mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-12-25 17:36:18 +03:00
399 lines
12 KiB
C
399 lines
12 KiB
C
/* PILusm, a gaussian blur and unsharp masking library for PIL
|
|
By Kevin Cazabon, copyright 2003
|
|
kevin_cazabon@hotmail.com
|
|
kevin@cazabon.com */
|
|
|
|
/* Originally released under LGPL. Graciously donated to PIL
|
|
for distribution under the standard PIL license in 2009." */
|
|
|
|
#include "Python.h"
|
|
#include "Imaging.h"
|
|
|
|
#define PILUSMVERSION "0.6.1"
|
|
|
|
/* version history
|
|
|
|
0.6.1 converted to C and added to PIL 1.1.7
|
|
|
|
0.6.0 fixed/improved float radius support (oops!)
|
|
now that radius can be a float (properly), changed radius value to
|
|
be an actual radius (instead of diameter). So, you should get
|
|
similar results from PIL_usm as from other paint programs when
|
|
using the SAME values (no doubling of radius required any more).
|
|
Be careful, this may "break" software if you had it set for 2x
|
|
or 5x the radius as was recommended with earlier versions.
|
|
made PILusm thread-friendly (release GIL before lengthly operations,
|
|
and re-acquire it before returning to Python). This makes a huge
|
|
difference with multi-threaded applications on dual-processor
|
|
or "Hyperthreading"-enabled systems (Pentium4, Xeon, etc.)
|
|
|
|
0.5.0 added support for float radius values!
|
|
|
|
0.4.0 tweaked gaussian curve calculation to be closer to consistent shape
|
|
across a wide range of radius values
|
|
|
|
0.3.0 changed deviation calculation in gausian algorithm to be dynamic
|
|
_gblur now adds 1 to the user-supplied radius before using it so
|
|
that a value of "0" returns the original image instead of a
|
|
black one.
|
|
fixed handling of alpha channel in RGBX, RGBA images
|
|
improved speed of gblur by reducing unnecessary checks and assignments
|
|
|
|
0.2.0 fixed L-mode image support
|
|
|
|
0.1.0 initial release
|
|
|
|
*/
|
|
|
|
static inline UINT8 clip(double in)
|
|
{
|
|
if (in >= 255.0)
|
|
return (UINT8) 255;
|
|
if (in <= 0.0)
|
|
return (UINT8) 0;
|
|
return (UINT8) in;
|
|
}
|
|
|
|
static Imaging
|
|
gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
|
|
float *maskData = NULL;
|
|
int y = 0;
|
|
int x = 0;
|
|
float z = 0;
|
|
float sum = 0.0;
|
|
float dev = 0.0;
|
|
|
|
float *buffer = NULL;
|
|
|
|
int *line = NULL;
|
|
UINT8 *line8 = NULL;
|
|
|
|
int pix = 0;
|
|
float newPixel[4];
|
|
int channel = 0;
|
|
int offset = 0;
|
|
INT32 newPixelFinals;
|
|
|
|
int radius = 0;
|
|
float remainder = 0.0;
|
|
|
|
int i;
|
|
|
|
/* Do the gaussian blur */
|
|
|
|
/* For a symmetrical gaussian blur, instead of doing a radius*radius
|
|
matrix lookup, you get the EXACT same results by doing a radius*1
|
|
transform, followed by a 1*radius transform. This reduces the
|
|
number of lookups exponentially (10 lookups per pixel for a
|
|
radius of 5 instead of 25 lookups). So, we blur the lines first,
|
|
then we blur the resulting columns. */
|
|
|
|
/* first, round radius off to the next higher integer and hold the
|
|
remainder this is used so we can support float radius values
|
|
properly. */
|
|
|
|
remainder = floatRadius - ((int) floatRadius);
|
|
floatRadius = ceil(floatRadius);
|
|
|
|
/* Next, double the radius and offset by 2.0... that way "0" returns
|
|
the original image instead of a black one. We multiply it by 2.0
|
|
so that it is a true "radius", not a diameter (the results match
|
|
other paint programs closer that way too). */
|
|
radius = (int) ((floatRadius * 2.0) + 2.0);
|
|
|
|
/* create the maskData for the gaussian curve */
|
|
maskData = malloc(radius * sizeof(float));
|
|
/* FIXME: error checking */
|
|
for (x = 0; x < radius; x++) {
|
|
z = ((float) (x + 2) / ((float) radius));
|
|
dev = 0.5 + (((float) (radius * radius)) * 0.001);
|
|
/* you can adjust this factor to change the shape/center-weighting
|
|
of the gaussian */
|
|
maskData[x] = (float) pow((1.0 / sqrt(2.0 * 3.14159265359 * dev)),
|
|
((-(z - 1.0) * -(x - 1.0)) /
|
|
(2.0 * dev)));
|
|
}
|
|
|
|
/* if there's any remainder, multiply the first/last values in
|
|
MaskData it. this allows us to support float radius values. */
|
|
if (remainder > 0.0) {
|
|
maskData[0] *= remainder;
|
|
maskData[radius - 1] *= remainder;
|
|
}
|
|
|
|
for (x = 0; x < radius; x++) {
|
|
/* this is done separately now due to the correction for float
|
|
radius values above */
|
|
sum += maskData[x];
|
|
}
|
|
|
|
for (i = 0; i < radius; i++) {
|
|
maskData[i] *= (1.0 / sum);
|
|
/* printf("%f\n", maskData[i]); */
|
|
}
|
|
|
|
/* create a temporary memory buffer for the data for the first pass
|
|
memset the buffer to 0 so we can use it directly with += */
|
|
|
|
/* don't bother about alpha/padding */
|
|
buffer = calloc((size_t) (im->xsize * im->ysize * channels),
|
|
sizeof(float));
|
|
if (buffer == NULL)
|
|
return ImagingError_MemoryError();
|
|
|
|
/* be nice to other threads while you go off to lala land */
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
/* memset(buffer, 0, sizeof(buffer)); */
|
|
|
|
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
|
|
|
/* perform a blur on each line, and place in the temporary storage buffer */
|
|
for (y = 0; y < im->ysize; y++) {
|
|
if (channels == 1 && im->image8 != NULL) {
|
|
line8 = (UINT8 *) im->image8[y];
|
|
} else {
|
|
line = im->image32[y];
|
|
}
|
|
for (x = 0; x < im->xsize; x++) {
|
|
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
|
/* for each neighbor pixel, factor in its value/weighting to the
|
|
current pixel */
|
|
for (pix = 0; pix < radius; pix++) {
|
|
/* figure the offset of this neighbor pixel */
|
|
offset =
|
|
(int) ((-((float) radius / 2.0) + (float) pix) + 0.5);
|
|
if (x + offset < 0)
|
|
offset = -x;
|
|
else if (x + offset >= im->xsize)
|
|
offset = im->xsize - x - 1;
|
|
|
|
/* add (neighbor pixel value * maskData[pix]) to the current
|
|
pixel value */
|
|
if (channels == 1) {
|
|
buffer[(y * im->xsize) + x] +=
|
|
((float) ((UINT8 *) & line8[x + offset])[0]) *
|
|
(maskData[pix]);
|
|
} else {
|
|
for (channel = 0; channel < channels; channel++) {
|
|
buffer[(y * im->xsize * channels) +
|
|
(x * channels) + channel] +=
|
|
((float) ((UINT8 *) & line[x + offset])
|
|
[channel]) * (maskData[pix]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* perform a blur on each column in the buffer, and place in the
|
|
output image */
|
|
for (x = 0; x < im->xsize; x++) {
|
|
for (y = 0; y < im->ysize; y++) {
|
|
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
|
/* for each neighbor pixel, factor in its value/weighting to the
|
|
current pixel */
|
|
for (pix = 0; pix < radius; pix++) {
|
|
/* figure the offset of this neighbor pixel */
|
|
offset =
|
|
(int) (-((float) radius / 2.0) + (float) pix + 0.5);
|
|
if (y + offset < 0)
|
|
offset = -y;
|
|
else if (y + offset >= im->ysize)
|
|
offset = im->ysize - y - 1;
|
|
/* add (neighbor pixel value * maskData[pix]) to the current
|
|
pixel value */
|
|
for (channel = 0; channel < channels; channel++) {
|
|
newPixel[channel] +=
|
|
(buffer
|
|
[((y + offset) * im->xsize * channels) +
|
|
(x * channels) + channel]) * (maskData[pix]);
|
|
}
|
|
}
|
|
/* if the image is RGBX or RGBA, copy the 4th channel data to
|
|
newPixel, so it gets put in imOut */
|
|
if (strcmp(im->mode, "RGBX") == 0
|
|
|| strcmp(im->mode, "RGBA") == 0) {
|
|
newPixel[3] = (float) ((UINT8 *) & line[x + offset])[3];
|
|
}
|
|
|
|
/* pack the channels into an INT32 so we can put them back in
|
|
the PIL image */
|
|
newPixelFinals = 0;
|
|
if (channels == 1) {
|
|
newPixelFinals = clip(newPixel[0]);
|
|
} else {
|
|
/* for RGB, the fourth channel isn't used anyways, so just
|
|
pack a 0 in there, this saves checking the mode for each
|
|
pixel. */
|
|
/* this doesn't work on little-endian machines... fix it! */
|
|
newPixelFinals =
|
|
clip(newPixel[0]) | clip(newPixel[1]) << 8 |
|
|
clip(newPixel[2]) << 16 | clip(newPixel[3]) << 24;
|
|
}
|
|
/* set the resulting pixel in imOut */
|
|
if (channels == 1) {
|
|
imOut->image8[y][x] = (UINT8) newPixelFinals;
|
|
} else {
|
|
imOut->image32[y][x] = newPixelFinals;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* free the buffer */
|
|
free(buffer);
|
|
|
|
/* get the GIL back so Python knows who you are */
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
return imOut;
|
|
}
|
|
|
|
Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius)
|
|
{
|
|
int channels = 0;
|
|
int padding = 0;
|
|
|
|
if (strcmp(im->mode, "RGB") == 0) {
|
|
channels = 3;
|
|
padding = 1;
|
|
} else if (strcmp(im->mode, "RGBA") == 0) {
|
|
channels = 3;
|
|
padding = 1;
|
|
} else if (strcmp(im->mode, "RGBX") == 0) {
|
|
channels = 3;
|
|
padding = 1;
|
|
} else if (strcmp(im->mode, "CMYK") == 0) {
|
|
channels = 4;
|
|
padding = 0;
|
|
} else if (strcmp(im->mode, "L") == 0) {
|
|
channels = 1;
|
|
padding = 0;
|
|
} else
|
|
return ImagingError_ModeError();
|
|
|
|
return gblur(im, imOut, radius, channels, padding);
|
|
}
|
|
|
|
Imaging
|
|
ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|
int threshold)
|
|
{
|
|
ImagingSectionCookie cookie;
|
|
|
|
Imaging result;
|
|
int channel = 0;
|
|
int channels = 0;
|
|
int padding = 0;
|
|
|
|
int x = 0;
|
|
int y = 0;
|
|
|
|
int *lineIn = NULL;
|
|
int *lineOut = NULL;
|
|
UINT8 *lineIn8 = NULL;
|
|
UINT8 *lineOut8 = NULL;
|
|
|
|
int diff = 0;
|
|
|
|
INT32 newPixel = 0;
|
|
|
|
if (strcmp(im->mode, "RGB") == 0) {
|
|
channels = 3;
|
|
padding = 1;
|
|
} else if (strcmp(im->mode, "RGBA") == 0) {
|
|
channels = 3;
|
|
padding = 1;
|
|
} else if (strcmp(im->mode, "RGBX") == 0) {
|
|
channels = 3;
|
|
padding = 1;
|
|
} else if (strcmp(im->mode, "CMYK") == 0) {
|
|
channels = 4;
|
|
padding = 0;
|
|
} else if (strcmp(im->mode, "L") == 0) {
|
|
channels = 1;
|
|
padding = 0;
|
|
} else
|
|
return ImagingError_ModeError();
|
|
|
|
/* first, do a gaussian blur on the image, putting results in imOut
|
|
temporarily */
|
|
result = gblur(im, imOut, radius, channels, padding);
|
|
if (!result)
|
|
return NULL;
|
|
|
|
/* now, go through each pixel, compare "normal" pixel to blurred
|
|
pixel. if the difference is more than threshold values, apply
|
|
the OPPOSITE correction to the amount of blur, multiplied by
|
|
percent. */
|
|
|
|
ImagingSectionEnter(&cookie);
|
|
|
|
for (y = 0; y < im->ysize; y++) {
|
|
if (channels == 1) {
|
|
lineIn8 = im->image8[y];
|
|
lineOut8 = imOut->image8[y];
|
|
} else {
|
|
lineIn = im->image32[y];
|
|
lineOut = imOut->image32[y];
|
|
}
|
|
for (x = 0; x < im->xsize; x++) {
|
|
newPixel = 0;
|
|
/* compare in/out pixels, apply sharpening */
|
|
if (channels == 1) {
|
|
diff =
|
|
((UINT8 *) & lineIn8[x])[0] -
|
|
((UINT8 *) & lineOut8[x])[0];
|
|
if (abs(diff) > threshold) {
|
|
/* add the diff*percent to the original pixel */
|
|
imOut->image8[y][x] =
|
|
clip((((UINT8 *) & lineIn8[x])[0]) +
|
|
(diff * ((float) percent) / 100.0));
|
|
} else {
|
|
/* newPixel is the same as imIn */
|
|
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
|
|
}
|
|
}
|
|
|
|
else {
|
|
for (channel = 0; channel < channels; channel++) {
|
|
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
|
|
(((UINT8 *) & lineOut[x])[channel]));
|
|
if (abs(diff) > threshold) {
|
|
/* add the diff*percent to the original pixel
|
|
this may not work for little-endian systems, fix it! */
|
|
newPixel =
|
|
newPixel |
|
|
clip((float) (((UINT8 *) & lineIn[x])[channel])
|
|
+
|
|
(diff *
|
|
(((float) percent /
|
|
100.0)))) << (channel * 8);
|
|
} else {
|
|
/* newPixel is the same as imIn
|
|
this may not work for little-endian systems, fix it! */
|
|
newPixel =
|
|
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
|
|
(channel * 8);
|
|
}
|
|
}
|
|
if (strcmp(im->mode, "RGBX") == 0
|
|
|| strcmp(im->mode, "RGBA") == 0) {
|
|
/* preserve the alpha channel
|
|
this may not work for little-endian systems, fix it! */
|
|
newPixel =
|
|
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
|
|
}
|
|
imOut->image32[y][x] = newPixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
ImagingSectionLeave(&cookie);
|
|
|
|
return imOut;
|
|
}
|