#!/usr/bin/env python2 # -*- coding: utf-8 -*- # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., # 59 Temple Place, Suite 330, # Boston, MA 02111-1307 USA # This file was part of urlgrabber, a high-level cross-protocol url-grabber # Copyright 2002-2004 Michael D. Stenner, Ryan Tomayko # Copyright 2015 Sergio Fernández """An HTTP handler for urllib2 that supports HTTP 1.1 and keepalive. >>> import urllib2 >>> from keepalive import HTTPHandler >>> keepalive_handler = HTTPHandler() >>> opener = _urllib.request.build_opener(keepalive_handler) >>> _urllib.request.install_opener(opener) >>> >>> fo = _urllib.request.urlopen('http://www.python.org') If a connection to a given host is requested, and all of the existing connections are still in use, another connection will be opened. If the handler tries to use an existing connection but it fails in some way, it will be closed and removed from the pool. To remove the handler, simply re-run build_opener with no arguments, and install that opener. You can explicitly close connections by using the close_connection() method of the returned file-like object (described below) or you can use the handler methods: close_connection(host) close_all() open_connections() NOTE: using the close_connection and close_all methods of the handler should be done with care when using multiple threads. * there is nothing that prevents another thread from creating new connections immediately after connections are closed * no checks are done to prevent in-use connections from being closed >>> keepalive_handler.close_all() EXTRA ATTRIBUTES AND METHODS Upon a status of 200, the object returned has a few additional attributes and methods, which should not be used if you want to remain consistent with the normal urllib2-returned objects: close_connection() - close the connection to the host readlines() - you know, readlines() status - the return status (ie 404) reason - english translation of status (ie 'File not found') If you want the best of both worlds, use this inside an AttributeError-catching try: >>> try: status = fo.status >>> except AttributeError: status = None Unfortunately, these are ONLY there if status == 200, so it's not easy to distinguish between non-200 responses. The reason is that urllib2 tries to do clever things with error codes 301, 302, 401, and 407, and it wraps the object upon return. For python versions earlier than 2.4, you can avoid this fancy error handling by setting the module-level global HANDLE_ERRORS to zero. You see, prior to 2.4, it's the HTTP Handler's job to determine what to handle specially, and what to just pass up. HANDLE_ERRORS == 0 means "pass everything up". In python 2.4, however, this job no longer belongs to the HTTP Handler and is now done by a NEW handler, HTTPErrorProcessor. Here's the bottom line: python version < 2.4 HANDLE_ERRORS == 1 (default) pass up 200, treat the rest as errors HANDLE_ERRORS == 0 pass everything up, error processing is left to the calling code python version >= 2.4 HANDLE_ERRORS == 1 pass up 200, treat the rest as errors HANDLE_ERRORS == 0 (default) pass everything up, let the other handlers (specifically, HTTPErrorProcessor) decide what to do In practice, setting the variable either way makes little difference in python 2.4, so for the most consistent behavior across versions, you probably just want to use the defaults, which will give you exceptions on errors. """ from __future__ import print_function try: from thirdparty.six.moves import http_client as _http_client from thirdparty.six.moves import urllib as _urllib except ImportError: from six.moves import http_client as _http_client from six.moves import urllib as _urllib import socket import thread DEBUG = None import sys if sys.version_info < (2, 4): HANDLE_ERRORS = 1 else: HANDLE_ERRORS = 0 class ConnectionManager: """ The connection manager must be able to: * keep track of all existing """ def __init__(self): self._lock = thread.allocate_lock() self._hostmap = {} # map hosts to a list of connections self._connmap = {} # map connections to host self._readymap = {} # map connection to ready state def add(self, host, connection, ready): self._lock.acquire() try: if not self._hostmap.has_key(host): self._hostmap[host] = [] self._hostmap[host].append(connection) self._connmap[connection] = host self._readymap[connection] = ready finally: self._lock.release() def remove(self, connection): self._lock.acquire() try: try: host = self._connmap[connection] except KeyError: pass else: del self._connmap[connection] del self._readymap[connection] self._hostmap[host].remove(connection) if not self._hostmap[host]: del self._hostmap[host] finally: self._lock.release() def set_ready(self, connection, ready): try: self._readymap[connection] = ready except KeyError: pass def get_ready_conn(self, host): conn = None self._lock.acquire() try: if self._hostmap.has_key(host): for c in self._hostmap[host]: if self._readymap[c]: self._readymap[c] = 0 conn = c break finally: self._lock.release() return conn def get_all(self, host=None): if host: return list(self._hostmap.get(host, [])) else: return dict(self._hostmap) class KeepAliveHandler: def __init__(self): self._cm = ConnectionManager() #### Connection Management def open_connections(self): """return a list of connected hosts and the number of connections to each. [('foo.com:80', 2), ('bar.org', 1)]""" return [(host, len(li)) for (host, li) in self._cm.get_all().items()] def close_connection(self, host): """close connection(s) to host is the host:port spec, as in 'www.cnn.com:8080' as passed in. no error occurs if there is no connection to that host.""" for h in self._cm.get_all(host): self._cm.remove(h) h.close() def close_all(self): """close all open connections""" for host, conns in self._cm.get_all().items(): for h in conns: self._cm.remove(h) h.close() def _request_closed(self, request, host, connection): """tells us that this request is now closed and the the connection is ready for another request""" self._cm.set_ready(connection, 1) def _remove_connection(self, host, connection, close=0): if close: connection.close() self._cm.remove(connection) #### Transaction Execution def do_open(self, req): host = req.host if not host: raise _urllib.error.URLError('no host given') try: h = self._cm.get_ready_conn(host) while h: r = self._reuse_connection(h, req, host) # if this response is non-None, then it worked and we're # done. Break out, skipping the else block. if r: break # connection is bad - possibly closed by server # discard it and ask for the next free connection h.close() self._cm.remove(h) h = self._cm.get_ready_conn(host) else: # no (working) free connections were found. Create a new one. h = self._get_connection(host) if DEBUG: DEBUG.info("creating new connection to %s (%d)", host, id(h)) self._cm.add(host, h, 0) self._start_transaction(h, req) r = h.getresponse() except (socket.error, _http_client.HTTPException) as err: raise _urllib.error.URLError(err) if DEBUG: DEBUG.info("STATUS: %s, %s", r.status, r.reason) # if not a persistent connection, don't try to reuse it if r.will_close: if DEBUG: DEBUG.info('server will close connection, discarding') self._cm.remove(h) r._handler = self r._host = host r._url = req.get_full_url() r._connection = h r.code = r.status r.headers = r.msg r.msg = r.reason if r.status == 200 or not HANDLE_ERRORS: return r else: return self.parent.error('http', req, r, r.status, r.msg, r.headers) def _reuse_connection(self, h, req, host): """start the transaction with a re-used connection return a response object (r) upon success or None on failure. This DOES not close or remove bad connections in cases where it returns. However, if an unexpected exception occurs, it will close and remove the connection before re-raising. """ try: self._start_transaction(h, req) r = h.getresponse() # note: just because we got something back doesn't mean it # worked. We'll check the version below, too. except (socket.error, _http_client.HTTPException): r = None except: # adding this block just in case we've missed # something we will still raise the exception, but # lets try and close the connection and remove it # first. We previously got into a nasty loop # where an exception was uncaught, and so the # connection stayed open. On the next try, the # same exception was raised, etc. The tradeoff is # that it's now possible this call will raise # a DIFFERENT exception if DEBUG: DEBUG.error("unexpected exception - closing " + \ "connection to %s (%d)", host, id(h)) self._cm.remove(h) h.close() raise if r is None or r.version == 9: # httplib falls back to assuming HTTP 0.9 if it gets a # bad header back. This is most likely to happen if # the socket has been closed by the server since we # last used the connection. if DEBUG: DEBUG.info("failed to re-use connection to %s (%d)", host, id(h)) r = None else: if DEBUG: DEBUG.info("re-using connection to %s (%d)", host, id(h)) return r def _start_transaction(self, h, req): try: if req.has_data(): data = req.data if hasattr(req, 'selector'): h.putrequest(req.get_method() or 'POST', req.selector, skip_host=req.has_header("Host"), skip_accept_encoding=req.has_header("Accept-encoding")) else: h.putrequest(req.get_method() or 'POST', req.get_selector(), skip_host=req.has_header("Host"), skip_accept_encoding=req.has_header("Accept-encoding")) if not req.headers.has_key('Content-type'): h.putheader('Content-type', 'application/x-www-form-urlencoded') if not req.headers.has_key('Content-length'): h.putheader('Content-length', '%d' % len(data)) else: if hasattr(req, 'selector'): h.putrequest(req.get_method() or 'GET', req.selector, skip_host=req.has_header("Host"), skip_accept_encoding=req.has_header("Accept-encoding")) else: h.putrequest(req.get_method() or 'GET', req.get_selector(), skip_host=req.has_header("Host"), skip_accept_encoding=req.has_header("Accept-encoding")) except (socket.error, _http_client.HTTPException) as err: raise _urllib.error.URLError(err) if not req.headers.has_key('Connection'): req.headers['Connection'] = 'keep-alive' for args in self.parent.addheaders: if not req.headers.has_key(args[0]): h.putheader(*args) for k, v in req.headers.items(): h.putheader(k, v) h.endheaders() if req.has_data(): h.send(data) def _get_connection(self, host): return NotImplementedError class HTTPHandler(KeepAliveHandler, _urllib.request.HTTPHandler): def __init__(self): KeepAliveHandler.__init__(self) def http_open(self, req): return self.do_open(req) def _get_connection(self, host): return HTTPConnection(host) class HTTPSHandler(KeepAliveHandler, _urllib.request.HTTPSHandler): def __init__(self, ssl_factory=None): KeepAliveHandler.__init__(self) if not ssl_factory: try: import sslfactory ssl_factory = sslfactory.get_factory() except ImportError: pass self._ssl_factory = ssl_factory def https_open(self, req): return self.do_open(req) def _get_connection(self, host): try: return self._ssl_factory.get_https_connection(host) except AttributeError: return HTTPSConnection(host) class HTTPResponse(_http_client.HTTPResponse): # we need to subclass HTTPResponse in order to # 1) add readline() and readlines() methods # 2) add close_connection() methods # 3) add info() and geturl() methods # in order to add readline(), read must be modified to deal with a # buffer. example: readline must read a buffer and then spit back # one line at a time. The only real alternative is to read one # BYTE at a time (ick). Once something has been read, it can't be # put back (ok, maybe it can, but that's even uglier than this), # so if you THEN do a normal read, you must first take stuff from # the buffer. # the read method wraps the original to accomodate buffering, # although read() never adds to the buffer. # Both readline and readlines have been stolen with almost no # modification from socket.py def __init__(self, sock, debuglevel=0, strict=0, method=None): if method: # the httplib in python 2.3 uses the method arg _http_client.HTTPResponse.__init__(self, sock, debuglevel, method) else: # 2.2 doesn't _http_client.HTTPResponse.__init__(self, sock, debuglevel) self.fileno = sock.fileno self.code = None self._method = method self._rbuf = b"" self._rbufsize = 8096 self._handler = None # inserted by the handler later self._host = None # (same) self._url = None # (same) self._connection = None # (same) _raw_read = _http_client.HTTPResponse.read def close(self): if self.fp: self.fp.close() self.fp = None if self._handler: self._handler._request_closed(self, self._host, self._connection) def close_connection(self): self._handler._remove_connection(self._host, self._connection, close=1) self.close() def info(self): return self.headers def geturl(self): return self._url def read(self, amt=None): # the _rbuf test is only in this first if for speed. It's not # logically necessary if self._rbuf and not amt is None: L = len(self._rbuf) if amt > L: amt -= L else: s = self._rbuf[:amt] self._rbuf = self._rbuf[amt:] return s s = self._rbuf + self._raw_read(amt) self._rbuf = b"" return s def readline(self, limit=-1): data = b"" i = self._rbuf.find('\n') while i < 0 and not (0 < limit <= len(self._rbuf)): new = self._raw_read(self._rbufsize) if not new: break i = new.find('\n') if i >= 0: i = i + len(self._rbuf) self._rbuf = self._rbuf + new if i < 0: i = len(self._rbuf) else: i = i+1 if 0 <= limit < len(self._rbuf): i = limit data, self._rbuf = self._rbuf[:i], self._rbuf[i:] return data def readlines(self, sizehint = 0): total = 0 list = [] while 1: line = self.readline() if not line: break list.append(line) total += len(line) if sizehint and total >= sizehint: break return list class HTTPConnection(_http_client.HTTPConnection): # use the modified response class response_class = HTTPResponse class HTTPSConnection(_http_client.HTTPSConnection): response_class = HTTPResponse ######################################################################### ##### TEST FUNCTIONS ######################################################################### def error_handler(url): global HANDLE_ERRORS orig = HANDLE_ERRORS keepalive_handler = HTTPHandler() opener = _urllib.request.build_opener(keepalive_handler) _urllib.request.install_opener(opener) pos = {0: 'off', 1: 'on'} for i in (0, 1): print(" fancy error handling %s (HANDLE_ERRORS = %i)" % (pos[i], i)) HANDLE_ERRORS = i try: fo = _urllib.request.urlopen(url) foo = fo.read() fo.close() try: status, reason = fo.status, fo.reason except AttributeError: status, reason = None, None except IOError as e: print(" EXCEPTION: %s" % e) raise else: print(" status = %s, reason = %s" % (status, reason)) HANDLE_ERRORS = orig hosts = keepalive_handler.open_connections() print("open connections:", hosts) keepalive_handler.close_all() def continuity(url): import md5 format = '%25s: %s' # first fetch the file with the normal http handler opener = _urllib.request.build_opener() _urllib.request.install_opener(opener) fo = _urllib.request.urlopen(url) foo = fo.read() fo.close() m = md5.new(foo) print(format % ('normal urllib', m.hexdigest())) # now install the keepalive handler and try again opener = _urllib.request.build_opener(HTTPHandler()) _urllib.request.install_opener(opener) fo = _urllib.request.urlopen(url) foo = fo.read() fo.close() m = md5.new(foo) print(format % ('keepalive read', m.hexdigest())) fo = _urllib.request.urlopen(url) foo = '' while 1: f = fo.readline() if f: foo = foo + f else: break fo.close() m = md5.new(foo) print(format % ('keepalive readline', m.hexdigest())) def comp(N, url): print(' making %i connections to:\n %s' % (N, url)) sys.stdout.write(' first using the normal urllib handlers') # first use normal opener opener = _urllib.request.build_opener() _urllib.request.install_opener(opener) t1 = fetch(N, url) print(' TIME: %.3f s' % t1) sys.stdout.write(' now using the keepalive handler ') # now install the keepalive handler and try again opener = _urllib.request.build_opener(HTTPHandler()) _urllib.request.install_opener(opener) t2 = fetch(N, url) print(' TIME: %.3f s' % t2) print(' improvement factor: %.2f' % (t1/t2, )) def fetch(N, url, delay=0): import time lens = [] starttime = time.time() for i in range(N): if delay and i > 0: time.sleep(delay) fo = _urllib.request.urlopen(url) foo = fo.read() fo.close() lens.append(len(foo)) diff = time.time() - starttime j = 0 for i in lens[1:]: j = j + 1 if not i == lens[0]: print("WARNING: inconsistent length on read %i: %i" % (j, i)) return diff def test_timeout(url): global DEBUG dbbackup = DEBUG class FakeLogger: def debug(self, msg, *args): print(msg % args) info = warning = error = debug DEBUG = FakeLogger() print(" fetching the file to establish a connection") fo = _urllib.request.urlopen(url) data1 = fo.read() fo.close() i = 20 print(" waiting %i seconds for the server to close the connection" % i) while i > 0: sys.stdout.write('\r %2i' % i) sys.stdout.flush() time.sleep(1) i -= 1 sys.stderr.write('\r') print(" fetching the file a second time") fo = _urllib.request.urlopen(url) data2 = fo.read() fo.close() if data1 == data2: print(' data are identical') else: print(' ERROR: DATA DIFFER') DEBUG = dbbackup def test(url, N=10): print("checking error hander (do this on a non-200)") try: error_handler(url) except IOError as e: print("exiting - exception will prevent further tests") sys.exit() print() print("performing continuity test (making sure stuff isn't corrupted)") continuity(url) print() print("performing speed comparison") comp(N, url) print() print("performing dropped-connection check") test_timeout(url) if __name__ == '__main__': import time import sys try: N = int(sys.argv[1]) url = sys.argv[2] except: print("%s " % sys.argv[0]) else: test(url, N)