mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-11-13 13:16:52 +03:00
7da17ad41e
The previous test configuration made it difficult to run a single test with the pytest CLI. There were two major issues: - The Tests directory was not a package. It now includes a __init__.py file and imports from other tests modules are done with relative imports. - setup.cfg always specified the Tests directory. So even if a specific test were specified as a CLI arg, this configuration would also always include all tests. This configuration has been removed to allow specifying a single test on the command line. Contributors can now run specific tests with a single command such as: $ tox -e py37 -- Tests/test_file_pdf.py::TestFilePdf.test_rgb This makes it easy and faster to iterate on a single test failure and is very familiar to those that have previously used tox and pytest. When running tox or pytest with no arguments, they still discover and runs all tests in the Tests directory.
215 lines
7.8 KiB
Python
215 lines
7.8 KiB
Python
from __future__ import print_function
|
|
|
|
from .helper import PillowTestCase, hopper, unittest
|
|
from PIL import Image
|
|
|
|
try:
|
|
import numpy
|
|
except ImportError:
|
|
numpy = None
|
|
|
|
|
|
TEST_IMAGE_SIZE = (10, 10)
|
|
|
|
|
|
@unittest.skipIf(numpy is None, "Numpy is not installed")
|
|
class TestNumpy(PillowTestCase):
|
|
def test_numpy_to_image(self):
|
|
|
|
def to_image(dtype, bands=1, boolean=0):
|
|
if bands == 1:
|
|
if boolean:
|
|
data = [0, 255] * 50
|
|
else:
|
|
data = list(range(100))
|
|
a = numpy.array(data, dtype=dtype)
|
|
a.shape = TEST_IMAGE_SIZE
|
|
i = Image.fromarray(a)
|
|
if list(i.getdata()) != data:
|
|
print("data mismatch for", dtype)
|
|
else:
|
|
data = list(range(100))
|
|
a = numpy.array([[x]*bands for x in data], dtype=dtype)
|
|
a.shape = TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], bands
|
|
i = Image.fromarray(a)
|
|
if list(i.getchannel(0).getdata()) != list(range(100)):
|
|
print("data mismatch for", dtype)
|
|
return i
|
|
|
|
# Check supported 1-bit integer formats
|
|
self.assert_image(to_image(numpy.bool, 1, 1), '1', TEST_IMAGE_SIZE)
|
|
self.assert_image(to_image(numpy.bool8, 1, 1), '1', TEST_IMAGE_SIZE)
|
|
|
|
# Check supported 8-bit integer formats
|
|
self.assert_image(to_image(numpy.uint8), "L", TEST_IMAGE_SIZE)
|
|
self.assert_image(to_image(numpy.uint8, 3), "RGB", TEST_IMAGE_SIZE)
|
|
self.assert_image(to_image(numpy.uint8, 4), "RGBA", TEST_IMAGE_SIZE)
|
|
self.assert_image(to_image(numpy.int8), "I", TEST_IMAGE_SIZE)
|
|
|
|
# Check non-fixed-size integer types
|
|
# These may fail, depending on the platform, since we have no native
|
|
# 64 bit int image types.
|
|
# self.assert_image(to_image(numpy.uint), "I", TEST_IMAGE_SIZE)
|
|
# self.assert_image(to_image(numpy.int), "I", TEST_IMAGE_SIZE)
|
|
|
|
# Check 16-bit integer formats
|
|
if Image._ENDIAN == '<':
|
|
self.assert_image(to_image(numpy.uint16), "I;16", TEST_IMAGE_SIZE)
|
|
else:
|
|
self.assert_image(to_image(numpy.uint16), "I;16B", TEST_IMAGE_SIZE)
|
|
|
|
self.assert_image(to_image(numpy.int16), "I", TEST_IMAGE_SIZE)
|
|
|
|
# Check 32-bit integer formats
|
|
self.assert_image(to_image(numpy.uint32), "I", TEST_IMAGE_SIZE)
|
|
self.assert_image(to_image(numpy.int32), "I", TEST_IMAGE_SIZE)
|
|
|
|
# Check 64-bit integer formats
|
|
self.assertRaises(TypeError, to_image, numpy.uint64)
|
|
self.assertRaises(TypeError, to_image, numpy.int64)
|
|
|
|
# Check floating-point formats
|
|
self.assert_image(to_image(numpy.float), "F", TEST_IMAGE_SIZE)
|
|
self.assertRaises(TypeError, to_image, numpy.float16)
|
|
self.assert_image(to_image(numpy.float32), "F", TEST_IMAGE_SIZE)
|
|
self.assert_image(to_image(numpy.float64), "F", TEST_IMAGE_SIZE)
|
|
|
|
self.assert_image(to_image(numpy.uint8, 2), "LA", (10, 10))
|
|
self.assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10))
|
|
self.assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10))
|
|
|
|
# based on an erring example at
|
|
# https://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function
|
|
def test_3d_array(self):
|
|
size = (5, TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1])
|
|
a = numpy.ones(size, dtype=numpy.uint8)
|
|
self.assert_image(Image.fromarray(a[1, :, :]), "L", TEST_IMAGE_SIZE)
|
|
size = (TEST_IMAGE_SIZE[0], 5, TEST_IMAGE_SIZE[1])
|
|
a = numpy.ones(size, dtype=numpy.uint8)
|
|
self.assert_image(Image.fromarray(a[:, 1, :]), "L", TEST_IMAGE_SIZE)
|
|
size = (TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], 5)
|
|
a = numpy.ones(size, dtype=numpy.uint8)
|
|
self.assert_image(Image.fromarray(a[:, :, 1]), "L", TEST_IMAGE_SIZE)
|
|
|
|
def _test_img_equals_nparray(self, img, np):
|
|
self.assertGreaterEqual(len(np.shape), 2)
|
|
np_size = np.shape[1], np.shape[0]
|
|
self.assertEqual(img.size, np_size)
|
|
px = img.load()
|
|
for x in range(0, img.size[0], int(img.size[0]/10)):
|
|
for y in range(0, img.size[1], int(img.size[1]/10)):
|
|
self.assert_deep_equal(px[x, y], np[y, x])
|
|
|
|
def test_16bit(self):
|
|
img = Image.open('Tests/images/16bit.cropped.tif')
|
|
np_img = numpy.array(img)
|
|
self._test_img_equals_nparray(img, np_img)
|
|
self.assertEqual(np_img.dtype, numpy.dtype('<u2'))
|
|
|
|
def test_1bit(self):
|
|
# Test that 1-bit arrays convert to numpy and back
|
|
# See: https://github.com/python-pillow/Pillow/issues/350
|
|
arr = numpy.array([[1, 0, 0, 1, 0], [0, 1, 0, 0, 0]], 'u1')
|
|
img = Image.fromarray(arr * 255).convert('1')
|
|
self.assertEqual(img.mode, '1')
|
|
arr_back = numpy.array(img)
|
|
# numpy 1.8 and earlier return this as a boolean. (trusty/precise)
|
|
if arr_back.dtype == numpy.bool:
|
|
arr_bool = numpy.array([[1, 0, 0, 1, 0], [0, 1, 0, 0, 0]], 'bool')
|
|
numpy.testing.assert_array_equal(arr_bool, arr_back)
|
|
else:
|
|
numpy.testing.assert_array_equal(arr, arr_back)
|
|
|
|
def test_save_tiff_uint16(self):
|
|
# Tests that we're getting the pixel value in the right byte order.
|
|
pixel_value = 0x1234
|
|
a = numpy.array(
|
|
[pixel_value] * TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1],
|
|
dtype=numpy.uint16)
|
|
a.shape = TEST_IMAGE_SIZE
|
|
img = Image.fromarray(a)
|
|
|
|
img_px = img.load()
|
|
self.assertEqual(img_px[0, 0], pixel_value)
|
|
|
|
def test_to_array(self):
|
|
|
|
def _to_array(mode, dtype):
|
|
img = hopper(mode)
|
|
|
|
# Resize to non-square
|
|
img = img.crop((3, 0, 124, 127))
|
|
self.assertEqual(img.size, (121, 127))
|
|
|
|
np_img = numpy.array(img)
|
|
self._test_img_equals_nparray(img, np_img)
|
|
self.assertEqual(np_img.dtype, numpy.dtype(dtype))
|
|
|
|
modes = [("L", 'uint8'),
|
|
("I", 'int32'),
|
|
("F", 'float32'),
|
|
("LA", 'uint8'),
|
|
("RGB", 'uint8'),
|
|
("RGBA", 'uint8'),
|
|
("RGBX", 'uint8'),
|
|
("CMYK", 'uint8'),
|
|
("YCbCr", 'uint8'),
|
|
("I;16", '<u2'),
|
|
("I;16B", '>u2'),
|
|
("I;16L", '<u2'),
|
|
("HSV", 'uint8'),
|
|
]
|
|
|
|
for mode in modes:
|
|
_to_array(*mode)
|
|
|
|
def test_point_lut(self):
|
|
# see https://github.com/python-pillow/Pillow/issues/439
|
|
|
|
data = list(range(256))*3
|
|
lut = numpy.array(data, dtype='uint8')
|
|
|
|
im = hopper()
|
|
|
|
im.point(lut)
|
|
|
|
def test_putdata(self):
|
|
# shouldn't segfault
|
|
# see https://github.com/python-pillow/Pillow/issues/1008
|
|
|
|
im = Image.new('F', (150, 100))
|
|
arr = numpy.zeros((15000,), numpy.float32)
|
|
im.putdata(arr)
|
|
|
|
self.assertEqual(len(im.getdata()), len(arr))
|
|
|
|
def test_zero_size(self):
|
|
# Shouldn't cause floating point exception
|
|
# See https://github.com/python-pillow/Pillow/issues/2259
|
|
|
|
im = Image.fromarray(numpy.empty((0, 0), dtype=numpy.uint8))
|
|
|
|
self.assertEqual(im.size, (0, 0))
|
|
|
|
def test_bool(self):
|
|
# https://github.com/python-pillow/Pillow/issues/2044
|
|
a = numpy.zeros((10, 2), dtype=numpy.bool)
|
|
a[0][0] = True
|
|
|
|
im2 = Image.fromarray(a)
|
|
self.assertEqual(im2.getdata()[0], 255)
|
|
|
|
def test_no_resource_warning_for_numpy_array(self):
|
|
# https://github.com/python-pillow/Pillow/issues/835
|
|
# Arrange
|
|
from numpy import array
|
|
test_file = 'Tests/images/hopper.png'
|
|
im = Image.open(test_file)
|
|
|
|
# Act/Assert
|
|
self.assert_warning(None, lambda: array(im))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|