mirror of
				https://github.com/sqlmapproject/sqlmap.git
				synced 2025-11-04 01:47:37 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			133 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
######################## BEGIN LICENSE BLOCK ########################
 | 
						|
# The Original Code is Mozilla Universal charset detector code.
 | 
						|
#
 | 
						|
# The Initial Developer of the Original Code is
 | 
						|
# Netscape Communications Corporation.
 | 
						|
# Portions created by the Initial Developer are Copyright (C) 2001
 | 
						|
# the Initial Developer. All Rights Reserved.
 | 
						|
#
 | 
						|
# Contributor(s):
 | 
						|
#   Mark Pilgrim - port to Python
 | 
						|
#   Shy Shalom - original C code
 | 
						|
#
 | 
						|
# This library is free software; you can redistribute it and/or
 | 
						|
# modify it under the terms of the GNU Lesser General Public
 | 
						|
# License as published by the Free Software Foundation; either
 | 
						|
# version 2.1 of the License, or (at your option) any later version.
 | 
						|
#
 | 
						|
# This library is distributed in the hope that it will be useful,
 | 
						|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
# Lesser General Public License for more details.
 | 
						|
#
 | 
						|
# You should have received a copy of the GNU Lesser General Public
 | 
						|
# License along with this library; if not, write to the Free Software
 | 
						|
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 | 
						|
# 02110-1301  USA
 | 
						|
######################### END LICENSE BLOCK #########################
 | 
						|
 | 
						|
from .charsetprober import CharSetProber
 | 
						|
from .enums import CharacterCategory, ProbingState, SequenceLikelihood
 | 
						|
 | 
						|
 | 
						|
class SingleByteCharSetProber(CharSetProber):
 | 
						|
    SAMPLE_SIZE = 64
 | 
						|
    SB_ENOUGH_REL_THRESHOLD = 1024  #  0.25 * SAMPLE_SIZE^2
 | 
						|
    POSITIVE_SHORTCUT_THRESHOLD = 0.95
 | 
						|
    NEGATIVE_SHORTCUT_THRESHOLD = 0.05
 | 
						|
 | 
						|
    def __init__(self, model, reversed=False, name_prober=None):
 | 
						|
        super(SingleByteCharSetProber, self).__init__()
 | 
						|
        self._model = model
 | 
						|
        # TRUE if we need to reverse every pair in the model lookup
 | 
						|
        self._reversed = reversed
 | 
						|
        # Optional auxiliary prober for name decision
 | 
						|
        self._name_prober = name_prober
 | 
						|
        self._last_order = None
 | 
						|
        self._seq_counters = None
 | 
						|
        self._total_seqs = None
 | 
						|
        self._total_char = None
 | 
						|
        self._freq_char = None
 | 
						|
        self.reset()
 | 
						|
 | 
						|
    def reset(self):
 | 
						|
        super(SingleByteCharSetProber, self).reset()
 | 
						|
        # char order of last character
 | 
						|
        self._last_order = 255
 | 
						|
        self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
 | 
						|
        self._total_seqs = 0
 | 
						|
        self._total_char = 0
 | 
						|
        # characters that fall in our sampling range
 | 
						|
        self._freq_char = 0
 | 
						|
 | 
						|
    @property
 | 
						|
    def charset_name(self):
 | 
						|
        if self._name_prober:
 | 
						|
            return self._name_prober.charset_name
 | 
						|
        else:
 | 
						|
            return self._model['charset_name']
 | 
						|
 | 
						|
    @property
 | 
						|
    def language(self):
 | 
						|
        if self._name_prober:
 | 
						|
            return self._name_prober.language
 | 
						|
        else:
 | 
						|
            return self._model.get('language')
 | 
						|
 | 
						|
    def feed(self, byte_str):
 | 
						|
        if not self._model['keep_english_letter']:
 | 
						|
            byte_str = self.filter_international_words(byte_str)
 | 
						|
        if not byte_str:
 | 
						|
            return self.state
 | 
						|
        char_to_order_map = self._model['char_to_order_map']
 | 
						|
        for i, c in enumerate(byte_str):
 | 
						|
            # XXX: Order is in range 1-64, so one would think we want 0-63 here,
 | 
						|
            #      but that leads to 27 more test failures than before.
 | 
						|
            order = char_to_order_map[c]
 | 
						|
            # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
 | 
						|
            #      CharacterCategory.SYMBOL is actually 253, so we use CONTROL
 | 
						|
            #      to make it closer to the original intent. The only difference
 | 
						|
            #      is whether or not we count digits and control characters for
 | 
						|
            #      _total_char purposes.
 | 
						|
            if order < CharacterCategory.CONTROL:
 | 
						|
                self._total_char += 1
 | 
						|
            if order < self.SAMPLE_SIZE:
 | 
						|
                self._freq_char += 1
 | 
						|
                if self._last_order < self.SAMPLE_SIZE:
 | 
						|
                    self._total_seqs += 1
 | 
						|
                    if not self._reversed:
 | 
						|
                        i = (self._last_order * self.SAMPLE_SIZE) + order
 | 
						|
                        model = self._model['precedence_matrix'][i]
 | 
						|
                    else:  # reverse the order of the letters in the lookup
 | 
						|
                        i = (order * self.SAMPLE_SIZE) + self._last_order
 | 
						|
                        model = self._model['precedence_matrix'][i]
 | 
						|
                    self._seq_counters[model] += 1
 | 
						|
            self._last_order = order
 | 
						|
 | 
						|
        charset_name = self._model['charset_name']
 | 
						|
        if self.state == ProbingState.DETECTING:
 | 
						|
            if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
 | 
						|
                confidence = self.get_confidence()
 | 
						|
                if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
 | 
						|
                    self.logger.debug('%s confidence = %s, we have a winner',
 | 
						|
                                      charset_name, confidence)
 | 
						|
                    self._state = ProbingState.FOUND_IT
 | 
						|
                elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
 | 
						|
                    self.logger.debug('%s confidence = %s, below negative '
 | 
						|
                                      'shortcut threshhold %s', charset_name,
 | 
						|
                                      confidence,
 | 
						|
                                      self.NEGATIVE_SHORTCUT_THRESHOLD)
 | 
						|
                    self._state = ProbingState.NOT_ME
 | 
						|
 | 
						|
        return self.state
 | 
						|
 | 
						|
    def get_confidence(self):
 | 
						|
        r = 0.01
 | 
						|
        if self._total_seqs > 0:
 | 
						|
            r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
 | 
						|
                 self._total_seqs / self._model['typical_positive_ratio'])
 | 
						|
            r = r * self._freq_char / self._total_char
 | 
						|
            if r >= 1.0:
 | 
						|
                r = 0.99
 | 
						|
        return r
 |