Pillow/Tests/test_file_jpeg.py
Jon Dufresne d50445ff30 Introduce isort to automate import ordering and formatting
Similar to the recent adoption of Black. isort is a Python utility to
sort imports alphabetically and automatically separate into sections. By
using isort, contributors can quickly and automatically conform to the
projects style without thinking. Just let the tool do it.

Uses the configuration recommended by the Black to avoid conflicts of
style.

Rewrite TestImageQt.test_deprecated to no rely on import order.
2019-07-06 16:11:35 -07:00

673 lines
24 KiB
Python

import os
import sys
from io import BytesIO
from PIL import Image, ImageFile, JpegImagePlugin
from .helper import PillowTestCase, cjpeg_available, djpeg_available, hopper, unittest
codecs = dir(Image.core)
TEST_FILE = "Tests/images/hopper.jpg"
class TestFileJpeg(PillowTestCase):
def setUp(self):
if "jpeg_encoder" not in codecs or "jpeg_decoder" not in codecs:
self.skipTest("jpeg support not available")
def roundtrip(self, im, **options):
out = BytesIO()
im.save(out, "JPEG", **options)
test_bytes = out.tell()
out.seek(0)
im = Image.open(out)
im.bytes = test_bytes # for testing only
return im
def gen_random_image(self, size, mode="RGB"):
""" Generates a very hard to compress file
:param size: tuple
:param mode: optional image mode
"""
return Image.frombytes(mode, size, os.urandom(size[0] * size[1] * len(mode)))
def test_sanity(self):
# internal version number
self.assertRegex(Image.core.jpeglib_version, r"\d+\.\d+$")
im = Image.open(TEST_FILE)
im.load()
self.assertEqual(im.mode, "RGB")
self.assertEqual(im.size, (128, 128))
self.assertEqual(im.format, "JPEG")
self.assertEqual(im.get_format_mimetype(), "image/jpeg")
def test_app(self):
# Test APP/COM reader (@PIL135)
im = Image.open(TEST_FILE)
self.assertEqual(
im.applist[0], ("APP0", b"JFIF\x00\x01\x01\x01\x00`\x00`\x00\x00")
)
self.assertEqual(
im.applist[1], ("COM", b"File written by Adobe Photoshop\xa8 4.0\x00")
)
self.assertEqual(len(im.applist), 2)
def test_cmyk(self):
# Test CMYK handling. Thanks to Tim and Charlie for test data,
# Michael for getting me to look one more time.
f = "Tests/images/pil_sample_cmyk.jpg"
im = Image.open(f)
# the source image has red pixels in the upper left corner.
c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))]
self.assertEqual(c, 0.0)
self.assertGreater(m, 0.8)
self.assertGreater(y, 0.8)
self.assertEqual(k, 0.0)
# the opposite corner is black
c, m, y, k = [x / 255.0 for x in im.getpixel((im.size[0] - 1, im.size[1] - 1))]
self.assertGreater(k, 0.9)
# roundtrip, and check again
im = self.roundtrip(im)
c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))]
self.assertEqual(c, 0.0)
self.assertGreater(m, 0.8)
self.assertGreater(y, 0.8)
self.assertEqual(k, 0.0)
c, m, y, k = [x / 255.0 for x in im.getpixel((im.size[0] - 1, im.size[1] - 1))]
self.assertGreater(k, 0.9)
def test_dpi(self):
def test(xdpi, ydpi=None):
im = Image.open(TEST_FILE)
im = self.roundtrip(im, dpi=(xdpi, ydpi or xdpi))
return im.info.get("dpi")
self.assertEqual(test(72), (72, 72))
self.assertEqual(test(300), (300, 300))
self.assertEqual(test(100, 200), (100, 200))
self.assertIsNone(test(0)) # square pixels
def test_icc(self):
# Test ICC support
im1 = Image.open("Tests/images/rgb.jpg")
icc_profile = im1.info["icc_profile"]
self.assertEqual(len(icc_profile), 3144)
# Roundtrip via physical file.
f = self.tempfile("temp.jpg")
im1.save(f, icc_profile=icc_profile)
im2 = Image.open(f)
self.assertEqual(im2.info.get("icc_profile"), icc_profile)
# Roundtrip via memory buffer.
im1 = self.roundtrip(hopper())
im2 = self.roundtrip(hopper(), icc_profile=icc_profile)
self.assert_image_equal(im1, im2)
self.assertFalse(im1.info.get("icc_profile"))
self.assertTrue(im2.info.get("icc_profile"))
def test_icc_big(self):
# Make sure that the "extra" support handles large blocks
def test(n):
# The ICC APP marker can store 65519 bytes per marker, so
# using a 4-byte test code should allow us to detect out of
# order issues.
icc_profile = (b"Test" * int(n / 4 + 1))[:n]
self.assertEqual(len(icc_profile), n) # sanity
im1 = self.roundtrip(hopper(), icc_profile=icc_profile)
self.assertEqual(im1.info.get("icc_profile"), icc_profile or None)
test(0)
test(1)
test(3)
test(4)
test(5)
test(65533 - 14) # full JPEG marker block
test(65533 - 14 + 1) # full block plus one byte
test(ImageFile.MAXBLOCK) # full buffer block
test(ImageFile.MAXBLOCK + 1) # full buffer block plus one byte
test(ImageFile.MAXBLOCK * 4 + 3) # large block
def test_large_icc_meta(self):
# https://github.com/python-pillow/Pillow/issues/148
# Sometimes the meta data on the icc_profile block is bigger than
# Image.MAXBLOCK or the image size.
im = Image.open("Tests/images/icc_profile_big.jpg")
f = self.tempfile("temp.jpg")
icc_profile = im.info["icc_profile"]
# Should not raise IOError for image with icc larger than image size.
im.save(
f,
format="JPEG",
progressive=True,
quality=95,
icc_profile=icc_profile,
optimize=True,
)
def test_optimize(self):
im1 = self.roundtrip(hopper())
im2 = self.roundtrip(hopper(), optimize=0)
im3 = self.roundtrip(hopper(), optimize=1)
self.assert_image_equal(im1, im2)
self.assert_image_equal(im1, im3)
self.assertGreaterEqual(im1.bytes, im2.bytes)
self.assertGreaterEqual(im1.bytes, im3.bytes)
def test_optimize_large_buffer(self):
# https://github.com/python-pillow/Pillow/issues/148
f = self.tempfile("temp.jpg")
# this requires ~ 1.5x Image.MAXBLOCK
im = Image.new("RGB", (4096, 4096), 0xFF3333)
im.save(f, format="JPEG", optimize=True)
def test_progressive(self):
im1 = self.roundtrip(hopper())
im2 = self.roundtrip(hopper(), progressive=False)
im3 = self.roundtrip(hopper(), progressive=True)
self.assertFalse(im1.info.get("progressive"))
self.assertFalse(im2.info.get("progressive"))
self.assertTrue(im3.info.get("progressive"))
self.assert_image_equal(im1, im3)
self.assertGreaterEqual(im1.bytes, im3.bytes)
def test_progressive_large_buffer(self):
f = self.tempfile("temp.jpg")
# this requires ~ 1.5x Image.MAXBLOCK
im = Image.new("RGB", (4096, 4096), 0xFF3333)
im.save(f, format="JPEG", progressive=True)
def test_progressive_large_buffer_highest_quality(self):
f = self.tempfile("temp.jpg")
im = self.gen_random_image((255, 255))
# this requires more bytes than pixels in the image
im.save(f, format="JPEG", progressive=True, quality=100)
def test_progressive_cmyk_buffer(self):
# Issue 2272, quality 90 cmyk image is tripping the large buffer bug.
f = BytesIO()
im = self.gen_random_image((256, 256), "CMYK")
im.save(f, format="JPEG", progressive=True, quality=94)
def test_large_exif(self):
# https://github.com/python-pillow/Pillow/issues/148
f = self.tempfile("temp.jpg")
im = hopper()
im.save(f, "JPEG", quality=90, exif=b"1" * 65532)
def test_exif_typeerror(self):
im = Image.open("Tests/images/exif_typeerror.jpg")
# Should not raise a TypeError
im._getexif()
def test_exif_gps(self):
# Arrange
im = Image.open("Tests/images/exif_gps.jpg")
gps_index = 34853
expected_exif_gps = {
0: b"\x00\x00\x00\x01",
2: (4294967295, 1),
5: b"\x01",
30: 65535,
29: "1999:99:99 99:99:99",
}
# Act
exif = im._getexif()
# Assert
self.assertEqual(exif[gps_index], expected_exif_gps)
def test_exif_rollback(self):
# rolling back exif support in 3.1 to pre-3.0 formatting.
# expected from 2.9, with b/u qualifiers switched for 3.2 compatibility
# this test passes on 2.9 and 3.1, but not 3.0
expected_exif = {
34867: 4294967295,
258: (24, 24, 24),
36867: "2099:09:29 10:10:10",
34853: {
0: b"\x00\x00\x00\x01",
2: (4294967295, 1),
5: b"\x01",
30: 65535,
29: "1999:99:99 99:99:99",
},
296: 65535,
34665: 185,
41994: 65535,
514: 4294967295,
271: "Make",
272: "XXX-XXX",
305: "PIL",
42034: ((1, 1), (1, 1), (1, 1), (1, 1)),
42035: "LensMake",
34856: b"\xaa\xaa\xaa\xaa\xaa\xaa",
282: (4294967295, 1),
33434: (4294967295, 1),
}
im = Image.open("Tests/images/exif_gps.jpg")
exif = im._getexif()
for tag, value in expected_exif.items():
self.assertEqual(value, exif[tag])
def test_exif_gps_typeerror(self):
im = Image.open("Tests/images/exif_gps_typeerror.jpg")
# Should not raise a TypeError
im._getexif()
def test_progressive_compat(self):
im1 = self.roundtrip(hopper())
self.assertFalse(im1.info.get("progressive"))
self.assertFalse(im1.info.get("progression"))
im2 = self.roundtrip(hopper(), progressive=0)
im3 = self.roundtrip(hopper(), progression=0) # compatibility
self.assertFalse(im2.info.get("progressive"))
self.assertFalse(im2.info.get("progression"))
self.assertFalse(im3.info.get("progressive"))
self.assertFalse(im3.info.get("progression"))
im2 = self.roundtrip(hopper(), progressive=1)
im3 = self.roundtrip(hopper(), progression=1) # compatibility
self.assert_image_equal(im1, im2)
self.assert_image_equal(im1, im3)
self.assertTrue(im2.info.get("progressive"))
self.assertTrue(im2.info.get("progression"))
self.assertTrue(im3.info.get("progressive"))
self.assertTrue(im3.info.get("progression"))
def test_quality(self):
im1 = self.roundtrip(hopper())
im2 = self.roundtrip(hopper(), quality=50)
self.assert_image(im1, im2.mode, im2.size)
self.assertGreaterEqual(im1.bytes, im2.bytes)
def test_smooth(self):
im1 = self.roundtrip(hopper())
im2 = self.roundtrip(hopper(), smooth=100)
self.assert_image(im1, im2.mode, im2.size)
def test_subsampling(self):
def getsampling(im):
layer = im.layer
return layer[0][1:3] + layer[1][1:3] + layer[2][1:3]
# experimental API
im = self.roundtrip(hopper(), subsampling=-1) # default
self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling=0) # 4:4:4
self.assertEqual(getsampling(im), (1, 1, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling=1) # 4:2:2
self.assertEqual(getsampling(im), (2, 1, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling=2) # 4:2:0
self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling=3) # default (undefined)
self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling="4:4:4")
self.assertEqual(getsampling(im), (1, 1, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling="4:2:2")
self.assertEqual(getsampling(im), (2, 1, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling="4:2:0")
self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))
im = self.roundtrip(hopper(), subsampling="4:1:1")
self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))
self.assertRaises(TypeError, self.roundtrip, hopper(), subsampling="1:1:1")
def test_exif(self):
im = Image.open("Tests/images/pil_sample_rgb.jpg")
info = im._getexif()
self.assertEqual(info[305], "Adobe Photoshop CS Macintosh")
def test_mp(self):
im = Image.open("Tests/images/pil_sample_rgb.jpg")
self.assertIsNone(im._getmp())
def test_quality_keep(self):
# RGB
im = Image.open("Tests/images/hopper.jpg")
f = self.tempfile("temp.jpg")
im.save(f, quality="keep")
# Grayscale
im = Image.open("Tests/images/hopper_gray.jpg")
f = self.tempfile("temp.jpg")
im.save(f, quality="keep")
# CMYK
im = Image.open("Tests/images/pil_sample_cmyk.jpg")
f = self.tempfile("temp.jpg")
im.save(f, quality="keep")
def test_junk_jpeg_header(self):
# https://github.com/python-pillow/Pillow/issues/630
filename = "Tests/images/junk_jpeg_header.jpg"
Image.open(filename)
def test_ff00_jpeg_header(self):
filename = "Tests/images/jpeg_ff00_header.jpg"
Image.open(filename)
def test_truncated_jpeg_should_read_all_the_data(self):
filename = "Tests/images/truncated_jpeg.jpg"
ImageFile.LOAD_TRUNCATED_IMAGES = True
im = Image.open(filename)
im.load()
ImageFile.LOAD_TRUNCATED_IMAGES = False
self.assertIsNotNone(im.getbbox())
def test_truncated_jpeg_throws_IOError(self):
filename = "Tests/images/truncated_jpeg.jpg"
im = Image.open(filename)
with self.assertRaises(IOError):
im.load()
def _n_qtables_helper(self, n, test_file):
im = Image.open(test_file)
f = self.tempfile("temp.jpg")
im.save(f, qtables=[[n] * 64] * n)
im = Image.open(f)
self.assertEqual(len(im.quantization), n)
reloaded = self.roundtrip(im, qtables="keep")
self.assertEqual(im.quantization, reloaded.quantization)
def test_qtables(self):
im = Image.open("Tests/images/hopper.jpg")
qtables = im.quantization
reloaded = self.roundtrip(im, qtables=qtables, subsampling=0)
self.assertEqual(im.quantization, reloaded.quantization)
self.assert_image_similar(im, self.roundtrip(im, qtables="web_low"), 30)
self.assert_image_similar(im, self.roundtrip(im, qtables="web_high"), 30)
self.assert_image_similar(im, self.roundtrip(im, qtables="keep"), 30)
# valid bounds for baseline qtable
bounds_qtable = [int(s) for s in ("255 1 " * 32).split(None)]
self.roundtrip(im, qtables=[bounds_qtable])
# values from wizard.txt in jpeg9-a src package.
standard_l_qtable = [
int(s)
for s in """
16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
""".split(
None
)
]
standard_chrominance_qtable = [
int(s)
for s in """
17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
""".split(
None
)
]
# list of qtable lists
self.assert_image_similar(
im,
self.roundtrip(
im, qtables=[standard_l_qtable, standard_chrominance_qtable]
),
30,
)
# tuple of qtable lists
self.assert_image_similar(
im,
self.roundtrip(
im, qtables=(standard_l_qtable, standard_chrominance_qtable)
),
30,
)
# dict of qtable lists
self.assert_image_similar(
im,
self.roundtrip(
im, qtables={0: standard_l_qtable, 1: standard_chrominance_qtable}
),
30,
)
self._n_qtables_helper(1, "Tests/images/hopper_gray.jpg")
self._n_qtables_helper(1, "Tests/images/pil_sample_rgb.jpg")
self._n_qtables_helper(2, "Tests/images/pil_sample_rgb.jpg")
self._n_qtables_helper(3, "Tests/images/pil_sample_rgb.jpg")
self._n_qtables_helper(1, "Tests/images/pil_sample_cmyk.jpg")
self._n_qtables_helper(2, "Tests/images/pil_sample_cmyk.jpg")
self._n_qtables_helper(3, "Tests/images/pil_sample_cmyk.jpg")
self._n_qtables_helper(4, "Tests/images/pil_sample_cmyk.jpg")
# not a sequence
self.assertRaises(ValueError, self.roundtrip, im, qtables="a")
# sequence wrong length
self.assertRaises(ValueError, self.roundtrip, im, qtables=[])
# sequence wrong length
self.assertRaises(ValueError, self.roundtrip, im, qtables=[1, 2, 3, 4, 5])
# qtable entry not a sequence
self.assertRaises(ValueError, self.roundtrip, im, qtables=[1])
# qtable entry has wrong number of items
self.assertRaises(ValueError, self.roundtrip, im, qtables=[[1, 2, 3, 4]])
@unittest.skipUnless(djpeg_available(), "djpeg not available")
def test_load_djpeg(self):
img = Image.open(TEST_FILE)
img.load_djpeg()
self.assert_image_similar(img, Image.open(TEST_FILE), 0)
@unittest.skipUnless(cjpeg_available(), "cjpeg not available")
def test_save_cjpeg(self):
img = Image.open(TEST_FILE)
tempfile = self.tempfile("temp.jpg")
JpegImagePlugin._save_cjpeg(img, 0, tempfile)
# Default save quality is 75%, so a tiny bit of difference is alright
self.assert_image_similar(img, Image.open(tempfile), 17)
def test_no_duplicate_0x1001_tag(self):
# Arrange
from PIL import ExifTags
tag_ids = {v: k for k, v in ExifTags.TAGS.items()}
# Assert
self.assertEqual(tag_ids["RelatedImageWidth"], 0x1001)
self.assertEqual(tag_ids["RelatedImageLength"], 0x1002)
def test_MAXBLOCK_scaling(self):
im = self.gen_random_image((512, 512))
f = self.tempfile("temp.jpeg")
im.save(f, quality=100, optimize=True)
reloaded = Image.open(f)
# none of these should crash
reloaded.save(f, quality="keep")
reloaded.save(f, quality="keep", progressive=True)
reloaded.save(f, quality="keep", optimize=True)
def test_bad_mpo_header(self):
""" Treat unknown MPO as JPEG """
# Arrange
# Act
# Shouldn't raise error
fn = "Tests/images/sugarshack_bad_mpo_header.jpg"
im = self.assert_warning(UserWarning, Image.open, fn)
# Assert
self.assertEqual(im.format, "JPEG")
def test_save_correct_modes(self):
out = BytesIO()
for mode in ["1", "L", "RGB", "RGBX", "CMYK", "YCbCr"]:
img = Image.new(mode, (20, 20))
img.save(out, "JPEG")
def test_save_wrong_modes(self):
# ref https://github.com/python-pillow/Pillow/issues/2005
out = BytesIO()
for mode in ["LA", "La", "RGBA", "RGBa", "P"]:
img = Image.new(mode, (20, 20))
self.assertRaises(IOError, img.save, out, "JPEG")
def test_save_tiff_with_dpi(self):
# Arrange
outfile = self.tempfile("temp.tif")
im = Image.open("Tests/images/hopper.tif")
# Act
im.save(outfile, "JPEG", dpi=im.info["dpi"])
# Assert
reloaded = Image.open(outfile)
reloaded.load()
self.assertEqual(im.info["dpi"], reloaded.info["dpi"])
def test_load_dpi_rounding(self):
# Round up
im = Image.open("Tests/images/iptc_roundUp.jpg")
self.assertEqual(im.info["dpi"], (44, 44))
# Round down
im = Image.open("Tests/images/iptc_roundDown.jpg")
self.assertEqual(im.info["dpi"], (2, 2))
def test_save_dpi_rounding(self):
outfile = self.tempfile("temp.jpg")
im = Image.open("Tests/images/hopper.jpg")
im.save(outfile, dpi=(72.2, 72.2))
reloaded = Image.open(outfile)
self.assertEqual(reloaded.info["dpi"], (72, 72))
im.save(outfile, dpi=(72.8, 72.8))
reloaded = Image.open(outfile)
self.assertEqual(reloaded.info["dpi"], (73, 73))
def test_dpi_tuple_from_exif(self):
# Arrange
# This Photoshop CC 2017 image has DPI in EXIF not metadata
# EXIF XResolution is (2000000, 10000)
im = Image.open("Tests/images/photoshop-200dpi.jpg")
# Act / Assert
self.assertEqual(im.info.get("dpi"), (200, 200))
def test_dpi_int_from_exif(self):
# Arrange
# This image has DPI in EXIF not metadata
# EXIF XResolution is 72
im = Image.open("Tests/images/exif-72dpi-int.jpg")
# Act / Assert
self.assertEqual(im.info.get("dpi"), (72, 72))
def test_dpi_from_dpcm_exif(self):
# Arrange
# This is photoshop-200dpi.jpg with EXIF resolution unit set to cm:
# exiftool -exif:ResolutionUnit=cm photoshop-200dpi.jpg
im = Image.open("Tests/images/exif-200dpcm.jpg")
# Act / Assert
self.assertEqual(im.info.get("dpi"), (508, 508))
def test_dpi_exif_zero_division(self):
# Arrange
# This is photoshop-200dpi.jpg with EXIF resolution set to 0/0:
# exiftool -XResolution=0/0 -YResolution=0/0 photoshop-200dpi.jpg
im = Image.open("Tests/images/exif-dpi-zerodivision.jpg")
# Act / Assert
# This should return the default, and not raise a ZeroDivisionError
self.assertEqual(im.info.get("dpi"), (72, 72))
def test_no_dpi_in_exif(self):
# Arrange
# This is photoshop-200dpi.jpg with resolution removed from EXIF:
# exiftool "-*resolution*"= photoshop-200dpi.jpg
im = Image.open("Tests/images/no-dpi-in-exif.jpg")
# Act / Assert
# "When the image resolution is unknown, 72 [dpi] is designated."
# http://www.exiv2.org/tags.html
self.assertEqual(im.info.get("dpi"), (72, 72))
def test_invalid_exif(self):
# This is no-dpi-in-exif with the tiff header of the exif block
# hexedited from MM * to FF FF FF FF
im = Image.open("Tests/images/invalid-exif.jpg")
# This should return the default, and not a SyntaxError or
# OSError for unidentified image.
self.assertEqual(im.info.get("dpi"), (72, 72))
def test_ifd_offset_exif(self):
# Arrange
# This image has been manually hexedited to have an IFD offset of 10,
# in contrast to normal 8
im = Image.open("Tests/images/exif-ifd-offset.jpg")
# Act / Assert
self.assertEqual(im._getexif()[306], "2017:03:13 23:03:09")
def test_photoshop(self):
im = Image.open("Tests/images/photoshop-200dpi.jpg")
self.assertEqual(
im.info["photoshop"][0x03ED],
{
"XResolution": 200.0,
"DisplayedUnitsX": 1,
"YResolution": 200.0,
"DisplayedUnitsY": 1,
},
)
# This image does not contain a Photoshop header string
im = Image.open("Tests/images/app13.jpg")
self.assertNotIn("photoshop", im.info)
@unittest.skipUnless(sys.platform.startswith("win32"), "Windows only")
class TestFileCloseW32(PillowTestCase):
def setUp(self):
if "jpeg_encoder" not in codecs or "jpeg_decoder" not in codecs:
self.skipTest("jpeg support not available")
def test_fd_leak(self):
tmpfile = self.tempfile("temp.jpg")
with Image.open("Tests/images/hopper.jpg") as im:
im.save(tmpfile)
im = Image.open(tmpfile)
fp = im.fp
self.assertFalse(fp.closed)
self.assertRaises(WindowsError, os.remove, tmpfile)
im.load()
self.assertTrue(fp.closed)
# this should not fail, as load should have closed the file.
os.remove(tmpfile)