);
}
static PyObject*
_point_transform(ImagingObject* self, PyObject* args)
{
double scale = 1.0;
double offset = 0.0;
if (!PyArg_ParseTuple(args, "|dd", &scale, &offset)) {
return NULL;
}
return PyImagingNew(ImagingPointTransform(self->image, scale, offset));
}
static PyObject*
_putdata(ImagingObject* self, PyObject* args)
{
Imaging image;
// i & n are # pixels, require py_ssize_t. x can be as large as n. y, just because.
Py_ssize_t n, i, x, y;
PyObject* data;
PyObject* seq = NULL;
PyObject* op;
double scale = 1.0;
double offset = 0.0;
if (!PyArg_ParseTuple(args, "O|dd", &data, &scale, &offset)) {
return NULL;
}
if (!PySequence_Check(data)) {
PyErr_SetString(PyExc_TypeError, must_be_sequence);
return NULL;
}
image = self->image;
n = PyObject_Length(data);
if (n > (Py_ssize_t)image->xsize * (Py_ssize_t)image->ysize) {
PyErr_SetString(PyExc_TypeError, "too many data entries");
return NULL;
}
if (image->image8) {
if (PyBytes_Check(data)) {
unsigned char* p;
p = (unsigned char*) PyBytes_AS_STRING(data);
if (scale == 1.0 && offset == 0.0) {
/* Plain string data */
for (i = y = 0; i < n; i += image->xsize, y++) {
x = n - i;
if (x > (int) image->xsize) {
x = image->xsize;
}
memcpy(image->image8[y], p+i, x);
}
} else {
/* Scaled and clipped string data */
for (i = x = y = 0; i < n; i++) {
image->image8[y][x] = CLIP8((int) (p[i] * scale + offset));
if (++x >= (int) image->xsize) {
x = 0, y++;
}
}
}
} else {
seq = PySequence_Fast(data, must_be_sequence);
if (!seq) {
PyErr_SetString(PyExc_TypeError, must_be_sequence);
return NULL;
}
if (scale == 1.0 && offset == 0.0) {
/* Clipped data */
for (i = x = y = 0; i < n; i++) {
op = PySequence_Fast_GET_ITEM(seq, i);
image->image8[y][x] = (UINT8) CLIP8(PyLong_AsLong(op));
if (++x >= (int) image->xsize){
x = 0, y++;
}
}
} else {
/* Scaled and clipped data */
for (i = x = y = 0; i < n; i++) {
PyObject *op = PySequence_Fast_GET_ITEM(seq, i);
image->image8[y][x] = CLIP8(
(int) (PyFloat_AsDouble(op) * scale + offset));
if (++x >= (int) image->xsize){
x = 0, y++;
}
}
}
PyErr_Clear(); /* Avoid weird exceptions */
}
} else {
/* 32-bit images */
seq = PySequence_Fast(data, must_be_sequence);
if (!seq) {
PyErr_SetString(PyExc_TypeError, must_be_sequence);
return NULL;
}
switch (image->type) {
case IMAGING_TYPE_INT32:
for (i = x = y = 0; i < n; i++) {
op = PySequence_Fast_GET_ITEM(seq, i);
IMAGING_PIXEL_INT32(image, x, y) =
(INT32) (PyFloat_AsDouble(op) * scale + offset);
if (++x >= (int) image->xsize){
x = 0, y++;
}
}
PyErr_Clear(); /* Avoid weird exceptions */
break;
case IMAGING_TYPE_FLOAT32:
for (i = x = y = 0; i < n; i++) {
op = PySequence_Fast_GET_ITEM(seq, i);
IMAGING_PIXEL_FLOAT32(image, x, y) =
(FLOAT32) (PyFloat_AsDouble(op) * scale + offset);
if (++x >= (int) image->xsize){
x = 0, y++;
}
}
PyErr_Clear(); /* Avoid weird exceptions */
break;
default:
for (i = x = y = 0; i < n; i++) {
union {
char ink[4];
INT32 inkint;
} u;
u.inkint = 0;
op = PySequence_Fast_GET_ITEM(seq, i);
if (!op || !getink(op, image, u.ink)) {
Py_DECREF(seq);
return NULL;
}
/* FIXME: what about scale and offset? */
image->image32[y][x] = u.inkint;
if (++x >= (int) image->xsize){
x = 0, y++;
}
}
PyErr_Clear(); /* Avoid weird exceptions */
break;
}
}
Py_XDECREF(seq);
Py_INCREF(Py_None);
return Py_None;
}
#ifdef WITH_QUANTIZE
static PyObject*
_quantize(ImagingObject* self, PyObject* args)
{
int colours = 256;
int method = 0;
int kmeans = 0;
if (!PyArg_ParseTuple(args, "|iii", &colours, &method, &kmeans)) {
return NULL;
}
if (!self->image->xsize || !self->image->ysize) {
/* no content; return an empty image */
return PyImagingNew(
ImagingNew("P", self->image->xsize, self->image->ysize)
);
}
return PyImagingNew(ImagingQuantize(self->image, colours, method, kmeans));
}
#endif
static PyObject*
_putpalette(ImagingObject* self, PyObject* args)
{
ImagingShuffler unpack;
int bits;
char* rawmode;
UINT8* palette;
Py_ssize_t palettesize;
if (!PyArg_ParseTuple(args, "sy#", &rawmode, &palette, &palettesize)) {
return NULL;
}
if (strcmp(self->image->mode, "L") && strcmp(self->image->mode, "LA") &&
strcmp(self->image->mode, "P") && strcmp(self->image->mode, "PA")) {
PyErr_SetString(PyExc_ValueError, wrong_mode);
return NULL;
}
unpack = ImagingFindUnpacker("RGB", rawmode, &bits);
if (!unpack) {
PyErr_SetString(PyExc_ValueError, wrong_raw_mode);
return NULL;
}
if ( palettesize * 8 / bits > 256) {
PyErr_SetString(PyExc_ValueError, wrong_palette_size);
return NULL;
}
ImagingPaletteDelete(self->image->palette);
strcpy(self->image->mode, strlen(self->image->mode) == 2 ? "PA" : "P");
self->image->palette = ImagingPaletteNew("RGB");
unpack(self->image->palette->palette, palette, palettesize * 8 / bits);
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_putpalettealpha(ImagingObject* self, PyObject* args)
{
int index;
int alpha = 0;
if (!PyArg_ParseTuple(args, "i|i", &index, &alpha)) {
return NULL;
}
if (!self->image->palette) {
PyErr_SetString(PyExc_ValueError, no_palette);
return NULL;
}
if (index < 0 || index >= 256) {
PyErr_SetString(PyExc_ValueError, outside_palette);
return NULL;
}
strcpy(self->image->palette->mode, "RGBA");
self->image->palette->palette[index*4+3] = (UINT8) alpha;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_putpalettealphas(ImagingObject* self, PyObject* args)
{
int i;
UINT8 *values;
Py_ssize_t length;
if (!PyArg_ParseTuple(args, "y#", &values, &length)) {
return NULL;
}
if (!self->image->palette) {
PyErr_SetString(PyExc_ValueError, no_palette);
return NULL;
}
if (length > 256) {
PyErr_SetString(PyExc_ValueError, outside_palette);
return NULL;
}
strcpy(self->image->palette->mode, "RGBA");
for (i=0; i<length; i++) {
self->image->palette->palette[i*4+3] = (UINT8) values[i];
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_putpixel(ImagingObject* self, PyObject* args)
{
Imaging im;
char ink[4];
int x, y;
PyObject* color;
if (!PyArg_ParseTuple(args, "(ii)O", &x, &y, &color)) {
return NULL;
}
im = self->image;
if (x < 0) {
x = im->xsize + x;
}
if (y < 0) {
y = im->ysize + y;
}
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) {
PyErr_SetString(PyExc_IndexError, outside_image);
return NULL;
}
if (!getink(color, im, ink)) {
return NULL;
}
if (self->access) {
self->access->put_pixel(im, x, y, ink);
}
Py_INCREF(Py_None);
return Py_None;
}
#ifdef WITH_RANKFILTER
static PyObject*
_rankfilter(ImagingObject* self, PyObject* args)
{
int size, rank;
if (!PyArg_ParseTuple(args, "ii", &size, &rank)) {
return NULL;
}
return PyImagingNew(ImagingRankFilter(self->image, size, rank));
}
#endif
static PyObject*
_resize(ImagingObject* self, PyObject* args)
{
Imaging imIn;
Imaging imOut;
int xsize, ysize;
int filter = IMAGING_TRANSFORM_NEAREST;
float box[4] = {0, 0, 0, 0};
imIn = self->image;
box[2] = imIn->xsize;
box[3] = imIn->ysize;
if (!PyArg_ParseTuple(args, "(ii)|i(ffff)", &xsize, &ysize, &filter,
&box[0], &box[1], &box[2], &box[3])) {
return NULL;
}
if (xsize < 1 || ysize < 1) {
return ImagingError_ValueError("height and width must be > 0");
}
if (box[0] < 0 || box[1] < 0) {
return ImagingError_ValueError("box offset can't be negative");
}
if (box[2] > imIn->xsize || box[3] > imIn->ysize) {
return ImagingError_ValueError("box can't exceed original image size");
}
if (box[2] - box[0] < 0 || box[3] - box[1] < 0) {
return ImagingError_ValueError("box can't be empty");
}
// If box's coordinates are int and box size matches requested size
if (box[0] - (int) box[0] == 0 && box[2] - box[0] == xsize
&& box[1] - (int) box[1] == 0 && box[3] - box[1] == ysize) {
imOut = ImagingCrop(imIn, box[0], box[1], box[2], box[3]);
}
else if (filter == IMAGING_TRANSFORM_NEAREST) {
double a[6];
memset(a, 0, sizeof a);
a[0] = (double) (box[2] - box[0]) / xsize;
a[4] = (double) (box[3] - box[1]) / ysize;
a[2] = box[0];
a[5] = box[1];
imOut = ImagingNewDirty(imIn->mode, xsize, ysize);
imOut = ImagingTransform(
imOut, imIn, IMAGING_TRANSFORM_AFFINE,
0, 0, xsize, ysize,
a, filter, 1);
}
else {
imOut = ImagingResample(imIn, xsize, ysize, filter, box);
}
return PyImagingNew(imOut);
}
static PyObject*
_reduce(ImagingObject* self, PyObject* args)
{
Imaging imIn;
Imaging imOut;
int xscale, yscale;
int box[4] = {0, 0, 0, 0};
imIn = self->image;
box[2] = imIn->xsize;
box[3] = imIn->ysize;
if (!PyArg_ParseTuple(args, "(ii)|(iiii)", &xscale, &yscale,
&box[0], &box[1], &box[2], &box[3])) {
return NULL;
}
if (xscale < 1 || yscale < 1) {
return ImagingError_ValueError("scale must be > 0");
}
if (box[0] < 0 || box[1] < 0) {
return ImagingError_ValueError("box offset can't be negative");
}
if (box[2] > imIn->xsize || box[3] > imIn->ysize) {
return ImagingError_ValueError("box can't exceed original image size");
}
if (box[2] <= box[0] || box[3] <= box[1]) {
return ImagingError_ValueError("box can't be empty");
}
if (xscale == 1 && yscale == 1) {
imOut = ImagingCrop(imIn, box[0], box[1], box[2], box[3]);
} else {
// Change box format: (left, top, width, height)
box[2] -= box[0];
box[3] -= box[1];
imOut = ImagingReduce(imIn, xscale, yscale, box);
}
return PyImagingNew(imOut);
}
#define IS_RGB(mode)\
(!strcmp(mode, "RGB") || !strcmp(mode, "RGBA") || !strcmp(mode, "RGBX"))
static PyObject*
im_setmode(ImagingObject* self, PyObject* args)
{
/* attempt to modify the mode of an image in place */
Imaging im;
char* mode;
Py_ssize_t modelen;
if (!PyArg_ParseTuple(args, "s#:setmode", &mode, &modelen)) {
return NULL;
}
im = self->image;
/* move all logic in here to the libImaging primitive */
if (!strcmp(im->mode, mode)) {
; /* same mode; always succeeds */
} else if (IS_RGB(im->mode) && IS_RGB(mode)) {
/* color to color */
strcpy(im->mode, mode);
im->bands = modelen;
if (!strcmp(mode, "RGBA")) {
(void) ImagingFillBand(im, 3, 255);
}
} else {
/* trying doing an in-place conversion */
if (!ImagingConvertInPlace(im, mode)) {
return NULL;
}
}
if (self->access) {
ImagingAccessDelete(im, self->access);
}
self->access = ImagingAccessNew(im);
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_transform2(ImagingObject* self, PyObject* args)
{
static const char* wrong_number = "wrong number of matrix entries";
Imaging imOut;
Py_ssize_t n;
double *a;
ImagingObject* imagep;
int x0, y0, x1, y1;
int method;
PyObject* data;
int filter = IMAGING_TRANSFORM_NEAREST;
int fill = 1;
if (!PyArg_ParseTuple(args, "(iiii)O!iO|ii",
&x0, &y0, &x1, &y1,
&Imaging_Type, &imagep,
&method, &data,
&filter, &fill)) {
return NULL;
}
switch (method) {
case IMAGING_TRANSFORM_AFFINE:
n = 6;
break;
case IMAGING_TRANSFORM_PERSPECTIVE:
n = 8;
break;
case IMAGING_TRANSFORM_QUAD:
n = 8;
break;
default:
n = -1; /* force error */
}
a = getlist(data, &n, wrong_number, TYPE_DOUBLE);
if (!a) {
return NULL;
}
imOut = ImagingTransform(
self->image, imagep->image, method,
x0, y0, x1, y1, a, filter, fill);
free(a);
if (!imOut) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_transpose(ImagingObject* self, PyObject* args)
{
Imaging imIn;
Imaging imOut;
int op;
if (!PyArg_ParseTuple(args, "i", &op)) {
return NULL;
}
imIn = self->image;
switch (op) {
case 0: /* flip left right */
case 1: /* flip top bottom */
case 3: /* rotate 180 */
imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize);
break;
case 2: /* rotate 90 */
case 4: /* rotate 270 */
case 5: /* transpose */
case 6: /* transverse */
imOut = ImagingNewDirty(imIn->mode, imIn->ysize, imIn->xsize);
break;
default:
PyErr_SetString(PyExc_ValueError, "No such transpose operation");
return NULL;
}
if (imOut) {
switch (op) {
case 0:
(void) ImagingFlipLeftRight(imOut, imIn);
break;
case 1:
(void) ImagingFlipTopBottom(imOut, imIn);
break;
case 2:
(void) ImagingRotate90(imOut, imIn);
break;
case 3:
(void) ImagingRotate180(imOut, imIn);
break;
case 4:
(void) ImagingRotate270(imOut, imIn);
break;
case 5:
(void) ImagingTranspose(imOut, imIn);
break;
case 6:
(void) ImagingTransverse(imOut, imIn);
break;
}
}
return PyImagingNew(imOut);
}
#ifdef WITH_UNSHARPMASK
static PyObject*
_unsharp_mask(ImagingObject* self, PyObject* args)
{
Imaging imIn;
Imaging imOut;
float radius;
int percent, threshold;
if (!PyArg_ParseTuple(args, "fii", &radius, &percent, &threshold)) {
return NULL;
}
imIn = self->image;
imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize);
if (!imOut) {
return NULL;
}
if (!ImagingUnsharpMask(imOut, imIn, radius, percent, threshold)) {
return NULL;
}
return PyImagingNew(imOut);
}
#endif
static PyObject*
_box_blur(ImagingObject* self, PyObject* args)
{
Imaging imIn;
Imaging imOut;
float radius;
int n = 1;
if (!PyArg_ParseTuple(args, "f|i", &radius, &n)) {
return NULL;
}
imIn = self->image;
imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize);
if (!imOut) {
return NULL;
}
if (!ImagingBoxBlur(imOut, imIn, radius, n)) {
ImagingDelete(imOut);
return NULL;
}
return PyImagingNew(imOut);
}
/* -------------------------------------------------------------------- */
static PyObject*
_isblock(ImagingObject* self, PyObject* args)
{
return PyBool_FromLong(self->image->block != NULL);
}
static PyObject*
_getbbox(ImagingObject* self, PyObject* args)
{
int bbox[4];
if (!ImagingGetBBox(self->image, bbox)) {
Py_INCREF(Py_None);
return Py_None;
}
return Py_BuildValue("iiii", bbox[0], bbox[1], bbox[2], bbox[3]);
}
static PyObject*
_getcolors(ImagingObject* self, PyObject* args)
{
ImagingColorItem* items;
int i, colors;
PyObject* out;
int maxcolors = 256;
if (!PyArg_ParseTuple(args, "i:getcolors", &maxcolors)) {
return NULL;
}
items = ImagingGetColors(self->image, maxcolors, &colors);
if (!items) {
return NULL;
}
if (colors > maxcolors) {
out = Py_None;
Py_INCREF(out);
} else {
out = PyList_New(colors);
for (i = 0; i < colors; i++) {
ImagingColorItem* v = &items[i];
PyObject* item = Py_BuildValue(
"iN", v->count, getpixel(self->image, self->access, v->x, v->y)
);
PyList_SetItem(out, i, item);
}
}
free(items);
return out;
}
static PyObject*
_getextrema(ImagingObject* self, PyObject* args)
{
union {
UINT8 u[2];
INT32 i[2];
FLOAT32 f[2];
UINT16 s[2];
} extrema;
int status;
status = ImagingGetExtrema(self->image, &extrema);
if (status < 0) {
return NULL;
}
if (status) {
switch (self->image->type) {
case IMAGING_TYPE_UINT8:
return Py_BuildValue("BB", extrema.u[0], extrema.u[1]);
case IMAGING_TYPE_INT32:
return Py_BuildValue("ii", extrema.i[0], extrema.i[1]);
case IMAGING_TYPE_FLOAT32:
return Py_BuildValue("dd", extrema.f[0], extrema.f[1]);
case IMAGING_TYPE_SPECIAL:
if (strcmp(self->image->mode, "I;16") == 0) {
return Py_BuildValue("HH", extrema.s[0], extrema.s[1]);
}
}
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_getprojection(ImagingObject* self, PyObject* args)
{
unsigned char* xprofile;
unsigned char* yprofile;
PyObject* result;
/* malloc check ok */
xprofile = malloc(self->image->xsize);
yprofile = malloc(self->image->ysize);
if (xprofile == NULL || yprofile == NULL) {
free(xprofile);
free(yprofile);
return ImagingError_MemoryError();
}
ImagingGetProjection(self->image, (unsigned char *)xprofile, (unsigned char *)yprofile);
result = Py_BuildValue("y#y#",
xprofile, (Py_ssize_t)self->image->xsize,
yprofile, (Py_ssize_t)self->image->ysize);
free(xprofile);
free(yprofile);
return result;
}
/* -------------------------------------------------------------------- */
static PyObject*
_getband(ImagingObject* self, PyObject* args)
{
int band;
if (!PyArg_ParseTuple(args, "i", &band)) {
return NULL;
}
return PyImagingNew(ImagingGetBand(self->image, band));
}
static PyObject*
_fillband(ImagingObject* self, PyObject* args)
{
int band;
int color;
if (!PyArg_ParseTuple(args, "ii", &band, &color)) {
return NULL;
}
if (!ImagingFillBand(self->image, band, color)) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_putband(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
int band;
if (!PyArg_ParseTuple(args, "O!i",
&Imaging_Type, &imagep,
&band)) {
return NULL;
}
if (!ImagingPutBand(self->image, imagep->image, band)) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_merge(PyObject* self, PyObject* args)
{
char* mode;
ImagingObject *band0 = NULL;
ImagingObject *band1 = NULL;
ImagingObject *band2 = NULL;
ImagingObject *band3 = NULL;
Imaging bands[4] = {NULL, NULL, NULL, NULL};
if (!PyArg_ParseTuple(args, "sO!|O!O!O!", &mode,
&Imaging_Type, &band0, &Imaging_Type, &band1,
&Imaging_Type, &band2, &Imaging_Type, &band3)) {
return NULL;
}
if (band0) {
bands[0] = band0->image;
}
if (band1) {
bands[1] = band1->image;
}
if (band2) {
bands[2] = band2->image;
}
if (band3) {
bands[3] = band3->image;
}
return PyImagingNew(ImagingMerge(mode, bands));
}
static PyObject*
_split(ImagingObject* self, PyObject* args)
{
int fails = 0;
Py_ssize_t i;
PyObject* list;
PyObject* imaging_object;
Imaging bands[4] = {NULL, NULL, NULL, NULL};
if ( ! ImagingSplit(self->image, bands)) {
return NULL;
}
list = PyTuple_New(self->image->bands);
for (i = 0; i < self->image->bands; i++) {
imaging_object = PyImagingNew(bands[i]);
if ( ! imaging_object) {
fails += 1;
}
PyTuple_SET_ITEM(list, i, imaging_object);
}
if (fails) {
Py_DECREF(list);
list = NULL;
}
return list;
}
/* -------------------------------------------------------------------- */
#ifdef WITH_IMAGECHOPS
static PyObject*
_chop_invert(ImagingObject* self, PyObject* args)
{
return PyImagingNew(ImagingNegative(self->image));
}
static PyObject*
_chop_lighter(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopLighter(self->image, imagep->image));
}
static PyObject*
_chop_darker(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopDarker(self->image, imagep->image));
}
static PyObject*
_chop_difference(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopDifference(self->image, imagep->image));
}
static PyObject*
_chop_multiply(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopMultiply(self->image, imagep->image));
}
static PyObject*
_chop_screen(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopScreen(self->image, imagep->image));
}
static PyObject*
_chop_add(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
float scale;
int offset;
scale = 1.0;
offset = 0;
if (!PyArg_ParseTuple(args, "O!|fi", &Imaging_Type, &imagep,
&scale, &offset)) {
return NULL;
}
return PyImagingNew(ImagingChopAdd(self->image, imagep->image,
scale, offset));
}
static PyObject*
_chop_subtract(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
float scale;
int offset;
scale = 1.0;
offset = 0;
if (!PyArg_ParseTuple(args, "O!|fi", &Imaging_Type, &imagep,
&scale, &offset)) {
return NULL;
}
return PyImagingNew(ImagingChopSubtract(self->image, imagep->image,
scale, offset));
}
static PyObject*
_chop_and(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopAnd(self->image, imagep->image));
}
static PyObject*
_chop_or(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopOr(self->image, imagep->image));
}
static PyObject*
_chop_xor(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopXor(self->image, imagep->image));
}
static PyObject*
_chop_add_modulo(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopAddModulo(self->image, imagep->image));
}
static PyObject*
_chop_subtract_modulo(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopSubtractModulo(self->image, imagep->image));
}
static PyObject*
_chop_soft_light(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopSoftLight(self->image, imagep->image));
}
static PyObject*
_chop_hard_light(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingChopHardLight(self->image, imagep->image));
}
static PyObject*
_chop_overlay(ImagingObject* self, PyObject* args)
{
ImagingObject* imagep;
if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) {
return NULL;
}
return PyImagingNew(ImagingOverlay(self->image, imagep->image));
}
#endif
/* -------------------------------------------------------------------- */
#ifdef WITH_IMAGEDRAW
static PyObject*
_font_new(PyObject* self_, PyObject* args)
{
ImagingFontObject *self;
int i, y0, y1;
static const char* wrong_length = "descriptor table has wrong size";
ImagingObject* imagep;
unsigned char* glyphdata;
Py_ssize_t glyphdata_length;
if (!PyArg_ParseTuple(args, "O!y#",
&Imaging_Type, &imagep,
&glyphdata, &glyphdata_length)) {
return NULL;
}
if (glyphdata_length != 256 * 20) {
PyErr_SetString(PyExc_ValueError, wrong_length);
return NULL;
}
self = PyObject_New(ImagingFontObject, &ImagingFont_Type);
if (self == NULL) {
return NULL;
}
/* glyph bitmap */
self->bitmap = imagep->image;
y0 = y1 = 0;
/* glyph glyphs */
for (i = 0; i < 256; i++) {
self->glyphs[i].dx = S16(B16(glyphdata, 0));
self->glyphs[i].dy = S16(B16(glyphdata, 2));
self->glyphs[i].dx0 = S16(B16(glyphdata, 4));
self->glyphs[i].dy0 = S16(B16(glyphdata, 6));
self->glyphs[i].dx1 = S16(B16(glyphdata, 8));
self->glyphs[i].dy1 = S16(B16(glyphdata, 10));
self->glyphs[i].sx0 = S16(B16(glyphdata, 12));
self->glyphs[i].sy0 = S16(B16(glyphdata, 14));
self->glyphs[i].sx1 = S16(B16(glyphdata, 16));
self->glyphs[i].sy1 = S16(B16(glyphdata, 18));
if (self->glyphs[i].dy0 < y0) {
y0 = self->glyphs[i].dy0;
}
if (self->glyphs[i].dy1 > y1) {
y1 = self->glyphs[i].dy1;
}
glyphdata += 20;
}
self->baseline = -y0;
self->ysize = y1 - y0;
/* keep a reference to the bitmap object */
Py_INCREF(imagep);
self->ref = imagep;
return (PyObject*) self;
}
static void
_font_dealloc(ImagingFontObject* self)
{
Py_XDECREF(self->ref);
PyObject_Del(self);
}
static inline int
textwidth(ImagingFontObject* self, const unsigned char* text)
{
int xsize;
for (xsize = 0; *text; text++) {
xsize += self->glyphs[*text].dx;
}
return xsize;
}
void _font_text_asBytes(PyObject* encoded_string, unsigned char** text){
/* Allocates *text, returns a 'new reference'. Caller is required to free */
PyObject* bytes = NULL;
Py_ssize_t len = 0;
char *buffer;
*text = NULL;
if (PyUnicode_CheckExact(encoded_string)){
bytes = PyUnicode_AsLatin1String(encoded_string);
if (!bytes) {
return;
}
PyBytes_AsStringAndSize(bytes, &buffer, &len);
} else if (PyBytes_Check(encoded_string)) {
PyBytes_AsStringAndSize(encoded_string, &buffer, &len);
}
*text = calloc(len+1,1);
if (*text) {
memcpy(*text, buffer, len);
} else {
ImagingError_MemoryError();
}
if (bytes) {
Py_DECREF(bytes);
}
return;
}
static PyObject*
_font_getmask(ImagingFontObject* self, PyObject* args)
{
Imaging im;
Imaging bitmap;
int x, b;
int i=0;
int status;
Glyph* glyph;
PyObject* encoded_string;
unsigned char* text;
char* mode = "";
if (!PyArg_ParseTuple(args, "O|s:getmask", &encoded_string, &mode)){
return NULL;
}
_font_text_asBytes(encoded_string, &text);
if (!text) {
return NULL;
}
im = ImagingNew(self->bitmap->mode, textwidth(self, text), self->ysize);
if (!im) {
free(text);
return ImagingError_MemoryError();
}
b = 0;
(void) ImagingFill(im, &b);
b = self->baseline;
for (x = 0; text[i]; i++) {
glyph = &self->glyphs[text[i]];
bitmap = ImagingCrop(
self->bitmap,
glyph->sx0, glyph->sy0, glyph->sx1, glyph->sy1
);
if (!bitmap) {
goto failed;
}
status = ImagingPaste(
im, bitmap, NULL,
glyph->dx0+x, glyph->dy0+b, glyph->dx1+x, glyph->dy1+b
);
ImagingDelete(bitmap);
if (status < 0) {
goto failed;
}
x = x + glyph->dx;
b = b + glyph->dy;
}
free(text);
return PyImagingNew(im);
failed:
free(text);
ImagingDelete(im);
Py_RETURN_NONE;
}
static PyObject*
_font_getsize(ImagingFontObject* self, PyObject* args)
{
unsigned char* text;
PyObject* encoded_string;
PyObject* val;
if (!PyArg_ParseTuple(args, "O:getsize", &encoded_string)) {
return NULL;
}
_font_text_asBytes(encoded_string, &text);
if (!text) {
return NULL;
}
val = Py_BuildValue("ii", textwidth(self, text), self->ysize);
free(text);
return val;
}
static struct PyMethodDef _font_methods[] = {
{"getmask", (PyCFunction)_font_getmask, 1},
{"getsize", (PyCFunction)_font_getsize, 1},
{NULL, NULL} /* sentinel */
};
/* -------------------------------------------------------------------- */
static PyObject*
_draw_new(PyObject* self_, PyObject* args)
{
ImagingDrawObject *self;
ImagingObject* imagep;
int blend = 0;
if (!PyArg_ParseTuple(args, "O!|i", &Imaging_Type, &imagep, &blend)) {
return NULL;
}
self = PyObject_New(ImagingDrawObject, &ImagingDraw_Type);
if (self == NULL) {
return NULL;
}
/* keep a reference to the image object */
Py_INCREF(imagep);
self->image = imagep;
self->ink[0] = self->ink[1] = self->ink[2] = self->ink[3] = 0;
self->blend = blend;
return (PyObject*) self;
}
static void
_draw_dealloc(ImagingDrawObject* self)
{
Py_XDECREF(self->image);
PyObject_Del(self);
}
extern Py_ssize_t PyPath_Flatten(PyObject* data, double **xy);
static PyObject*
_draw_ink(ImagingDrawObject* self, PyObject* args)
{
INT32 ink = 0;
PyObject* color;
if (!PyArg_ParseTuple(args, "O", &color)) {
return NULL;
}
if (!getink(color, self->image->image, (char*) &ink)) {
return NULL;
}
return PyLong_FromLong((int) ink);
}
static PyObject*
_draw_arc(ImagingDrawObject* self, PyObject* args)
{
double* xy;
Py_ssize_t n;
PyObject* data;
int ink;
int width = 0;
float start, end;
if (!PyArg_ParseTuple(args, "Offi|i", &data, &start, &end, &ink, &width)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (n != 2) {
PyErr_SetString(PyExc_TypeError, must_be_two_coordinates);
free(xy);
return NULL;
}
n = ImagingDrawArc(self->image->image,
(int) xy[0], (int) xy[1],
(int) xy[2], (int) xy[3],
start, end, &ink, width, self->blend
);
free(xy);
if (n < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_draw_bitmap(ImagingDrawObject* self, PyObject* args)
{
double *xy;
Py_ssize_t n;
PyObject *data;
ImagingObject* bitmap;
int ink;
if (!PyArg_ParseTuple(args, "OO!i", &data, &Imaging_Type, &bitmap, &ink)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (n != 1) {
PyErr_SetString(PyExc_TypeError,
"coordinate list must contain exactly 1 coordinate"
);
free(xy);
return NULL;
}
n = ImagingDrawBitmap(
self->image->image, (int) xy[0], (int) xy[1], bitmap->image,
&ink, self->blend
);
free(xy);
if (n < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_draw_chord(ImagingDrawObject* self, PyObject* args)
{
double* xy;
Py_ssize_t n;
PyObject* data;
int ink, fill;
int width = 0;
float start, end;
if (!PyArg_ParseTuple(args, "Offii|i",
&data, &start, &end, &ink, &fill, &width)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (n != 2) {
PyErr_SetString(PyExc_TypeError, must_be_two_coordinates);
free(xy);
return NULL;
}
n = ImagingDrawChord(self->image->image,
(int) xy[0], (int) xy[1],
(int) xy[2], (int) xy[3],
start, end, &ink, fill, width, self->blend
);
free(xy);
if (n < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_draw_ellipse(ImagingDrawObject* self, PyObject* args)
{
double* xy;
Py_ssize_t n;
PyObject* data;
int ink;
int fill = 0;
int width = 0;
if (!PyArg_ParseTuple(args, "Oi|ii", &data, &ink, &fill, &width)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (n != 2) {
PyErr_SetString(PyExc_TypeError, must_be_two_coordinates);
free(xy);
return NULL;
}
n = ImagingDrawEllipse(self->image->image,
(int) xy[0], (int) xy[1],
(int) xy[2], (int) xy[3],
&ink, fill, width, self->blend
);
free(xy);
if (n < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_draw_lines(ImagingDrawObject* self, PyObject* args)
{
double *xy;
Py_ssize_t i, n;
PyObject *data;
int ink;
int width = 0;
if (!PyArg_ParseTuple(args, "Oi|i", &data, &ink, &width)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (width <= 1) {
double *p = NULL;
for (i = 0; i < n-1; i++) {
p = &xy[i+i];
if (ImagingDrawLine(
self->image->image,
(int) p[0], (int) p[1], (int) p[2], (int) p[3],
&ink, self->blend) < 0) {
free(xy);
return NULL;
}
}
if (p) {/* draw last point */
ImagingDrawPoint(
self->image->image,
(int) p[2], (int) p[3],
&ink, self->blend
);
}
} else {
for (i = 0; i < n-1; i++) {
double *p = &xy[i+i];
if (ImagingDrawWideLine(
self->image->image,
(int) p[0], (int) p[1], (int) p[2], (int) p[3],
&ink, width, self->blend) < 0) {
free(xy);
return NULL;
}
}
}
free(xy);
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_draw_points(ImagingDrawObject* self, PyObject* args)
{
double *xy;
Py_ssize_t i, n;
PyObject *data;
int ink;
if (!PyArg_ParseTuple(args, "Oi", &data, &ink)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
for (i = 0; i < n; i++) {
double *p = &xy[i+i];
if (ImagingDrawPoint(self->image->image, (int) p[0], (int) p[1],
&ink, self->blend) < 0) {
free(xy);
return NULL;
}
}
free(xy);
Py_INCREF(Py_None);
return Py_None;
}
#ifdef WITH_ARROW
/* from outline.c */
extern ImagingOutline PyOutline_AsOutline(PyObject* outline);
static PyObject*
_draw_outline(ImagingDrawObject* self, PyObject* args)
{
ImagingOutline outline;
PyObject* outline_;
int ink;
int fill = 0;
if (!PyArg_ParseTuple(args, "Oi|i", &outline_, &ink, &fill)) {
return NULL;
}
outline = PyOutline_AsOutline(outline_);
if (!outline) {
PyErr_SetString(PyExc_TypeError, "expected outline object");
return NULL;
}
if (ImagingDrawOutline(self->image->image, outline,
&ink, fill, self->blend) < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
#endif
static PyObject*
_draw_pieslice(ImagingDrawObject* self, PyObject* args)
{
double* xy;
Py_ssize_t n;
PyObject* data;
int ink, fill;
int width = 0;
float start, end;
if (!PyArg_ParseTuple(args, "Offii|i", &data, &start, &end, &ink, &fill, &width)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (n != 2) {
PyErr_SetString(PyExc_TypeError, must_be_two_coordinates);
free(xy);
return NULL;
}
n = ImagingDrawPieslice(self->image->image,
(int) xy[0], (int) xy[1],
(int) xy[2], (int) xy[3],
start, end, &ink, fill, width, self->blend
);
free(xy);
if (n < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_draw_polygon(ImagingDrawObject* self, PyObject* args)
{
double *xy;
int *ixy;
Py_ssize_t n, i;
PyObject* data;
int ink;
int fill = 0;
if (!PyArg_ParseTuple(args, "Oi|i", &data, &ink, &fill)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (n < 2) {
PyErr_SetString(PyExc_TypeError,
"coordinate list must contain at least 2 coordinates"
);
free(xy);
return NULL;
}
/* Copy list of vertices to array */
ixy = (int*) calloc(n, 2 * sizeof(int));
if (ixy == NULL) {
free(xy);
return ImagingError_MemoryError();
}
for (i = 0; i < n; i++) {
ixy[i+i] = (int) xy[i+i];
ixy[i+i+1] = (int) xy[i+i+1];
}
free(xy);
if (ImagingDrawPolygon(self->image->image, n, ixy,
&ink, fill, self->blend) < 0) {
free(ixy);
return NULL;
}
free(ixy);
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_draw_rectangle(ImagingDrawObject* self, PyObject* args)
{
double* xy;
Py_ssize_t n;
PyObject* data;
int ink;
int fill = 0;
int width = 0;
if (!PyArg_ParseTuple(args, "Oi|ii", &data, &ink, &fill, &width)) {
return NULL;
}
n = PyPath_Flatten(data, &xy);
if (n < 0) {
return NULL;
}
if (n != 2) {
PyErr_SetString(PyExc_TypeError, must_be_two_coordinates);
free(xy);
return NULL;
}
n = ImagingDrawRectangle(self->image->image,
(int) xy[0], (int) xy[1],
(int) xy[2], (int) xy[3],
&ink, fill, width, self->blend
);
free(xy);
if (n < 0) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static struct PyMethodDef _draw_methods[] = {
#ifdef WITH_IMAGEDRAW
/* Graphics (ImageDraw) */
{"draw_lines", (PyCFunction)_draw_lines, 1},
#ifdef WITH_ARROW
{"draw_outline", (PyCFunction)_draw_outline, 1},
#endif
{"draw_polygon", (PyCFunction)_draw_polygon, 1},
{"draw_rectangle", (PyCFunction)_draw_rectangle, 1},
{"draw_points", (PyCFunction)_draw_points, 1},
{"draw_arc", (PyCFunction)_draw_arc, 1},
{"draw_bitmap", (PyCFunction)_draw_bitmap, 1},
{"draw_chord", (PyCFunction)_draw_chord, 1},
{"draw_ellipse", (PyCFunction)_draw_ellipse, 1},
{"draw_pieslice", (PyCFunction)_draw_pieslice, 1},
{"draw_ink", (PyCFunction)_draw_ink, 1},
#endif
{NULL, NULL} /* sentinel */
};
#endif
static PyObject*
pixel_access_new(ImagingObject* imagep, PyObject* args)
{
PixelAccessObject *self;
int readonly = 0;
if (!PyArg_ParseTuple(args, "|i", &readonly)) {
return NULL;
}
self = PyObject_New(PixelAccessObject, &PixelAccess_Type);
if (self == NULL) {
return NULL;
}
/* keep a reference to the image object */
Py_INCREF(imagep);
self->image = imagep;
self->readonly = readonly;
return (PyObject*) self;
}
static void
pixel_access_dealloc(PixelAccessObject* self)
{
Py_XDECREF(self->image);
PyObject_Del(self);
}
static PyObject *
pixel_access_getitem(PixelAccessObject *self, PyObject *xy)
{
int x, y;
if (_getxy(xy, &x, &y)) {
return NULL;
}
return getpixel(self->image->image, self->image->access, x, y);
}
static int
pixel_access_setitem(PixelAccessObject *self, PyObject *xy, PyObject *color)
{
Imaging im = self->image->image;
char ink[4];
int x, y;
if (self->readonly) {
(void) ImagingError_ValueError(readonly);
return -1;
}
if (_getxy(xy, &x, &y)) {
return -1;
}
if (x < 0) {
x = im->xsize + x;
}
if (y < 0) {
y = im->ysize + y;
}
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) {
PyErr_SetString(PyExc_IndexError, outside_image);
return -1;
}
if (!color) {/* FIXME: raise exception? */
return 0;
}
if (!getink(color, im, ink)) {
return -1;
}
self->image->access->put_pixel(im, x, y, ink);
return 0;
}
/* -------------------------------------------------------------------- */
/* EFFECTS (experimental) */
/* -------------------------------------------------------------------- */
#ifdef WITH_EFFECTS
static PyObject*
_effect_mandelbrot(ImagingObject* self, PyObject* args)
{
int xsize = 512;
int ysize = 512;
double extent[4];
int quality = 100;
extent[0] = -3; extent[1] = -2.5;
extent[2] = 2; extent[3] = 2.5;
if (!PyArg_ParseTuple(args, "|(ii)(dddd)i", &xsize, &ysize,
&extent[0], &extent[1], &extent[2], &extent[3],
&quality)) {
return NULL;
}
return PyImagingNew(ImagingEffectMandelbrot(xsize, ysize, extent, quality));
}
static PyObject*
_effect_noise(ImagingObject* self, PyObject* args)
{
int xsize, ysize;
float sigma = 128;
if (!PyArg_ParseTuple(args, "(ii)|f", &xsize, &ysize, &sigma)) {
return NULL;
}
return PyImagingNew(ImagingEffectNoise(xsize, ysize, sigma));
}
static PyObject*
_effect_spread(ImagingObject* self, PyObject* args)
{
int dist;
if (!PyArg_ParseTuple(args, "i", &dist)) {
return NULL;
}
return PyImagingNew(ImagingEffectSpread(self->image, dist));
}
#endif
/* -------------------------------------------------------------------- */
/* UTILITIES */
/* -------------------------------------------------------------------- */
static PyObject*
_getcodecstatus(PyObject* self, PyObject* args)
{
int status;
char* msg;
if (!PyArg_ParseTuple(args, "i", &status)) {
return NULL;
}
switch (status) {
case IMAGING_CODEC_OVERRUN:
msg = "buffer overrun"; break;
case IMAGING_CODEC_BROKEN:
msg = "broken data stream"; break;
case IMAGING_CODEC_UNKNOWN:
msg = "unrecognized data stream contents"; break;
case IMAGING_CODEC_CONFIG:
msg = "codec configuration error"; break;
case IMAGING_CODEC_MEMORY:
msg = "out of memory"; break;
default:
Py_RETURN_NONE;
}
return PyUnicode_FromString(msg);
}
/* -------------------------------------------------------------------- */
/* DEBUGGING HELPERS */
/* -------------------------------------------------------------------- */
static PyObject*
_save_ppm(ImagingObject* self, PyObject* args)
{
char* filename;
if (!PyArg_ParseTuple(args, "s", &filename)) {
return NULL;
}
if (!ImagingSavePPM(self->image, filename)) {
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
/* -------------------------------------------------------------------- */
/* methods */
static struct PyMethodDef methods[] = {
/* Put commonly used methods first */
{"getpixel", (PyCFunction)_getpixel, 1},
{"putpixel", (PyCFunction)_putpixel, 1},
{"pixel_access", (PyCFunction)pixel_access_new, 1},
/* Standard processing methods (Image) */
{"color_lut_3d", (PyCFunction)_color_lut_3d, 1},
{"convert", (PyCFunction)_convert, 1},
{"convert2", (PyCFunction)_convert2, 1},
{"convert_matrix", (PyCFunction)_convert_matrix, 1},
{"convert_transparent", (PyCFunction)_convert_transparent, 1},
{"copy", (PyCFunction)_copy, 1},
{"crop", (PyCFunction)_crop, 1},
{"expand", (PyCFunction)_expand_image, 1},
{"filter", (PyCFunction)_filter, 1},
{"histogram", (PyCFunction)_histogram, 1},
{"entropy", (PyCFunction)_entropy, 1},
#ifdef WITH_MODEFILTER
{"modefilter", (PyCFunction)_modefilter, 1},
#endif
{"offset", (PyCFunction)_offset, 1},
{"paste", (PyCFunction)_paste, 1},
{"point", (PyCFunction)_point, 1},
{"point_transform", (PyCFunction)_point_transform, 1},
{"putdata", (PyCFunction)_putdata, 1},
#ifdef WITH_QUANTIZE
{"quantize", (PyCFunction)_quantize, 1},
#endif
#ifdef WITH_RANKFILTER
{"rankfilter", (PyCFunction)_rankfilter, 1},
#endif
{"resize", (PyCFunction)_resize, 1},
{"reduce", (PyCFunction)_reduce, 1},
{"transpose", (PyCFunction)_transpose, 1},
{"transform2", (PyCFunction)_transform2, 1},
{"isblock", (PyCFunction)_isblock, 1},
{"getbbox", (PyCFunction)_getbbox, 1},
{"getcolors", (PyCFunction)_getcolors, 1},
{"getextrema", (PyCFunction)_getextrema, 1},
{"getprojection", (PyCFunction)_getprojection, 1},
{"getband", (PyCFunction)_getband, 1},
{"putband", (PyCFunction)_putband, 1},
{"split", (PyCFunction)_split, 1},
{"fillband", (PyCFunction)_fillband, 1},
{"setmode", (PyCFunction)im_setmode, 1},
{"getpalette", (PyCFunction)_getpalette, 1},
{"getpalettemode", (PyCFunction)_getpalettemode, 1},
{"putpalette", (PyCFunction)_putpalette, 1},
{"putpalettealpha", (PyCFunction)_putpalettealpha, 1},
{"putpalettealphas", (PyCFunction)_putpalettealphas, 1},
#ifdef WITH_IMAGECHOPS
/* Channel operations (ImageChops) */
{"chop_invert", (PyCFunction)_chop_invert, 1},
{"chop_lighter", (PyCFunction)_chop_lighter, 1},
{"chop_darker", (PyCFunction)_chop_darker, 1},
{"chop_difference", (PyCFunction)_chop_difference, 1},
{"chop_multiply", (PyCFunction)_chop_multiply, 1},
{"chop_screen", (PyCFunction)_chop_screen, 1},
{"chop_add", (PyCFunction)_chop_add, 1},
{"chop_subtract", (PyCFunction)_chop_subtract, 1},
{"chop_add_modulo", (PyCFunction)_chop_add_modulo, 1},
{"chop_subtract_modulo", (PyCFunction)_chop_subtract_modulo, 1},
{"chop_and", (PyCFunction)_chop_and, 1},
{"chop_or", (PyCFunction)_chop_or, 1},
{"chop_xor", (PyCFunction)_chop_xor, 1},
{"chop_soft_light", (PyCFunction)_chop_soft_light, 1},
{"chop_hard_light", (PyCFunction)_chop_hard_light, 1},
{"chop_overlay", (PyCFunction)_chop_overlay, 1},
#endif
#ifdef WITH_UNSHARPMASK
/* Kevin Cazabon's unsharpmask extension */
{"gaussian_blur", (PyCFunction)_gaussian_blur, 1},
{"unsharp_mask", (PyCFunction)_unsharp_mask, 1},
#endif
{"box_blur", (PyCFunction)_box_blur, 1},
#ifdef WITH_EFFECTS
/* Special effects */
{"effect_spread", (PyCFunction)_effect_spread, 1},
#endif
/* Misc. */
{"new_block", (PyCFunction)_new_block, 1},
{"save_ppm", (PyCFunction)_save_ppm, 1},
{NULL, NULL} /* sentinel */
};
/* attributes */
static PyObject*
_getattr_mode(ImagingObject* self, void* closure)
{
return PyUnicode_FromString(self->image->mode);
}
static PyObject*
_getattr_size(ImagingObject* self, void* closure)
{
return Py_BuildValue("ii", self->image->xsize, self->image->ysize);
}
static PyObject*
_getattr_bands(ImagingObject* self, void* closure)
{
return PyLong_FromLong(self->image->bands);
}
static PyObject*
_getattr_id(ImagingObject* self, void* closure)
{
return PyLong_FromSsize_t((Py_ssize_t) self->image);
}
static PyObject*
_getattr_ptr(ImagingObject* self, void* closure)
{
return PyCapsule_New(self->image, IMAGING_MAGIC, NULL);
}
static PyObject*
_getattr_unsafe_ptrs(ImagingObject* self, void* closure)
{
return Py_BuildValue("(sn)(sn)(sn)",
"image8", self->image->image8,
"image32", self->image->image32,
"image", self->image->image
);
};
static struct PyGetSetDef getsetters[] = {
{ "mode", (getter) _getattr_mode },
{ "size", (getter) _getattr_size },
{ "bands", (getter) _getattr_bands },
{ "id", (getter) _getattr_id },
{ "ptr", (getter) _getattr_ptr },
{ "unsafe_ptrs", (getter) _getattr_unsafe_ptrs },
{ NULL }
};
/* basic sequence semantics */
static Py_ssize_t
image_length(ImagingObject *self)
{
Imaging im = self->image;
return (Py_ssize_t) im->xsize * im->ysize;
}
static PyObject *
image_item(ImagingObject *self, Py_ssize_t i)
{
int x, y;
Imaging im = self->image;
if (im->xsize > 0) {
x = i % im->xsize;
y = i / im->xsize;
} else {
x = y = 0; /* leave it to getpixel to raise an exception */
}
return getpixel(im, self->access, x, y);
}
static PySequenceMethods image_as_sequence = {
(lenfunc) image_length, /*sq_length*/
(binaryfunc) NULL, /*sq_concat*/
(ssizeargfunc) NULL, /*sq_repeat*/
(ssizeargfunc) image_item, /*sq_item*/
(ssizessizeargfunc) NULL, /*sq_slice*/
(ssizeobjargproc) NULL, /*sq_ass_item*/
(ssizessizeobjargproc) NULL, /*sq_ass_slice*/
};
/* type description */
static PyTypeObject Imaging_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"ImagingCore", /*tp_name*/
sizeof(ImagingObject), /*tp_size*/
0, /*tp_itemsize*/
/* methods */
(destructor)_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number */
&image_as_sequence, /*tp_as_sequence */
0, /*tp_as_mapping */
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
methods, /*tp_methods*/
0, /*tp_members*/
getsetters, /*tp_getset*/
};
#ifdef WITH_IMAGEDRAW
static PyTypeObject ImagingFont_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"ImagingFont", /*tp_name*/
sizeof(ImagingFontObject), /*tp_size*/
0, /*tp_itemsize*/
/* methods */
(destructor)_font_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number */
0, /*tp_as_sequence */
0, /*tp_as_mapping */
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
_font_methods, /*tp_methods*/
0, /*tp_members*/
0, /*tp_getset*/
};
static PyTypeObject ImagingDraw_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"ImagingDraw", /*tp_name*/
sizeof(ImagingDrawObject), /*tp_size*/
0, /*tp_itemsize*/
/* methods */
(destructor)_draw_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number */
0, /*tp_as_sequence */
0, /*tp_as_mapping */
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
_draw_methods, /*tp_methods*/
0, /*tp_members*/
0, /*tp_getset*/
};
#endif
static PyMappingMethods pixel_access_as_mapping = {
(lenfunc) NULL, /*mp_length*/
(binaryfunc) pixel_access_getitem, /*mp_subscript*/
(objobjargproc) pixel_access_setitem, /*mp_ass_subscript*/
};
/* type description */
static PyTypeObject PixelAccess_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"PixelAccess", sizeof(PixelAccessObject), 0,
/* methods */
(destructor)pixel_access_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number */
0, /*tp_as_sequence */
&pixel_access_as_mapping, /*tp_as_mapping */
0 /*tp_hash*/
};
/* -------------------------------------------------------------------- */
static PyObject*
_get_stats(PyObject* self, PyObject* args)
{
PyObject* d;
ImagingMemoryArena arena = &ImagingDefaultArena;
if (!PyArg_ParseTuple(args, ":get_stats")) {
return NULL;
}
d = PyDict_New();
if ( ! d) {
return NULL;
}
PyDict_SetItemString(d, "new_count",
PyLong_FromLong(arena->stats_new_count));
PyDict_SetItemString(d, "allocated_blocks",
PyLong_FromLong(arena->stats_allocated_blocks));
PyDict_SetItemString(d, "reused_blocks",
PyLong_FromLong(arena->stats_reused_blocks));
PyDict_SetItemString(d, "reallocated_blocks",
PyLong_FromLong(arena->stats_reallocated_blocks));
PyDict_SetItemString(d, "freed_blocks",
PyLong_FromLong(arena->stats_freed_blocks));
PyDict_SetItemString(d, "blocks_cached",
PyLong_FromLong(arena->blocks_cached));
return d;
}
static PyObject*
_reset_stats(PyObject* self, PyObject* args)
{
ImagingMemoryArena arena = &ImagingDefaultArena;
if (!PyArg_ParseTuple(args, ":reset_stats")) {
return NULL;
}
arena->stats_new_count = 0;
arena->stats_allocated_blocks = 0;
arena->stats_reused_blocks = 0;
arena->stats_reallocated_blocks = 0;
arena->stats_freed_blocks = 0;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_get_alignment(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":get_alignment")) {
return NULL;
}
return PyLong_FromLong(ImagingDefaultArena.alignment);
}
static PyObject*
_get_block_size(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":get_block_size")) {
return NULL;
}
return PyLong_FromLong(ImagingDefaultArena.block_size);
}
static PyObject*
_get_blocks_max(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":get_blocks_max")) {
return NULL;
}
return PyLong_FromLong(ImagingDefaultArena.blocks_max);
}
static PyObject*
_set_alignment(PyObject* self, PyObject* args)
{
int alignment;
if (!PyArg_ParseTuple(args, "i:set_alignment", &alignment)) {
return NULL;
}
if (alignment < 1 || alignment > 128) {
PyErr_SetString(PyExc_ValueError, "alignment should be from 1 to 128");
return NULL;
}
/* Is power of two */
if (alignment & (alignment - 1)) {
PyErr_SetString(PyExc_ValueError, "alignment should be power of two");
return NULL;
}
ImagingDefaultArena.alignment = alignment;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_set_block_size(PyObject* self, PyObject* args)
{
int block_size;
if (!PyArg_ParseTuple(args, "i:set_block_size", &block_size)) {
return NULL;
}
if (block_size <= 0) {
PyErr_SetString(PyExc_ValueError,
"block_size should be greater than 0");
return NULL;
}
if (block_size & 0xfff) {
PyErr_SetString(PyExc_ValueError,
"block_size should be multiple of 4096");
return NULL;
}
ImagingDefaultArena.block_size = block_size;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_set_blocks_max(PyObject* self, PyObject* args)
{
int blocks_max;
if (!PyArg_ParseTuple(args, "i:set_blocks_max", &blocks_max)) {
return NULL;
}
if (blocks_max < 0) {
PyErr_SetString(PyExc_ValueError,
"blocks_max should be greater than 0");
return NULL;
}
else if ( (unsigned long)blocks_max > SIZE_MAX/sizeof(ImagingDefaultArena.blocks_pool[0])) {
PyErr_SetString(PyExc_ValueError,
"blocks_max is too large");
return NULL;
}
if ( ! ImagingMemorySetBlocksMax(&ImagingDefaultArena, blocks_max)) {
return ImagingError_MemoryError();
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_clear_cache(PyObject* self, PyObject* args)
{
int i = 0;
if (!PyArg_ParseTuple(args, "|i:clear_cache", &i)) {
return NULL;
}
ImagingMemoryClearCache(&ImagingDefaultArena, i);
Py_INCREF(Py_None);
return Py_None;
}
/* -------------------------------------------------------------------- */
/* FIXME: this is something of a mess. Should replace this with
pluggable codecs, but not before PIL 1.2 */
/* Decoders (in decode.c) */
extern PyObject* PyImaging_BcnDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_BitDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_FliDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_GifDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_HexDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_JpegDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_Jpeg2KDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_LibTiffDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_PackbitsDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_PcdDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_PcxDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_RawDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_SgiRleDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_SunRleDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_TgaRleDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_XbmDecoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_ZipDecoderNew(PyObject* self, PyObject* args);
/* Encoders (in encode.c) */
extern PyObject* PyImaging_EpsEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_GifEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_JpegEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_Jpeg2KEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_PcxEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_RawEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_TgaRleEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_XbmEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_ZipEncoderNew(PyObject* self, PyObject* args);
extern PyObject* PyImaging_LibTiffEncoderNew(PyObject* self, PyObject* args);
/* Display support etc (in display.c) */
#ifdef _WIN32
extern PyObject* PyImaging_CreateWindowWin32(PyObject* self, PyObject* args);
extern PyObject* PyImaging_DisplayWin32(PyObject* self, PyObject* args);
extern PyObject* PyImaging_DisplayModeWin32(PyObject* self, PyObject* args);
extern PyObject* PyImaging_GrabScreenWin32(PyObject* self, PyObject* args);
extern PyObject* PyImaging_GrabClipboardWin32(PyObject* self, PyObject* args);
extern PyObject* PyImaging_ListWindowsWin32(PyObject* self, PyObject* args);
extern PyObject* PyImaging_EventLoopWin32(PyObject* self, PyObject* args);
extern PyObject* PyImaging_DrawWmf(PyObject* self, PyObject* args);
#endif
#ifdef HAVE_XCB
extern PyObject* PyImaging_GrabScreenX11(PyObject* self, PyObject* args);
#endif
/* Experimental path stuff (in path.c) */
extern PyObject* PyPath_Create(ImagingObject* self, PyObject* args);
/* Experimental outline stuff (in outline.c) */
extern PyObject* PyOutline_Create(ImagingObject* self, PyObject* args);
extern PyObject* PyImaging_Mapper(PyObject* self, PyObject* args);
extern PyObject* PyImaging_MapBuffer(PyObject* self, PyObject* args);
static PyMethodDef functions[] = {
/* Object factories */
{"alpha_composite", (PyCFunction)_alpha_composite, 1},
{"blend", (PyCFunction)_blend, 1},
{"fill", (PyCFunction)_fill, 1},
{"new", (PyCFunction)_new, 1},
{"merge", (PyCFunction)_merge, 1},
/* Functions */
{"convert", (PyCFunction)_convert2, 1},
/* Codecs */
{"bcn_decoder", (PyCFunction)PyImaging_BcnDecoderNew, 1},
{"bit_decoder", (PyCFunction)PyImaging_BitDecoderNew, 1},
{"eps_encoder", (PyCFunction)PyImaging_EpsEncoderNew, 1},
{"fli_decoder", (PyCFunction)PyImaging_FliDecoderNew, 1},
{"gif_decoder", (PyCFunction)PyImaging_GifDecoderNew, 1},
{"gif_encoder", (PyCFunction)PyImaging_GifEncoderNew, 1},
{"hex_decoder", (PyCFunction)PyImaging_HexDecoderNew, 1},
{"hex_encoder", (PyCFunction)PyImaging_EpsEncoderNew, 1}, /* EPS=HEX! */
#ifdef HAVE_LIBJPEG
{"jpeg_decoder", (PyCFunction)PyImaging_JpegDecoderNew, 1},
{"jpeg_encoder", (PyCFunction)PyImaging_JpegEncoderNew, 1},
#endif
#ifdef HAVE_OPENJPEG
{"jpeg2k_decoder", (PyCFunction)PyImaging_Jpeg2KDecoderNew, 1},
{"jpeg2k_encoder", (PyCFunction)PyImaging_Jpeg2KEncoderNew, 1},
#endif
#ifdef HAVE_LIBTIFF
{"libtiff_decoder", (PyCFunction)PyImaging_LibTiffDecoderNew, 1},
{"libtiff_encoder", (PyCFunction)PyImaging_LibTiffEncoderNew, 1},
#endif
{"packbits_decoder", (PyCFunction)PyImaging_PackbitsDecoderNew, 1},
{"pcd_decoder", (PyCFunction)PyImaging_PcdDecoderNew, 1},
{"pcx_decoder", (PyCFunction)PyImaging_PcxDecoderNew, 1},
{"pcx_encoder", (PyCFunction)PyImaging_PcxEncoderNew, 1},
{"raw_decoder", (PyCFunction)PyImaging_RawDecoderNew, 1},
{"raw_encoder", (PyCFunction)PyImaging_RawEncoderNew, 1},
{"sgi_rle_decoder", (PyCFunction)PyImaging_SgiRleDecoderNew, 1},
{"sun_rle_decoder", (PyCFunction)PyImaging_SunRleDecoderNew, 1},
{"tga_rle_decoder", (PyCFunction)PyImaging_TgaRleDecoderNew, 1},
{"tga_rle_encoder", (PyCFunction)PyImaging_TgaRleEncoderNew, 1},
{"xbm_decoder", (PyCFunction)PyImaging_XbmDecoderNew, 1},
{"xbm_encoder", (PyCFunction)PyImaging_XbmEncoderNew, 1},
#ifdef HAVE_LIBZ
{"zip_decoder", (PyCFunction)PyImaging_ZipDecoderNew, 1},
{"zip_encoder", (PyCFunction)PyImaging_ZipEncoderNew, 1},
#endif
/* Memory mapping */
#ifdef WITH_MAPPING
#ifdef _WIN32
{"map", (PyCFunction)PyImaging_Mapper, 1},
#endif
{"map_buffer", (PyCFunction)PyImaging_MapBuffer, 1},
#endif
/* Display support */
#ifdef _WIN32
{"display", (PyCFunction)PyImaging_DisplayWin32, 1},
{"display_mode", (PyCFunction)PyImaging_DisplayModeWin32, 1},
{"grabscreen_win32", (PyCFunction)PyImaging_GrabScreenWin32, 1},
{"grabclipboard_win32", (PyCFunction)PyImaging_GrabClipboardWin32, 1},
{"createwindow", (PyCFunction)PyImaging_CreateWindowWin32, 1},
{"eventloop", (PyCFunction)PyImaging_EventLoopWin32, 1},
{"listwindows", (PyCFunction)PyImaging_ListWindowsWin32, 1},
{"drawwmf", (PyCFunction)PyImaging_DrawWmf, 1},
#endif
#ifdef HAVE_XCB
{"grabscreen_x11", (PyCFunction)PyImaging_GrabScreenX11, 1},
#endif
/* Utilities */
{"getcodecstatus", (PyCFunction)_getcodecstatus, 1},
/* Special effects (experimental) */
#ifdef WITH_EFFECTS
{"effect_mandelbrot", (PyCFunction)_effect_mandelbrot, 1},
{"effect_noise", (PyCFunction)_effect_noise, 1},
{"linear_gradient", (PyCFunction)_linear_gradient, 1},
{"radial_gradient", (PyCFunction)_radial_gradient, 1},
{"wedge", (PyCFunction)_linear_gradient, 1}, /* Compatibility */
#endif
/* Drawing support stuff */
#ifdef WITH_IMAGEDRAW
{"font", (PyCFunction)_font_new, 1},
{"draw", (PyCFunction)_draw_new, 1},
#endif
/* Experimental path stuff */
#ifdef WITH_IMAGEPATH
{"path", (PyCFunction)PyPath_Create, 1},
#endif
/* Experimental arrow graphics stuff */
#ifdef WITH_ARROW
{"outline", (PyCFunction)PyOutline_Create, 1},
#endif
/* Resource management */
{"get_stats", (PyCFunction)_get_stats, 1},
{"reset_stats", (PyCFunction)_reset_stats, 1},
{"get_alignment", (PyCFunction)_get_alignment, 1},
{"get_block_size", (PyCFunction)_get_block_size, 1},
{"get_blocks_max", (PyCFunction)_get_blocks_max, 1},
{"set_alignment", (PyCFunction)_set_alignment, 1},
{"set_block_size", (PyCFunction)_set_block_size, 1},
{"set_blocks_max", (PyCFunction)_set_blocks_max, 1},
{"clear_cache", (PyCFunction)_clear_cache, 1},
{NULL, NULL} /* sentinel */
};
static int
setup_module(PyObject* m) {
PyObject* d = PyModule_GetDict(m);
const char* version = (char*)PILLOW_VERSION;
/* Ready object types */
if (PyType_Ready(&Imaging_Type) < 0) {
return -1;
}
#ifdef WITH_IMAGEDRAW
if (PyType_Ready(&ImagingFont_Type) < 0) {
return -1;
}
if (PyType_Ready(&ImagingDraw_Type) < 0) {
return -1;
}
#endif
if (PyType_Ready(&PixelAccess_Type) < 0) {
return -1;
}
ImagingAccessInit();
#ifdef HAVE_LIBJPEG
{
extern const char* ImagingJpegVersion(void);
PyDict_SetItemString(d, "jpeglib_version", PyUnicode_FromString(ImagingJpegVersion()));
}
#endif
#ifdef HAVE_OPENJPEG
{
extern const char *ImagingJpeg2KVersion(void);
PyDict_SetItemString(d, "jp2klib_version", PyUnicode_FromString(ImagingJpeg2KVersion()));
}
#endif
#ifdef LIBJPEG_TURBO_VERSION
PyModule_AddObject(m, "HAVE_LIBJPEGTURBO", Py_True);
#define tostr1(a) #a
#define tostr(a) tostr1(a)
PyDict_SetItemString(d, "libjpeg_turbo_version", PyUnicode_FromString(tostr(LIBJPEG_TURBO_VERSION)));
#undef tostr
#undef tostr1
#else
PyModule_AddObject(m, "HAVE_LIBJPEGTURBO", Py_False);
#endif
#ifdef HAVE_LIBIMAGEQUANT
PyModule_AddObject(m, "HAVE_LIBIMAGEQUANT", Py_True);
{
extern const char* ImagingImageQuantVersion(void);
PyDict_SetItemString(d, "imagequant_version", PyUnicode_FromString(ImagingImageQuantVersion()));
}
#else
PyModule_AddObject(m, "HAVE_LIBIMAGEQUANT", Py_False);
#endif
#ifdef HAVE_LIBZ
/* zip encoding strategies */
PyModule_AddIntConstant(m, "DEFAULT_STRATEGY", Z_DEFAULT_STRATEGY);
PyModule_AddIntConstant(m, "FILTERED", Z_FILTERED);
PyModule_AddIntConstant(m, "HUFFMAN_ONLY", Z_HUFFMAN_ONLY);
PyModule_AddIntConstant(m, "RLE", Z_RLE);
PyModule_AddIntConstant(m, "FIXED", Z_FIXED);
{
extern const char* ImagingZipVersion(void);
PyDict_SetItemString(d, "zlib_version", PyUnicode_FromString(ImagingZipVersion()));
}
#endif
#ifdef HAVE_LIBTIFF
{
extern const char * ImagingTiffVersion(void);
PyDict_SetItemString(d, "libtiff_version", PyUnicode_FromString(ImagingTiffVersion()));
// Test for libtiff 4.0 or later, excluding libtiff 3.9.6 and 3.9.7
PyObject* support_custom_tags;
#if TIFFLIB_VERSION >= 20111221 && TIFFLIB_VERSION != 20120218 && TIFFLIB_VERSION != 20120922
support_custom_tags = Py_True;
#else
support_custom_tags = Py_False;
#endif
PyDict_SetItemString(d, "libtiff_support_custom_tags", support_custom_tags);
}
#endif
#ifdef HAVE_XCB
PyModule_AddObject(m, "HAVE_XCB", Py_True);
#else
PyModule_AddObject(m, "HAVE_XCB", Py_False);
#endif
PyDict_SetItemString(d, "PILLOW_VERSION", PyUnicode_FromString(version));
return 0;
}
PyMODINIT_FUNC
PyInit__imaging(void) {
PyObject* m;
static PyModuleDef module_def = {
PyModuleDef_HEAD_INIT,
"_imaging", /* m_name */
NULL, /* m_doc */
-1, /* m_size */
functions, /* m_methods */
};
m = PyModule_Create(&module_def);
if (setup_module(m) < 0) {
return NULL;
}
return m;
}