backend/passfinder/recomendations/service/service.py

921 lines
28 KiB
Python
Raw Normal View History

2023-05-27 11:13:41 +03:00
from annoy import AnnoyIndex
from .mapping.mapping import *
from .models.models import *
from passfinder.events.models import Event, Region, Hotel, BasePoint, City, Restaurant
2023-05-27 01:03:34 +03:00
from passfinder.events.api.serializers import (
HotelSerializer,
EventSerializer,
RestaurantSerializer,
ObjectRouteSerializer,
)
2023-05-27 11:13:41 +03:00
from passfinder.recomendations.models import *
from random import choice, sample
from collections import Counter
from passfinder.users.models import User
from collections.abc import Iterable
from django.db.models import Q
from geopy.distance import geodesic as GD
from datetime import timedelta, time, datetime
from gevent.pool import Pool
from python_tsp.exact import solve_tsp_dynamic_programming
import numpy as np
def get_nearest_(instance_model, model_type, mapping, rev_mapping, nearest_n, ml_model):
how_many = len(Event.objects.filter(type=model_type))
index = rev_mapping[instance_model.oid]
nearest = ml_model.get_nns_by_item(index, len(mapping))
res = []
for i in range(how_many):
try:
res.append(Event.objects.get(oid=mapping[nearest[i]]))
except Event.DoesNotExist:
...
if len(res) == nearest_n:
break
return res
def nearest_attraction(attraction, nearest_n):
return get_nearest_(
attraction,
"attraction",
attraction_mapping,
rev_attraction_mapping,
nearest_n,
attracion_model,
)
def nearest_mus(museum, nearest_n):
return get_nearest_(
2023-05-28 00:11:44 +03:00
museum, "museum", mus_mapping, rev_mus_mapping, nearest_n, mus_model
2023-05-27 11:13:41 +03:00
)
def nearest_movie(movie, nearest_n):
return get_nearest_(
movie, "movie", cinema_mapping, rev_cinema_mapping, nearest_n, cinema_model
)
def nearest_plays(play, nearest_n):
return get_nearest_(
play, "plays", plays_mapping, rev_plays_mapping, nearest_n, plays_model
)
def nearest_excursion(excursion, nearest_n):
return get_nearest_(
excursion,
"excursion",
excursion_mapping,
rev_excursion_mapping,
nearest_n,
excursion_model,
)
def nearest_concert(concert, nearest_n):
return get_nearest_(
concert,
"concert",
concert_mapping,
rev_concert_mapping,
nearest_n,
concert_model,
)
def get_nearest_event(event, nearest_n):
if event.type == "plays":
return nearest_plays(event, nearest_n)
if event.type == "concert":
return nearest_concert(event, nearest_n)
if event.type == "movie":
return nearest_movie(event, nearest_n)
2023-05-28 00:11:44 +03:00
if event.type == "museum":
2023-05-27 11:13:41 +03:00
return nearest_mus(event, nearest_n)
2023-05-28 00:11:44 +03:00
if event.type == "attraction":
2023-05-27 11:13:41 +03:00
return nearest_attraction(event, nearest_n)
def update_preferences_state(user, event, direction):
pref = UserPreferences.objects.get(user=user)
if direction == "left":
if event.type == "plays":
pref.unpreffered_plays.add(event)
if event.type == "movie":
pref.unpreffered_movies.add(event)
if event.type == "concert":
pref.unpreferred_concerts.add(event)
else:
if event.type == "plays":
pref.preffered_plays.add(event)
if event.type == "movie":
pref.preffered_movies.add(event)
if event.type == "concert":
pref.preferred_concerts.add(event)
pref.save()
def get_next_tinder(user, prev_event, prev_direction):
pref = UserPreferences.objects.get(user=user)
print(prev_event.type, len(pref.preferred_concerts.all()))
if prev_direction == "left":
if prev_event.type == "plays" and len(pref.unpreffered_plays.all()) <= 2:
candidates = nearest_plays(prev_event, 100)
# print(candidates, type(candidates), len(Event.objects.filter(type='plays')))
return candidates[-1]
if prev_event.type == "movie" and len(pref.unpreffered_movies.all()) <= 2:
candidates = nearest_movie(prev_event, 100)
return candidates[-1]
if prev_event.type == "concert" and len(pref.unpreferred_concerts.all()) <= 2:
candidates = nearest_concert(prev_event, 100)
return candidates[-1]
if prev_direction == "right":
if prev_event.type == "plays" and len(pref.preffered_plays.all()) < 2:
candidates = nearest_plays(prev_event, 2)
return candidates[1]
if prev_event.type == "movie" and len(pref.preffered_movies.all()) < 2:
candidates = nearest_movie(prev_event, 2)
return candidates[1]
if prev_event.type == "concert" and len(pref.preferred_concerts.all()) < 2:
candidates = nearest_concert(prev_event, 2)
return candidates[1]
if prev_event.type == "plays":
if not len(pref.preffered_movies.all()) and not len(
pref.unpreffered_movies.all()
):
return choice(Event.objects.filter(type="movie"))
if not len(pref.preferred_concerts.all()) and not len(
pref.unpreferred_concerts.all()
):
return choice(Event.objects.filter(type="concert"))
if prev_event.type == "movie":
if not len(pref.preffered_plays.all()) and not len(
pref.unpreffered_plays.all()
):
return choice(Event.objects.filter(type="plays"))
if not len(pref.preferred_concerts.all()) and not len(
pref.unpreferred_concerts.all()
):
return choice(Event.objects.filter(type="concert"))
if prev_event.type == "concert":
if not len(pref.preffered_plays.all()) and not len(
pref.unpreffered_plays.all()
):
return choice(Event.objects.filter(type="plays"))
if not len(pref.preffered_movies.all()) and not len(
pref.unpreffered_movies.all()
):
return choice(Event.objects.filter(type="movie"))
return None
def rank_candidates(candidates_list, negative_candidates_list):
flatten_c_list = []
ranks = {}
flatten_negatives = []
for negative in negative_candidates_list:
flatten_negatives.extend(negative)
for lst in candidates_list:
flatten_c_list.extend(lst)
for cand in lst:
ranks.update({cand: {"rank": 0, "lst": lst}})
cnt = Counter(flatten_c_list)
for candidate, how_many in cnt.most_common(len(flatten_c_list)):
ranks[candidate]["rank"] = how_many * (
len(ranks[candidate]["lst"]) - ranks[candidate]["lst"].index(candidate)
)
res = []
for cand in ranks.keys():
res.append((ranks[cand]["rank"], cand))
return list(
filter(
lambda x: x[1] not in flatten_negatives, sorted(res, key=lambda x: -x[0])
)
)
def get_personal_recommendation(prefer, unprefer):
candidates = []
negative_candidates = []
for rec in prefer:
candidates.append(list(map(lambda x: x.oid, get_nearest_event(rec, 10)[1:])))
for neg in unprefer:
negative_candidates.append(
list(map(lambda x: x.oid, get_nearest_event(neg, 10)[1:]))
)
ranked = rank_candidates(candidates, negative_candidates)
return list(map(lambda x: (x[0], Event.objects.get(oid=x[1])), ranked[0:5]))
def get_personal_plays_recommendation(user):
pref = UserPreferences.objects.get(user=user)
prefer = pref.preffered_plays.all()
unprefer = pref.unpreffered_plays.all()
return get_personal_recommendation(prefer, unprefer)
def get_personal_concerts_recommendation(user):
pref = UserPreferences.objects.get(user=user)
prefer = pref.preferred_concerts.all()
unprefer = pref.unpreferred_concerts.all()
return get_personal_recommendation(prefer, unprefer)
def get_personal_movies_recommendation(user):
pref = UserPreferences.objects.get(user=user)
prefer = pref.preffered_movies.all()
unprefer = pref.unpreffered_movies.all()
return get_personal_recommendation(prefer, unprefer)
def dist_func(event1: Event, event2: Event):
cords1 = [event1.lat, event1.lon]
cords2 = [event2.lat, event2.lon]
try:
dist = GD(cords1, cords2).km
return dist
except:
return 1000000
2023-05-27 22:32:52 +03:00
return (event1.lon - event2.lon) ** 2 + (event1.lat - event2.lat) ** 2
2023-05-27 11:13:41 +03:00
def generate_nearest():
NearestEvent.objects.all().delete()
all_events = list(Event.objects.all())
for i, event in enumerate(Event.objects.all()):
event_all_events = list(
sorted(all_events.copy(), key=lambda x: dist_func(event, x))
)
nearest = NearestEvent.objects.create(event=event)
nearest.nearest.set(event_all_events[0:100])
nearest.save()
if i % 10 == 0:
print(i)
def generate_nearest_rest():
NearestEventToRestaurant.objects.all().delete()
all_events = list(Event.objects.all())
for i, rest in enumerate(Restaurant.objects.all()):
sorted_events = list(
2023-05-28 00:11:44 +03:00
sorted(all_events.copy(), key=lambda event: dist_func(rest, event))
2023-05-27 11:13:41 +03:00
)
nearest = NearestEventToRestaurant.objects.create(restaurant=rest)
nearest.events.set(sorted_events[0:100])
if i % 10 == 0:
print(i)
def generate_hotel_nearest():
NearestHotel.objects.all().delete()
all_events = list(Event.objects.all())
hotels = list(Hotel.objects.all())
for i, hotel in enumerate(hotels):
event_all_events = list(
sorted(all_events.copy(), key=lambda x: dist_func(hotel, x))
)
nearest = NearestHotel.objects.create(hotel=hotel)
nearest.nearest_events.set(event_all_events[0:100])
if i % 10 == 0:
print(i)
def generate_nearest_restaurants():
rests = list(Restaurant.objects.all())
for i, event in enumerate(Event.objects.all()):
sorted_rests = list(sorted(rests.copy(), key=lambda x: dist_func(x, event)))
nr = NearestRestaurantToEvent.objects.create(event=event)
nr.restaurants.set(sorted_rests[0:20])
nr.save()
if i % 10 == 0:
print(i)
2023-05-27 01:03:34 +03:00
2023-05-27 11:13:41 +03:00
for i, hotel in enumerate(Hotel.objects.all()):
sorted_rests = list(sorted(rests.copy(), key=lambda x: dist_func(x, hotel)))
nr = NearestRestaurantToHotel.objects.create(hotel=hotel)
nr.restaurants.set(sorted_rests[0:20])
nr.save()
if i % 10 == 0:
print(i)
def match_points():
regions = list(City.objects.all())
for i, point in enumerate(Event.objects.all()):
s_regions = list(sorted(regions.copy(), key=lambda x: dist_func(point, x)))
point.city = s_regions[0]
point.save()
if i % 10 == 0:
2023-05-28 00:11:44 +03:00
print(i)
2023-05-27 11:13:41 +03:00
for i, point in enumerate(Hotel.objects.all()):
s_regions = list(sorted(regions.copy(), key=lambda x: dist_func(point, x)))
point.city = s_regions[0]
point.save()
if i % 10 == 0:
print(i)
2023-05-27 22:32:52 +03:00
def match_restaurants():
regions = list(City.objects.all())
for i, point in enumerate(Restaurant.objects.all()):
s_regions = list(sorted(regions.copy(), key=lambda x: dist_func(point, x)))
point.city = s_regions[0]
2023-05-28 00:11:44 +03:00
2023-05-27 22:32:52 +03:00
point.save()
if i % 10 == 0:
print(i)
2023-05-27 11:13:41 +03:00
def calculate_mean_metric(
favorite_events: Iterable[Event],
target_event: Event,
model: AnnoyIndex,
rev_mapping,
):
if not len(favorite_events):
return 100000
dists = []
try:
target_event_idx = rev_mapping[target_event.oid]
except:
return 10
for fav in favorite_events:
dists.append(model.get_distance(rev_mapping[fav.oid], target_event_idx))
return sum(dists) / len(dists)
def calculate_favorite_metric(event: Event, user: User):
pref = UserPreferences.objects.get(user=user)
if event.type == "plays":
preferred = pref.preffered_plays.all()
return calculate_mean_metric(preferred, event, plays_model, rev_plays_mapping)
if event.type == "concert":
preferred = pref.preferred_concerts.all()
return calculate_mean_metric(
preferred, event, concert_model, rev_concert_mapping
)
if event.type == "movie":
preferred = pref.preffered_movies.all()
return calculate_mean_metric(preferred, event, cinema_model, rev_cinema_mapping)
2023-05-28 00:11:44 +03:00
if event.type == "attraction":
2023-05-27 11:13:41 +03:00
preferred = pref.prefferred_attractions.all()
2023-05-28 00:11:44 +03:00
return calculate_mean_metric(
preferred, event, attracion_model, rev_attraction_mapping
)
if event.type == "museum":
2023-05-27 11:13:41 +03:00
preferred = pref.prefferred_museums.all()
return calculate_mean_metric(preferred, event, mus_model, rev_mus_mapping)
return 10
def get_exponential_koef(time: timedelta):
time = time.seconds
if time < 60 * 10:
2023-05-27 22:32:52 +03:00
return 2
2023-05-27 11:13:41 +03:00
if time < 60 * 20:
2023-05-27 22:32:52 +03:00
return 5
2023-05-27 11:13:41 +03:00
if time < 60 * 30:
2023-05-27 22:32:52 +03:00
return 10
2023-05-27 11:13:41 +03:00
if time < 60 * 40:
2023-05-27 22:32:52 +03:00
return 20
2023-05-27 11:13:41 +03:00
return int(1e10)
2023-05-27 22:32:52 +03:00
def get_category_similarity_coef(event, user):
up, _ = UserPreferences.objects.get_or_create(user=user)
cat = up.preferred_categories
if event.type in cat:
return 0.7
else:
return 1.2
2023-05-27 11:13:41 +03:00
def get_nearest_favorite(
2023-05-28 00:11:44 +03:00
events: Iterable[Event],
user: User,
base_event: Event,
exclude_events: Iterable[Event] = [],
velocity=3.0,
top_k=1,
2023-05-27 11:13:41 +03:00
):
2023-05-27 22:32:52 +03:00
sorted_events = list(
sorted(
2023-05-28 00:11:44 +03:00
filter(lambda event: event not in exclude_events, events),
key=lambda event: calculate_favorite_metric(event, user)
* get_exponential_koef(time_func(dist_func(event, base_event), velocity))
* get_category_similarity_coef(event, user),
2023-05-27 22:32:52 +03:00
)
2023-05-28 00:11:44 +03:00
)
2023-05-27 11:13:41 +03:00
if top_k == 1:
return sorted_events[0]
return sorted_events[0:top_k]
def filter_hotel(region: Region, user: User, stars: Iterable[int]):
hotels = Hotel.objects.filter(city=region)
return choice(hotels)
def time_func(km_distance: float, velocity: float):
return timedelta(minutes=(km_distance) / (velocity / 60))
2023-05-27 11:42:57 +03:00
def generate_route(point1: BasePoint, point2: BasePoint, velocity):
2023-05-23 17:51:01 +03:00
distance = dist_func(point1, point2)
2023-05-27 11:42:57 +03:00
time = time_func(distance, velocity)
2023-05-27 11:13:41 +03:00
return {
"type": "transition",
"distance": distance,
"time": time.seconds,
}
def generate_point(point: BasePoint):
event_data = ObjectRouteSerializer(point).data
return {
"type": "point",
"point": event_data,
"point_type": "point",
2023-05-28 00:11:44 +03:00
"time": timedelta(minutes=90 + choice(range(-10, 90, 10))).seconds,
"distance": 0,
2023-05-27 11:13:41 +03:00
}
def generate_restaurant(point: BasePoint):
rest_data = ObjectRouteSerializer(point).data
2023-05-27 01:03:34 +03:00
2023-05-27 11:13:41 +03:00
return {
"type": "point",
"point": rest_data,
"point_type": "restaurant",
2023-05-28 00:11:44 +03:00
"time": timedelta(minutes=90 + choice(range(-10, 90, 10))).seconds,
2023-05-27 11:13:41 +03:00
}
2023-05-28 00:11:44 +03:00
def generate_multiple_tours(
user: User, city: City, start_date: datetime.date, end_date: datetime.date
):
2023-05-27 11:13:41 +03:00
hotels = sample(list(Hotel.objects.filter(city=city)), 5)
pool = Pool(5)
2023-05-28 00:11:44 +03:00
return pool.map(
generate_tour, [(user, start_date, end_date, hotel) for hotel in hotels]
)
2023-05-27 11:13:41 +03:00
2023-05-27 22:32:52 +03:00
def generate_tour(
2023-05-28 00:11:44 +03:00
user: User,
city: City,
start_date: datetime.date,
end_date: datetime.date,
avg_velocity=3.0,
stars=[],
hotel_type=["hotel", "hostel", "apartment"],
where_eat=["restaurant", "bar", "cafe"],
what_to_see=[
"attractions",
"museum",
"movie",
"concert",
"artwork",
"plays",
"shop",
"gallery",
"theme_park",
"viewpoint",
"zoo",
],
):
2023-05-27 11:13:41 +03:00
UserPreferences.objects.get_or_create(user=user)
2023-05-28 00:11:44 +03:00
2023-05-27 22:32:52 +03:00
hotels_candidates = Hotel.objects.filter(city=city)
if len(hotels_candidates.filter(stars__in=stars)):
hotels_candidates = hotels_candidates.filter(stars__in=stars)
2023-05-28 00:11:44 +03:00
2023-05-27 22:32:52 +03:00
try:
hotel = choice(list(hotels_candidates))
except:
hotel = city
2023-05-27 11:13:41 +03:00
current_date = start_date
paths, points, disallowed_rest = [], [], []
while current_date < end_date:
2023-05-27 22:32:52 +03:00
local_points, local_paths, local_disallowed_rest = generate_path(
2023-05-28 00:11:44 +03:00
user,
points,
hotel,
disallowed_rest,
2023-05-27 22:32:52 +03:00
avg_velocity,
where_eat=where_eat,
2023-05-28 00:11:44 +03:00
what_to_see=what_to_see,
2023-05-27 22:32:52 +03:00
)
2023-05-27 11:13:41 +03:00
points.extend(local_points)
2023-05-28 00:11:44 +03:00
paths.append({"date": current_date, "paths": local_paths})
2023-05-27 11:13:41 +03:00
disallowed_rest = local_disallowed_rest
current_date += timedelta(days=1)
return paths, points
def generate_hotel(hotel: Hotel):
hotel_data = ObjectRouteSerializer(hotel).data
return {
"type": "point",
"point": hotel_data,
"point_type": "hotel",
2023-05-27 23:59:50 +03:00
"time": 0,
2023-05-28 00:11:44 +03:00
"distance": 0,
2023-05-27 11:13:41 +03:00
}
2023-05-28 00:11:44 +03:00
def nearest_distance_points(point: BasePoint, user: User, velocity: float = 3.0):
2023-05-27 11:13:41 +03:00
nearest = []
print(isinstance(point, Event), point)
if isinstance(point, Event):
nearest = NearestEvent.objects.get(event=point).nearest.all()
if isinstance(point, Hotel):
nearest = NearestHotel.objects.get(hotel=point).nearest_events.all()
if isinstance(point, Restaurant):
nearest = NearestEventToRestaurant.objects.get(restaurant=point).events.all()
2023-05-28 00:11:44 +03:00
2023-05-27 11:13:41 +03:00
top_nearest = get_nearest_favorite(nearest, user, point, [], velocity, top_k=10)
return top_nearest
2023-05-27 22:32:52 +03:00
def generate_path(
2023-05-28 00:11:44 +03:00
user: User,
disallowed_points: Iterable[BasePoint],
hotel: Hotel,
disallowed_rests: Iterable[Restaurant],
avg_velocity: float,
where_eat=["restaurant", "bar", "cafe"],
what_to_see=[
"attractions",
"museum",
"movie",
"concert",
"artwork",
"plays",
"shop",
"gallery",
"theme_park",
"viewpoint",
"zoo",
],
):
2023-05-27 22:32:52 +03:00
allowed_types = [
2023-05-28 00:11:44 +03:00
"museum",
"attraction",
"artwork",
"shop",
"gallery",
"theme_park",
"zoo",
"other",
"viewpoint",
2023-05-27 22:32:52 +03:00
]
if len(set(allowed_types) & set(what_to_see)) == 0:
allowed_types = what_to_see
else:
allowed_types = list(set(allowed_types) & set(what_to_see))
print(allowed_types, hotel)
if isinstance(hotel, City):
2023-05-28 00:11:44 +03:00
start_points_candidate = Restaurant.objects.filter(city=hotel).filter(
~Q(oid__in=disallowed_rests)
)
2023-05-27 22:32:52 +03:00
else:
2023-05-28 00:11:44 +03:00
start_points_candidate = (
NearestRestaurantToHotel.objects.filter(hotel=hotel)
.first()
.restaurants.filter(~Q(oid__in=disallowed_rests))
)
2023-05-27 22:32:52 +03:00
if len(start_points_candidate.filter(type__in=where_eat)):
start_points_candidate = start_points_candidate.filter(type__in=where_eat)
2023-05-27 11:13:41 +03:00
2023-05-27 22:32:52 +03:00
start_point = start_points_candidate[0]
2023-05-27 11:13:41 +03:00
disallowed_rests.append(start_point.oid)
2023-05-28 00:11:44 +03:00
candidates = (
NearestEventToRestaurant.objects.get(restaurant=start_point)
.events.all()
.filter(type__in=allowed_types)
)
2023-05-27 11:13:41 +03:00
points = [start_point]
2023-05-27 22:32:52 +03:00
if isinstance(hotel, Hotel):
path = [
generate_hotel(hotel),
2023-05-28 00:11:44 +03:00
generate_route(start_point, hotel, avg_velocity),
generate_restaurant(start_point),
2023-05-27 22:32:52 +03:00
]
else:
2023-05-28 00:11:44 +03:00
path = [generate_restaurant(start_point)]
2023-05-27 11:13:41 +03:00
start_time = datetime.combine(datetime.now(), time(hour=10))
how_many_eat = 1
while start_time.hour < 22 and start_time.day == datetime.now().day:
2023-05-28 00:11:44 +03:00
if (start_time.hour > 14 and how_many_eat == 1) or (
start_time.hour > 20 and how_many_eat == 2
):
2023-05-27 22:32:52 +03:00
print(points, start_time)
try:
2023-05-28 00:11:44 +03:00
point_candidates = (
NearestRestaurantToEvent.objects.filter(event=points[-1])
.first()
.restaurants.filter(~Q(oid__in=disallowed_rests))
)
2023-05-27 22:32:52 +03:00
if len(point_candidates.filter(type__in=where_eat)):
point_candidates = point_candidates.filter(type__in=where_eat)
point = point_candidates[0]
2023-05-28 00:11:44 +03:00
2023-05-27 22:32:52 +03:00
disallowed_rests.append(point.oid)
points.append(point)
2023-05-28 00:11:44 +03:00
candidates = (
NearestEventToRestaurant.objects.get(restaurant=point)
.events.all()
.filter(type__in=allowed_types)
)
2023-05-27 22:32:52 +03:00
if len(candidates) < 2:
2023-05-28 00:11:44 +03:00
candidates = NearestEventToRestaurant.objects.get(
restaurant=point
).events.all()
2023-05-27 22:32:52 +03:00
path.append(generate_restaurant(points[-1]))
2023-05-28 00:11:44 +03:00
start_time += timedelta(seconds=path[-1]["time"])
2023-05-27 22:32:52 +03:00
how_many_eat += 1
continue
except:
return points, path, disallowed_rests
2023-05-27 11:13:41 +03:00
if start_time.hour > 17:
2023-05-27 22:32:52 +03:00
allowed_types = [
2023-05-28 00:11:44 +03:00
"play",
"concert",
"movie",
"shop",
"gallery",
"theme_park",
"viewpoint",
2023-05-27 22:32:52 +03:00
]
if len(set(allowed_types) & set(what_to_see)) == 0:
allowed_types = what_to_see
else:
allowed_types = list(set(allowed_types) & set(what_to_see))
2023-05-27 11:13:41 +03:00
if candidates is None:
2023-05-28 00:11:44 +03:00
candidates = NearestEvent.objects.get(event=points[-1]).nearest.filter(
type__in=allowed_types
)
2023-05-27 22:32:52 +03:00
if len(candidates) < 2:
2023-05-27 11:13:41 +03:00
candidates = NearestEvent.objects.get(event=points[-1]).nearest.all()
try:
2023-05-28 00:11:44 +03:00
points.append(
get_nearest_favorite(
candidates, user, points[-1], points + disallowed_points
)
)
2023-05-27 22:32:52 +03:00
except:
2023-05-27 11:13:41 +03:00
points.append(get_nearest_favorite(candidates, user, points[-1], points))
transition_route = generate_route(points[-1], points[-2], avg_velocity)
2023-05-25 17:12:39 +03:00
2023-05-27 11:13:41 +03:00
start_time += timedelta(seconds=transition_route["time"])
point_route = generate_point(points[-1])
start_time += timedelta(seconds=point_route["time"])
path.extend([transition_route, point_route])
candidates = None
return points, path, disallowed_rests
2023-05-27 01:03:34 +03:00
def calculate_distance(
sample1: Event, samples: Iterable[Event], model: AnnoyIndex, rev_mapping
):
2023-05-24 17:58:51 +03:00
metrics = []
for sample in samples:
2023-05-27 01:03:34 +03:00
metrics.append(
model.get_distance(rev_mapping[sample1.oid], rev_mapping[sample.oid])
)
2023-05-24 17:58:51 +03:00
return sum(metrics) / len(metrics)
2023-05-27 01:03:34 +03:00
2023-05-27 11:13:41 +03:00
def get_onboarding_attractions():
2023-05-27 01:03:34 +03:00
sample_attractions = sample(list(Event.objects.filter(type="attraction")), 200)
2023-05-27 11:13:41 +03:00
first_attraction = choice(sample_attractions)
attractions = [first_attraction]
while len(attractions) < 10:
mx_dist = 0
mx_attraction = None
for att in sample_attractions:
2023-05-28 00:11:44 +03:00
if att in attractions:
continue
2023-05-27 11:13:41 +03:00
local_dist = calculate_distance(
2023-05-28 00:11:44 +03:00
att, attractions, attracion_model, rev_attraction_mapping
2023-05-27 11:13:41 +03:00
)
if local_dist > mx_dist:
mx_dist = local_dist
mx_attraction = att
attractions.append(mx_attraction)
return attractions
def get_onboarding_hotels(stars=Iterable[int]):
return sample(list(Hotel.objects.filter(stars__in=stars)), 10)
def generate_points_path(user: User, points: Iterable[Event], velocity=3.0):
if len(points) < 7:
candidates = NearestEvent.objects.get(event=points[0]).nearest.all()
2023-05-28 00:11:44 +03:00
points.extend(
list(
get_nearest_favorite(
candidates, user, points[0], [], velocity, 7 - len(points)
)
)
)
2023-05-27 11:13:41 +03:00
dist_matrix = [[0 for j in range(len(points))] for i in range(len(points))]
for i in range(len(dist_matrix)):
for j in range(len(dist_matrix)):
2023-05-28 00:11:44 +03:00
dist_matrix[i][j] = time_func(
dist_func(points[i], points[j]), velocity
).seconds
2023-05-27 11:13:41 +03:00
for i in range(len(dist_matrix)):
dist_matrix[i][0] = 0
dist_matrix = np.array(dist_matrix)
dist_matrix[:, 0] = 0
perm, dist = solve_tsp_dynamic_programming(dist_matrix)
perm_pts = [points[i] for i in perm]
res = [generate_point(perm_pts[0])]
visited_points = [perm_pts[0]]
for pt in perm_pts[1:]:
2023-05-28 00:11:44 +03:00
res.extend(
[generate_route(visited_points[-1], pt, velocity), generate_point(pt)]
)
2023-05-27 11:13:41 +03:00
visited_points.append(pt)
2023-05-27 22:32:52 +03:00
return res
def flat_list(lst):
res = []
for i in lst:
res.extend(i)
return res
def range_candidates(candidates, user, favorite_events):
model_mappings = {
2023-05-28 00:11:44 +03:00
"attraction": [attracion_model, rev_attraction_mapping],
"museum": [mus_model, rev_mus_mapping],
"movie": [cinema_model, rev_cinema_mapping],
"concert": [concert_model, rev_concert_mapping],
"plays": [plays_model, rev_plays_mapping],
2023-05-27 22:32:52 +03:00
}
2023-05-28 00:11:44 +03:00
if candidates[0].type in ["attraction", "museum", "movie", "concert", "plays"]:
2023-05-27 22:32:52 +03:00
candidates = sorted(
candidates,
key=lambda cand: calculate_mean_metric(
2023-05-28 00:11:44 +03:00
favorite_events, cand, *model_mappings[cand.type]
),
2023-05-27 22:32:52 +03:00
)
return candidates[0:10]
return sample(candidates, 10)
def get_personal_recomendations(user):
up, _ = UserPreferences.objects.get_or_create(user=user)
candidates_generate_strategy = {
2023-05-28 00:11:44 +03:00
"plays": [
lambda pref: flat_list(
list(
map(
lambda cand: nearest_plays(cand, 30), pref.preffered_plays.all()
)
),
2023-05-27 22:32:52 +03:00
),
2023-05-28 00:11:44 +03:00
lambda pref: pref.preffered_plays.all(),
],
"movie": [
lambda pref: flat_list(
list(
map(
lambda cand: nearest_movie(cand, 30),
pref.preffered_movies.all(),
)
),
),
lambda pref: pref.preffered_movies.all(),
],
"concert": [
lambda pref: flat_list(
list(
map(
lambda cand: nearest_concert(cand, 30),
pref.preferred_concerts.all(),
)
),
),
lambda pref: pref.preferred_concerts.all(),
],
"attractions": [
lambda pref: flat_list(
list(
map(
lambda cand: nearest_attraction(cand, 30),
pref.prefferred_attractions.all(),
)
),
),
lambda pref: pref.prefferred_attractions.all(),
],
"museum": [
lambda pref: flat_list(
list(
map(
lambda cand: nearest_mus(cand, 30),
pref.prefferred_museums.all(),
)
),
2023-05-27 22:32:52 +03:00
),
2023-05-28 00:11:44 +03:00
lambda pref: pref.prefferred_museums.all(),
],
"shop": [
lambda pref: sample(list(Event.objects.filter(type="shop")), 10),
lambda x: [],
],
"gallery": [
lambda pref: sample(list(Event.objects.filter(type="gallery")), 10),
lambda x: [],
],
"theme_park": [
lambda pref: sample(list(Event.objects.filter(type="theme_park")), 10),
lambda x: [],
],
"viewpoint": [
lambda pref: sample(list(Event.objects.filter(type="viewpoint")), 10),
lambda x: [],
],
"zoo": [
lambda pref: sample(list(Event.objects.filter(type="zoo")), 10),
lambda x: [],
],
2023-05-27 22:32:52 +03:00
}
res = []
for category_candidate in up.preferred_categories:
candidates = candidates_generate_strategy[category_candidate][0](up)
ranged = range_candidates(
2023-05-28 00:11:44 +03:00
candidates, user, candidates_generate_strategy[category_candidate][1](up)
2023-05-27 22:32:52 +03:00
)
res.append(
{
2023-05-28 00:11:44 +03:00
"category": category_candidate,
"events": list(map(lambda x: ObjectRouteSerializer(x).data, ranged)),
2023-05-27 22:32:52 +03:00
}
)
return res