backend/passfinder/recomendations/service/service.py

357 lines
12 KiB
Python
Raw Normal View History

2023-05-21 13:37:21 +03:00
from annoy import AnnoyIndex
from .mapping.mapping import *
from .models.models import *
2023-05-23 17:51:01 +03:00
from passfinder.events.models import Event, Region, Hotel, BasePoint, City
from passfinder.recomendations.models import UserPreferences, NearestEvent, NearestHotel
2023-05-21 17:13:16 +03:00
from random import choice
from collections import Counter
2023-05-22 22:37:54 +03:00
from passfinder.users.models import User
from collections.abc import Iterable
2023-05-23 17:51:01 +03:00
from django.db.models import Q
from geopy.distance import geodesic as GD
from datetime import timedelta, time, datetime
2023-05-21 13:37:21 +03:00
2023-05-23 17:51:01 +03:00
def get_nearest_(instance_model, model_type, mapping, rev_mapping, nearest_n, ml_model):
2023-05-21 13:37:21 +03:00
how_many = len(Event.objects.filter(type=model_type))
2023-05-23 17:51:01 +03:00
index = rev_mapping[instance_model.oid]
2023-05-21 13:37:21 +03:00
nearest = ml_model.get_nns_by_item(index, len(mapping))
res = []
for i in range(how_many):
try:
res.append(Event.objects.get(oid=mapping[nearest[i]]))
except Event.DoesNotExist: ...
if len(res) == nearest_n: break
return res
def nearest_attraction(attraction, nearest_n):
2023-05-23 17:51:01 +03:00
return get_nearest_(attraction, 'attraction', attraction_mapping, rev_attraction_mapping, nearest_n, attracion_model)
2023-05-21 13:37:21 +03:00
def nearest_movie(movie, nearest_n):
2023-05-23 17:51:01 +03:00
return get_nearest_(movie, 'movie', cinema_mapping, rev_cinema_mapping, nearest_n, cinema_model)
2023-05-21 13:37:21 +03:00
def nearest_plays(play, nearest_n):
2023-05-23 17:51:01 +03:00
return get_nearest_(play, 'plays', plays_mapping, rev_plays_mapping, nearest_n, plays_model)
2023-05-21 13:37:21 +03:00
def nearest_excursion(excursion, nearest_n):
2023-05-23 17:51:01 +03:00
return get_nearest_(excursion, 'excursion', excursion_mapping, rev_excursion_mapping, nearest_n, excursion_model)
2023-05-21 13:37:21 +03:00
def nearest_concert(concert, nearest_n):
2023-05-23 17:51:01 +03:00
return get_nearest_(concert, 'concert', concert_mapping, rev_concert_mapping, nearest_n, concert_model)
2023-05-21 17:13:16 +03:00
def get_nearest_event(event, nearest_n):
if event.type == 'plays':
return nearest_plays(event, nearest_n)
if event.type == 'concert':
return nearest_concert(event, nearest_n)
if event.type == 'movie':
return nearest_movie(event, nearest_n)
def update_preferences_state(user, event, direction):
pref = UserPreferences.objects.get(user=user)
if direction == 'left':
if event.type == 'plays':
pref.unpreffered_plays.add(event)
if event.type == 'movie':
pref.unpreffered_movies.add(event)
if event.type == 'concert':
pref.unpreferred_concerts.add(event)
else:
if event.type == 'plays':
pref.preffered_plays.add(event)
if event.type == 'movie':
pref.preffered_movies.add(event)
if event.type == 'concert':
pref.preferred_concerts.add(event)
pref.save()
def get_next_tinder(user, prev_event, prev_direction):
pref = UserPreferences.objects.get(user=user)
print(prev_event.type, len(pref.preferred_concerts.all()))
if prev_direction == 'left':
if prev_event.type == 'plays' and len(pref.unpreffered_plays.all()) <= 2:
candidates = nearest_plays(prev_event, 100)
# print(candidates, type(candidates), len(Event.objects.filter(type='plays')))
return candidates[-1]
if prev_event.type == 'movie' and len(pref.unpreffered_movies.all()) <= 2:
candidates = nearest_movie(prev_event, 100)
return candidates[-1]
if prev_event.type == 'concert' and len(pref.unpreferred_concerts.all()) <= 2:
candidates = nearest_concert(prev_event, 100)
return candidates[-1]
if prev_direction == 'right':
if prev_event.type == 'plays' and len(pref.preffered_plays.all()) < 2:
candidates = nearest_plays(prev_event, 2)
return candidates[1]
if prev_event.type == 'movie' and len(pref.preffered_movies.all()) < 2:
candidates = nearest_movie(prev_event, 2)
return candidates[1]
if prev_event.type == 'concert' and len(pref.preferred_concerts.all()) < 2:
candidates = nearest_concert(prev_event, 2)
return candidates[1]
if prev_event.type == 'plays':
if not len(pref.preffered_movies.all()) and not len(pref.unpreffered_movies.all()):
return choice(Event.objects.filter(type='movie'))
if not len(pref.preferred_concerts.all()) and not len(pref.unpreferred_concerts.all()):
return choice(Event.objects.filter(type='concert'))
if prev_event.type == 'movie':
if not len(pref.preffered_plays.all()) and not len(pref.unpreffered_plays.all()):
return choice(Event.objects.filter(type='plays'))
if not len(pref.preferred_concerts.all()) and not len(pref.unpreferred_concerts.all()):
return choice(Event.objects.filter(type='concert'))
if prev_event.type == 'concert':
if not len(pref.preffered_plays.all()) and not len(pref.unpreffered_plays.all()):
return choice(Event.objects.filter(type='plays'))
if not len(pref.preffered_movies.all()) and not len(pref.unpreffered_movies.all()):
return choice(Event.objects.filter(type='movie'))
return None
def rank_candidates(candidates_list, negative_candidates_list):
flatten_c_list = []
ranks = {}
flatten_negatives = []
for negative in negative_candidates_list:
flatten_negatives.extend(negative)
for lst in candidates_list:
flatten_c_list.extend(lst)
for cand in lst:
ranks.update({cand: {'rank': 0, 'lst': lst}})
cnt = Counter(flatten_c_list)
for candidate, how_many in cnt.most_common(len(flatten_c_list)):
ranks[candidate]['rank'] = how_many * (len(ranks[candidate]['lst']) - ranks[candidate]['lst'].index(candidate))
res = []
for cand in ranks.keys():
res.append((ranks[cand]['rank'], cand))
return list(filter(lambda x: x[1] not in flatten_negatives, sorted(res, key=lambda x: -x[0])))
def get_personal_recommendation(prefer, unprefer):
candidates = []
negative_candidates = []
for rec in prefer:
candidates.append(list(map(lambda x: x.oid, get_nearest_event(rec, 10)[1:])))
for neg in unprefer:
negative_candidates.append(list(map(lambda x: x.oid, get_nearest_event(neg, 10)[1:])))
ranked = rank_candidates(candidates, negative_candidates)
return list(map(lambda x: (x[0], Event.objects.get(oid=x[1])), ranked[0:5]))
def get_personal_plays_recommendation(user):
pref = UserPreferences.objects.get(user=user)
prefer = pref.preffered_plays.all()
unprefer = pref.unpreffered_plays.all()
return get_personal_recommendation(prefer, unprefer)
def get_personal_concerts_recommendation(user):
pref = UserPreferences.objects.get(user=user)
prefer = pref.preferred_concerts.all()
unprefer = pref.unpreferred_concerts.all()
return get_personal_recommendation(prefer, unprefer)
def get_personal_movies_recommendation(user):
pref = UserPreferences.objects.get(user=user)
prefer = pref.preffered_movies.all()
unprefer = pref.unpreffered_movies.all()
return get_personal_recommendation(prefer, unprefer)
2023-05-22 22:37:54 +03:00
def dist_func(event1: Event, event2: Event):
2023-05-23 18:27:14 +03:00
# cords1 = [event1.lat, event1.lon]
# cords2 = [event2.lat, event2.lon]
# try:
# dist = GD(cords1, cords2).km
# return dist
# except:
# return 1000000
return (event1.lon - event2.lon) ** 2 + (event1.lat - event2.lat) ** 2
2023-05-22 22:37:54 +03:00
def generate_nearest():
NearestEvent.objects.all().delete()
all_events = list(Event.objects.all())
for i, event in enumerate(Event.objects.all()):
event_all_events = list(sorted(all_events.copy(), key=lambda x: dist_func(event, x)))
nearest = NearestEvent.objects.create(event=event)
nearest.nearest.set(event_all_events[0:100])
nearest.save()
if i % 100 == 0:
print(i)
2023-05-23 17:51:01 +03:00
def generate_hotel_nearest():
NearestHotel.objects.all().delete()
all_events = list(Event.objects.all())
hotels = list(Hotel.objects.all())
for i, hotel in enumerate(hotels):
event_all_events = list(sorted(all_events.copy(), key=lambda x: dist_func(hotel, x)))
nearest = NearestHotel.objects.create(hotel=hotel)
nearest.nearest_events.set(event_all_events[0:100])
if i % 100 == 0:
print(i)
2023-05-23 18:27:14 +03:00
def match_points():
regions = list(City.objects.all())
for i, point in enumerate(Event.objects.all()):
s_regions = list(sorted(regions.copy(), key=lambda x: dist_func(point, x)))
point.city = s_regions[0]
point.save()
if i % 10 == 0:
print(i)
2023-05-23 17:51:01 +03:00
def calculate_mean_metric(favorite_events: Iterable[Event], target_event: Event, model: AnnoyIndex, rev_mapping):
2023-05-22 22:37:54 +03:00
if not len(favorite_events):
return 100000
dists = []
2023-05-23 17:51:01 +03:00
target_event_idx = rev_mapping[target_event.oid]
2023-05-22 22:37:54 +03:00
for fav in favorite_events:
2023-05-23 17:51:01 +03:00
dists.append(model.get_distance(rev_mapping[fav.oid], target_event_idx))
2023-05-22 22:37:54 +03:00
return sum(dists) / len(dists)
def calculate_favorite_metric(event: Event, user: User):
pref = UserPreferences.objects.get(user=user)
if event.type == 'plays':
preferred = pref.preffered_plays.all()
return calculate_mean_metric(
preferred,
event,
plays_model,
2023-05-23 17:51:01 +03:00
rev_plays_mapping
2023-05-22 22:37:54 +03:00
)
if event.type == 'concert':
preferred = pref.preferred_concerts.all()
return calculate_mean_metric(
preferred,
event,
concert_model,
2023-05-23 17:51:01 +03:00
rev_concert_mapping
2023-05-22 22:37:54 +03:00
)
if event.type == 'movie':
preferred = pref.preffered_movies.all()
return calculate_mean_metric(
preferred,
event,
cinema_model,
2023-05-23 17:51:01 +03:00
rev_cinema_mapping
2023-05-22 22:37:54 +03:00
)
return 1000000
def get_nearest_favorite(events: Iterable[Event], user: User, exclude_events: Iterable[Event]=[]):
2023-05-23 17:51:01 +03:00
first_event = None
for candidate in events:
if candidate not in exclude_events:
first_event = candidate
break
result = first_event
result_min = calculate_favorite_metric(result, user)
2023-05-22 22:37:54 +03:00
for event in events:
if event in exclude_events: continue
local_min_metric = calculate_favorite_metric(event, user)
if local_min_metric < result_min:
result_min = local_min_metric
result = event
return result
2023-05-23 17:51:01 +03:00
def filter_hotel(region: Region, user: User, stars: Iterable[int]):
2023-05-23 23:38:45 +03:00
hotels = Hotel.objects.filter(city=region)
2023-05-23 17:51:01 +03:00
return choice(hotels)
def time_func(km_distance: float):
return timedelta(minutes=(km_distance) / (4.0 / 60))
def generate_route(point1: BasePoint, point2: BasePoint):
distance = dist_func(point1, point2)
time = time_func(distance)
return {
"type": "transition",
"from": point1,
"to": point2,
"distance": distance,
"time": time
}
def generate_point(point: BasePoint):
return {
"type": "point",
"point": point,
"point_type": "",
2023-05-23 23:38:45 +03:00
"time": timedelta(minutes=90+choice(range(-10, 90, 10)))
2023-05-23 17:51:01 +03:00
}
2023-05-23 23:38:45 +03:00
def generate_path(region: City, user: User):
2023-05-23 17:51:01 +03:00
#region_events = Event.objects.filter(region=region)
hotel = filter_hotel(region, user, [])
2023-05-22 22:37:54 +03:00
2023-05-23 17:51:01 +03:00
candidates = NearestHotel.objects.get(hotel=hotel).nearest_events.all()
start_point = get_nearest_favorite(candidates, user, [])
2023-05-22 22:37:54 +03:00
candidates = NearestEvent.objects.get(event=start_point).nearest.all()
points = [start_point]
2023-05-23 17:51:01 +03:00
path = [generate_point(points[-1])]
start_time = datetime.combine(datetime.now(), time(hour=10))
while start_time.hour < 22:
2023-05-22 22:37:54 +03:00
candidates = NearestEvent.objects.get(event=points[-1]).nearest.all()
points.append(get_nearest_favorite(candidates, user, points))
2023-05-23 17:51:01 +03:00
transition_route = generate_route(points[-1], points[-2])
start_time += transition_route['time']
point_route = generate_point(points[-1])
start_time += point_route['time']
path.extend([transition_route, point_route])
2023-05-22 22:37:54 +03:00
2023-05-23 17:51:01 +03:00
return hotel, points, path