mirror of
https://github.com/task-17-lct/backend.git
synced 2024-11-27 20:03:48 +03:00
880 lines
28 KiB
Python
880 lines
28 KiB
Python
from annoy import AnnoyIndex
|
|
from .mapping.mapping import *
|
|
from .models.models import *
|
|
from passfinder.events.models import Event, Region, Hotel, BasePoint, City, Restaurant
|
|
from passfinder.events.api.serializers import (
|
|
HotelSerializer,
|
|
EventSerializer,
|
|
RestaurantSerializer,
|
|
ObjectRouteSerializer,
|
|
)
|
|
from passfinder.recomendations.models import *
|
|
from random import choice, sample
|
|
from collections import Counter
|
|
from passfinder.users.models import User
|
|
from collections.abc import Iterable
|
|
from django.db.models import Q
|
|
from geopy.distance import geodesic as GD
|
|
from datetime import timedelta, time, datetime
|
|
from gevent.pool import Pool
|
|
from python_tsp.exact import solve_tsp_dynamic_programming
|
|
import numpy as np
|
|
|
|
|
|
def get_nearest_(instance_model, model_type, mapping, rev_mapping, nearest_n, ml_model):
|
|
how_many = len(Event.objects.filter(type=model_type))
|
|
|
|
index = rev_mapping[instance_model.oid]
|
|
nearest = ml_model.get_nns_by_item(index, len(mapping))
|
|
|
|
res = []
|
|
for i in range(how_many):
|
|
try:
|
|
res.append(Event.objects.get(oid=mapping[nearest[i]]))
|
|
except Event.DoesNotExist:
|
|
...
|
|
if len(res) == nearest_n:
|
|
break
|
|
return res
|
|
|
|
|
|
def nearest_attraction(attraction, nearest_n):
|
|
return get_nearest_(
|
|
attraction,
|
|
"attraction",
|
|
attraction_mapping,
|
|
rev_attraction_mapping,
|
|
nearest_n,
|
|
attracion_model,
|
|
)
|
|
|
|
|
|
def nearest_mus(museum, nearest_n):
|
|
return get_nearest_(
|
|
museum,
|
|
"museum",
|
|
mus_mapping,
|
|
rev_mus_mapping,
|
|
nearest_n,
|
|
mus_model
|
|
)
|
|
|
|
|
|
def nearest_movie(movie, nearest_n):
|
|
return get_nearest_(
|
|
movie, "movie", cinema_mapping, rev_cinema_mapping, nearest_n, cinema_model
|
|
)
|
|
|
|
|
|
def nearest_plays(play, nearest_n):
|
|
return get_nearest_(
|
|
play, "plays", plays_mapping, rev_plays_mapping, nearest_n, plays_model
|
|
)
|
|
|
|
|
|
def nearest_excursion(excursion, nearest_n):
|
|
return get_nearest_(
|
|
excursion,
|
|
"excursion",
|
|
excursion_mapping,
|
|
rev_excursion_mapping,
|
|
nearest_n,
|
|
excursion_model,
|
|
)
|
|
|
|
|
|
def nearest_concert(concert, nearest_n):
|
|
return get_nearest_(
|
|
concert,
|
|
"concert",
|
|
concert_mapping,
|
|
rev_concert_mapping,
|
|
nearest_n,
|
|
concert_model,
|
|
)
|
|
|
|
|
|
def get_nearest_event(event, nearest_n):
|
|
if event.type == "plays":
|
|
return nearest_plays(event, nearest_n)
|
|
if event.type == "concert":
|
|
return nearest_concert(event, nearest_n)
|
|
if event.type == "movie":
|
|
return nearest_movie(event, nearest_n)
|
|
if event.type == 'museum':
|
|
return nearest_mus(event, nearest_n)
|
|
if event.type == 'attraction':
|
|
return nearest_attraction(event, nearest_n)
|
|
|
|
|
|
def update_preferences_state(user, event, direction):
|
|
pref = UserPreferences.objects.get(user=user)
|
|
|
|
if direction == "left":
|
|
if event.type == "plays":
|
|
pref.unpreffered_plays.add(event)
|
|
if event.type == "movie":
|
|
pref.unpreffered_movies.add(event)
|
|
if event.type == "concert":
|
|
pref.unpreferred_concerts.add(event)
|
|
else:
|
|
if event.type == "plays":
|
|
pref.preffered_plays.add(event)
|
|
if event.type == "movie":
|
|
pref.preffered_movies.add(event)
|
|
if event.type == "concert":
|
|
pref.preferred_concerts.add(event)
|
|
pref.save()
|
|
|
|
|
|
def get_next_tinder(user, prev_event, prev_direction):
|
|
pref = UserPreferences.objects.get(user=user)
|
|
print(prev_event.type, len(pref.preferred_concerts.all()))
|
|
if prev_direction == "left":
|
|
if prev_event.type == "plays" and len(pref.unpreffered_plays.all()) <= 2:
|
|
candidates = nearest_plays(prev_event, 100)
|
|
# print(candidates, type(candidates), len(Event.objects.filter(type='plays')))
|
|
return candidates[-1]
|
|
if prev_event.type == "movie" and len(pref.unpreffered_movies.all()) <= 2:
|
|
candidates = nearest_movie(prev_event, 100)
|
|
return candidates[-1]
|
|
if prev_event.type == "concert" and len(pref.unpreferred_concerts.all()) <= 2:
|
|
candidates = nearest_concert(prev_event, 100)
|
|
return candidates[-1]
|
|
|
|
if prev_direction == "right":
|
|
if prev_event.type == "plays" and len(pref.preffered_plays.all()) < 2:
|
|
candidates = nearest_plays(prev_event, 2)
|
|
return candidates[1]
|
|
if prev_event.type == "movie" and len(pref.preffered_movies.all()) < 2:
|
|
candidates = nearest_movie(prev_event, 2)
|
|
return candidates[1]
|
|
if prev_event.type == "concert" and len(pref.preferred_concerts.all()) < 2:
|
|
candidates = nearest_concert(prev_event, 2)
|
|
return candidates[1]
|
|
|
|
if prev_event.type == "plays":
|
|
if not len(pref.preffered_movies.all()) and not len(
|
|
pref.unpreffered_movies.all()
|
|
):
|
|
return choice(Event.objects.filter(type="movie"))
|
|
if not len(pref.preferred_concerts.all()) and not len(
|
|
pref.unpreferred_concerts.all()
|
|
):
|
|
return choice(Event.objects.filter(type="concert"))
|
|
|
|
if prev_event.type == "movie":
|
|
if not len(pref.preffered_plays.all()) and not len(
|
|
pref.unpreffered_plays.all()
|
|
):
|
|
return choice(Event.objects.filter(type="plays"))
|
|
if not len(pref.preferred_concerts.all()) and not len(
|
|
pref.unpreferred_concerts.all()
|
|
):
|
|
return choice(Event.objects.filter(type="concert"))
|
|
|
|
if prev_event.type == "concert":
|
|
if not len(pref.preffered_plays.all()) and not len(
|
|
pref.unpreffered_plays.all()
|
|
):
|
|
return choice(Event.objects.filter(type="plays"))
|
|
if not len(pref.preffered_movies.all()) and not len(
|
|
pref.unpreffered_movies.all()
|
|
):
|
|
return choice(Event.objects.filter(type="movie"))
|
|
|
|
return None
|
|
|
|
|
|
def rank_candidates(candidates_list, negative_candidates_list):
|
|
flatten_c_list = []
|
|
ranks = {}
|
|
|
|
flatten_negatives = []
|
|
|
|
for negative in negative_candidates_list:
|
|
flatten_negatives.extend(negative)
|
|
|
|
for lst in candidates_list:
|
|
flatten_c_list.extend(lst)
|
|
for cand in lst:
|
|
ranks.update({cand: {"rank": 0, "lst": lst}})
|
|
|
|
cnt = Counter(flatten_c_list)
|
|
|
|
for candidate, how_many in cnt.most_common(len(flatten_c_list)):
|
|
ranks[candidate]["rank"] = how_many * (
|
|
len(ranks[candidate]["lst"]) - ranks[candidate]["lst"].index(candidate)
|
|
)
|
|
|
|
res = []
|
|
for cand in ranks.keys():
|
|
res.append((ranks[cand]["rank"], cand))
|
|
return list(
|
|
filter(
|
|
lambda x: x[1] not in flatten_negatives, sorted(res, key=lambda x: -x[0])
|
|
)
|
|
)
|
|
|
|
|
|
def get_personal_recommendation(prefer, unprefer):
|
|
candidates = []
|
|
negative_candidates = []
|
|
|
|
for rec in prefer:
|
|
candidates.append(list(map(lambda x: x.oid, get_nearest_event(rec, 10)[1:])))
|
|
|
|
for neg in unprefer:
|
|
negative_candidates.append(
|
|
list(map(lambda x: x.oid, get_nearest_event(neg, 10)[1:]))
|
|
)
|
|
|
|
ranked = rank_candidates(candidates, negative_candidates)
|
|
|
|
return list(map(lambda x: (x[0], Event.objects.get(oid=x[1])), ranked[0:5]))
|
|
|
|
|
|
def get_personal_plays_recommendation(user):
|
|
pref = UserPreferences.objects.get(user=user)
|
|
|
|
prefer = pref.preffered_plays.all()
|
|
unprefer = pref.unpreffered_plays.all()
|
|
return get_personal_recommendation(prefer, unprefer)
|
|
|
|
|
|
def get_personal_concerts_recommendation(user):
|
|
pref = UserPreferences.objects.get(user=user)
|
|
|
|
prefer = pref.preferred_concerts.all()
|
|
unprefer = pref.unpreferred_concerts.all()
|
|
return get_personal_recommendation(prefer, unprefer)
|
|
|
|
|
|
def get_personal_movies_recommendation(user):
|
|
pref = UserPreferences.objects.get(user=user)
|
|
|
|
prefer = pref.preffered_movies.all()
|
|
unprefer = pref.unpreffered_movies.all()
|
|
return get_personal_recommendation(prefer, unprefer)
|
|
|
|
|
|
def dist_func(event1: Event, event2: Event):
|
|
cords1 = [event1.lat, event1.lon]
|
|
cords2 = [event2.lat, event2.lon]
|
|
try:
|
|
dist = GD(cords1, cords2).km
|
|
return dist
|
|
except:
|
|
return 1000000
|
|
return (event1.lon - event2.lon) ** 2 + (event1.lat - event2.lat) ** 2
|
|
|
|
|
|
def generate_nearest():
|
|
NearestEvent.objects.all().delete()
|
|
all_events = list(Event.objects.all())
|
|
for i, event in enumerate(Event.objects.all()):
|
|
event_all_events = list(
|
|
sorted(all_events.copy(), key=lambda x: dist_func(event, x))
|
|
)
|
|
nearest = NearestEvent.objects.create(event=event)
|
|
nearest.nearest.set(event_all_events[0:100])
|
|
nearest.save()
|
|
if i % 10 == 0:
|
|
print(i)
|
|
|
|
|
|
def generate_nearest_rest():
|
|
NearestEventToRestaurant.objects.all().delete()
|
|
all_events = list(Event.objects.all())
|
|
for i, rest in enumerate(Restaurant.objects.all()):
|
|
sorted_events = list(
|
|
sorted(
|
|
all_events.copy(),
|
|
key=lambda event: dist_func(rest, event)
|
|
)
|
|
)
|
|
nearest = NearestEventToRestaurant.objects.create(restaurant=rest)
|
|
nearest.events.set(sorted_events[0:100])
|
|
if i % 10 == 0:
|
|
print(i)
|
|
|
|
|
|
def generate_hotel_nearest():
|
|
NearestHotel.objects.all().delete()
|
|
all_events = list(Event.objects.all())
|
|
hotels = list(Hotel.objects.all())
|
|
for i, hotel in enumerate(hotels):
|
|
event_all_events = list(
|
|
sorted(all_events.copy(), key=lambda x: dist_func(hotel, x))
|
|
)
|
|
nearest = NearestHotel.objects.create(hotel=hotel)
|
|
nearest.nearest_events.set(event_all_events[0:100])
|
|
if i % 10 == 0:
|
|
print(i)
|
|
|
|
|
|
def generate_nearest_restaurants():
|
|
rests = list(Restaurant.objects.all())
|
|
for i, event in enumerate(Event.objects.all()):
|
|
sorted_rests = list(sorted(rests.copy(), key=lambda x: dist_func(x, event)))
|
|
nr = NearestRestaurantToEvent.objects.create(event=event)
|
|
nr.restaurants.set(sorted_rests[0:20])
|
|
nr.save()
|
|
if i % 10 == 0:
|
|
print(i)
|
|
|
|
for i, hotel in enumerate(Hotel.objects.all()):
|
|
sorted_rests = list(sorted(rests.copy(), key=lambda x: dist_func(x, hotel)))
|
|
nr = NearestRestaurantToHotel.objects.create(hotel=hotel)
|
|
nr.restaurants.set(sorted_rests[0:20])
|
|
nr.save()
|
|
if i % 10 == 0:
|
|
print(i)
|
|
|
|
|
|
def match_points():
|
|
regions = list(City.objects.all())
|
|
for i, point in enumerate(Event.objects.all()):
|
|
s_regions = list(sorted(regions.copy(), key=lambda x: dist_func(point, x)))
|
|
point.city = s_regions[0]
|
|
point.save()
|
|
if i % 10 == 0:
|
|
print(i)
|
|
for i, point in enumerate(Hotel.objects.all()):
|
|
s_regions = list(sorted(regions.copy(), key=lambda x: dist_func(point, x)))
|
|
point.city = s_regions[0]
|
|
point.save()
|
|
if i % 10 == 0:
|
|
print(i)
|
|
|
|
|
|
def match_restaurants():
|
|
regions = list(City.objects.all())
|
|
|
|
for i, point in enumerate(Restaurant.objects.all()):
|
|
s_regions = list(sorted(regions.copy(), key=lambda x: dist_func(point, x)))
|
|
point.city = s_regions[0]
|
|
|
|
point.save()
|
|
if i % 10 == 0:
|
|
print(i)
|
|
|
|
|
|
|
|
def calculate_mean_metric(
|
|
favorite_events: Iterable[Event],
|
|
target_event: Event,
|
|
model: AnnoyIndex,
|
|
rev_mapping,
|
|
):
|
|
if not len(favorite_events):
|
|
return 100000
|
|
|
|
dists = []
|
|
try:
|
|
target_event_idx = rev_mapping[target_event.oid]
|
|
except:
|
|
return 10
|
|
for fav in favorite_events:
|
|
dists.append(model.get_distance(rev_mapping[fav.oid], target_event_idx))
|
|
return sum(dists) / len(dists)
|
|
|
|
|
|
def calculate_favorite_metric(event: Event, user: User):
|
|
pref = UserPreferences.objects.get(user=user)
|
|
if event.type == "plays":
|
|
preferred = pref.preffered_plays.all()
|
|
return calculate_mean_metric(preferred, event, plays_model, rev_plays_mapping)
|
|
if event.type == "concert":
|
|
preferred = pref.preferred_concerts.all()
|
|
return calculate_mean_metric(
|
|
preferred, event, concert_model, rev_concert_mapping
|
|
)
|
|
if event.type == "movie":
|
|
preferred = pref.preffered_movies.all()
|
|
return calculate_mean_metric(preferred, event, cinema_model, rev_cinema_mapping)
|
|
if event.type == 'attraction':
|
|
preferred = pref.prefferred_attractions.all()
|
|
return calculate_mean_metric(preferred, event, attracion_model, rev_attraction_mapping)
|
|
if event.type == 'museum':
|
|
preferred = pref.prefferred_museums.all()
|
|
return calculate_mean_metric(preferred, event, mus_model, rev_mus_mapping)
|
|
return 10
|
|
|
|
|
|
def get_exponential_koef(time: timedelta):
|
|
time = time.seconds
|
|
if time < 60 * 10:
|
|
return 2
|
|
if time < 60 * 20:
|
|
return 5
|
|
if time < 60 * 30:
|
|
return 10
|
|
if time < 60 * 40:
|
|
return 20
|
|
return int(1e10)
|
|
|
|
|
|
def get_category_similarity_coef(event, user):
|
|
up, _ = UserPreferences.objects.get_or_create(user=user)
|
|
cat = up.preferred_categories
|
|
if event.type in cat:
|
|
return 0.7
|
|
else:
|
|
return 1.2
|
|
|
|
|
|
def get_nearest_favorite(
|
|
events: Iterable[Event],
|
|
user: User,
|
|
base_event: Event,
|
|
exclude_events: Iterable[Event] = [],
|
|
velocity=3.0,
|
|
top_k=1
|
|
):
|
|
|
|
sorted_events = list(
|
|
sorted(
|
|
filter(lambda event: event not in exclude_events, events),
|
|
key=lambda event:
|
|
calculate_favorite_metric(event, user) *
|
|
get_exponential_koef(
|
|
time_func(
|
|
dist_func(
|
|
event, base_event
|
|
),
|
|
velocity
|
|
)
|
|
) *
|
|
get_category_similarity_coef(event, user)
|
|
)
|
|
)
|
|
|
|
if top_k == 1:
|
|
return sorted_events[0]
|
|
|
|
return sorted_events[0:top_k]
|
|
|
|
|
|
def filter_hotel(region: Region, user: User, stars: Iterable[int]):
|
|
hotels = Hotel.objects.filter(city=region)
|
|
return choice(hotels)
|
|
|
|
|
|
def time_func(km_distance: float, velocity: float):
|
|
return timedelta(minutes=(km_distance) / (velocity / 60))
|
|
|
|
|
|
|
|
def generate_route(point1: BasePoint, point2: BasePoint, velocity):
|
|
distance = dist_func(point1, point2)
|
|
time = time_func(distance, velocity)
|
|
return {
|
|
"type": "transition",
|
|
"distance": distance,
|
|
"time": time.seconds,
|
|
}
|
|
|
|
|
|
def generate_point(point: BasePoint):
|
|
event_data = ObjectRouteSerializer(point).data
|
|
return {
|
|
"type": "point",
|
|
"point": event_data,
|
|
"point_type": "point",
|
|
"time": timedelta(minutes=90+choice(range(-10, 90, 10))).seconds,
|
|
"distance": 0
|
|
}
|
|
|
|
|
|
def generate_restaurant(point: BasePoint):
|
|
rest_data = ObjectRouteSerializer(point).data
|
|
|
|
return {
|
|
"type": "point",
|
|
"point": rest_data,
|
|
"point_type": "restaurant",
|
|
"time": timedelta(minutes=90+choice(range(-10, 90, 10))).seconds
|
|
}
|
|
|
|
|
|
def generate_multiple_tours(user: User, city: City, start_date: datetime.date, end_date: datetime.date):
|
|
hotels = sample(list(Hotel.objects.filter(city=city)), 5)
|
|
pool = Pool(5)
|
|
return pool.map(generate_tour, [(user, start_date, end_date, hotel) for hotel in hotels])
|
|
|
|
|
|
def generate_tour(
|
|
user: User,
|
|
city: City,
|
|
start_date: datetime.date,
|
|
end_date: datetime.date,
|
|
avg_velocity=3.0,
|
|
stars=[],
|
|
hotel_type=['hotel', 'hostel', 'apartment'],
|
|
where_eat=['restaurant', 'bar', 'cafe'],
|
|
what_to_see=['attractions', 'museum', 'movie', 'concert', 'artwork', 'plays', 'shop', 'gallery', 'theme_park', 'viewpoint', 'zoo']
|
|
):
|
|
UserPreferences.objects.get_or_create(user=user)
|
|
|
|
hotels_candidates = Hotel.objects.filter(city=city)
|
|
if len(hotels_candidates.filter(stars__in=stars)):
|
|
hotels_candidates = hotels_candidates.filter(stars__in=stars)
|
|
|
|
try:
|
|
hotel = choice(list(hotels_candidates))
|
|
except:
|
|
hotel = city
|
|
current_date = start_date
|
|
paths, points, disallowed_rest = [], [], []
|
|
|
|
while current_date < end_date:
|
|
local_points, local_paths, local_disallowed_rest = generate_path(
|
|
user,
|
|
points,
|
|
hotel,
|
|
disallowed_rest,
|
|
avg_velocity,
|
|
where_eat=where_eat,
|
|
what_to_see=what_to_see
|
|
)
|
|
points.extend(local_points)
|
|
paths.append(
|
|
{
|
|
'date': current_date,
|
|
'paths': local_paths
|
|
}
|
|
)
|
|
disallowed_rest = local_disallowed_rest
|
|
current_date += timedelta(days=1)
|
|
return paths, points
|
|
|
|
|
|
def generate_hotel(hotel: Hotel):
|
|
hotel_data = ObjectRouteSerializer(hotel).data
|
|
return {
|
|
"type": "point",
|
|
"point": hotel_data,
|
|
"point_type": "hotel",
|
|
"time": 0,
|
|
"distance": 0
|
|
}
|
|
|
|
|
|
def nearest_distance_points(point: BasePoint, user: User, velocity: float=3.0):
|
|
nearest = []
|
|
print(isinstance(point, Event), point)
|
|
if isinstance(point, Event):
|
|
nearest = NearestEvent.objects.get(event=point).nearest.all()
|
|
if isinstance(point, Hotel):
|
|
nearest = NearestHotel.objects.get(hotel=point).nearest_events.all()
|
|
if isinstance(point, Restaurant):
|
|
nearest = NearestEventToRestaurant.objects.get(restaurant=point).events.all()
|
|
|
|
top_nearest = get_nearest_favorite(nearest, user, point, [], velocity, top_k=10)
|
|
return top_nearest
|
|
|
|
|
|
|
|
def generate_path(
|
|
user: User,
|
|
disallowed_points: Iterable[BasePoint],
|
|
hotel: Hotel,
|
|
disallowed_rests: Iterable[Restaurant],
|
|
avg_velocity: float,
|
|
where_eat=['restaurant', 'bar', 'cafe'],
|
|
what_to_see=['attractions', 'museum', 'movie', 'concert', 'artwork', 'plays', 'shop', 'gallery', 'theme_park', 'viewpoint', 'zoo']
|
|
):
|
|
allowed_types = [
|
|
'museum',
|
|
'attraction',
|
|
'artwork',
|
|
'shop',
|
|
'gallery',
|
|
'theme_park',
|
|
'zoo',
|
|
'other',
|
|
'viewpoint'
|
|
]
|
|
if len(set(allowed_types) & set(what_to_see)) == 0:
|
|
allowed_types = what_to_see
|
|
else:
|
|
allowed_types = list(set(allowed_types) & set(what_to_see))
|
|
print(allowed_types, hotel)
|
|
if isinstance(hotel, City):
|
|
start_points_candidate = Restaurant.objects.filter(city=hotel).filter(~Q(oid__in=disallowed_rests))
|
|
else:
|
|
start_points_candidate = NearestRestaurantToHotel.objects.filter(hotel=hotel).first().restaurants.filter(~Q(oid__in=disallowed_rests))
|
|
|
|
if len(start_points_candidate.filter(type__in=where_eat)):
|
|
start_points_candidate = start_points_candidate.filter(type__in=where_eat)
|
|
|
|
start_point = start_points_candidate[0]
|
|
disallowed_rests.append(start_point.oid)
|
|
|
|
candidates = NearestEventToRestaurant.objects.get(restaurant=start_point).events.all().filter(type__in=allowed_types)
|
|
|
|
points = [start_point]
|
|
|
|
if isinstance(hotel, Hotel):
|
|
path = [
|
|
generate_hotel(hotel),
|
|
generate_route(start_point, hotel, avg_velocity),
|
|
generate_restaurant(start_point)
|
|
]
|
|
else:
|
|
path = [
|
|
generate_restaurant(start_point)
|
|
]
|
|
|
|
start_time = datetime.combine(datetime.now(), time(hour=10))
|
|
|
|
how_many_eat = 1
|
|
|
|
while start_time.hour < 22 and start_time.day == datetime.now().day:
|
|
if (start_time.hour > 14 and how_many_eat == 1) or (start_time.hour > 20 and how_many_eat == 2):
|
|
print(points, start_time)
|
|
try:
|
|
point_candidates = NearestRestaurantToEvent.objects.filter(event=points[-1]).first().restaurants.filter(~Q(oid__in=disallowed_rests))
|
|
if len(point_candidates.filter(type__in=where_eat)):
|
|
point_candidates = point_candidates.filter(type__in=where_eat)
|
|
point = point_candidates[0]
|
|
|
|
disallowed_rests.append(point.oid)
|
|
points.append(point)
|
|
|
|
candidates = NearestEventToRestaurant.objects.get(restaurant=point).events.all().filter(type__in=allowed_types)
|
|
if len(candidates) < 2:
|
|
candidates = NearestEventToRestaurant.objects.get(restaurant=point).events.all()
|
|
|
|
path.append(generate_restaurant(points[-1]))
|
|
start_time += timedelta(seconds=path[-1]['time'])
|
|
how_many_eat += 1
|
|
continue
|
|
except:
|
|
return points, path, disallowed_rests
|
|
|
|
|
|
if start_time.hour > 17:
|
|
allowed_types = [
|
|
'play',
|
|
'concert',
|
|
'movie',
|
|
'shop',
|
|
'gallery',
|
|
'theme_park',
|
|
'viewpoint'
|
|
]
|
|
if len(set(allowed_types) & set(what_to_see)) == 0:
|
|
allowed_types = what_to_see
|
|
else:
|
|
allowed_types = list(set(allowed_types) & set(what_to_see))
|
|
|
|
|
|
if candidates is None:
|
|
candidates = NearestEvent.objects.get(event=points[-1]).nearest.filter(type__in=allowed_types)
|
|
if len(candidates) < 2:
|
|
candidates = NearestEvent.objects.get(event=points[-1]).nearest.all()
|
|
|
|
try:
|
|
points.append(get_nearest_favorite(candidates, user, points[-1], points + disallowed_points))
|
|
|
|
except:
|
|
points.append(get_nearest_favorite(candidates, user, points[-1], points))
|
|
|
|
transition_route = generate_route(points[-1], points[-2], avg_velocity)
|
|
|
|
start_time += timedelta(seconds=transition_route["time"])
|
|
|
|
point_route = generate_point(points[-1])
|
|
start_time += timedelta(seconds=point_route["time"])
|
|
path.extend([transition_route, point_route])
|
|
candidates = None
|
|
return points, path, disallowed_rests
|
|
|
|
|
|
def calculate_distance(
|
|
sample1: Event, samples: Iterable[Event], model: AnnoyIndex, rev_mapping
|
|
):
|
|
metrics = []
|
|
|
|
for sample in samples:
|
|
metrics.append(
|
|
model.get_distance(rev_mapping[sample1.oid], rev_mapping[sample.oid])
|
|
)
|
|
|
|
return sum(metrics) / len(metrics)
|
|
|
|
|
|
def get_onboarding_attractions():
|
|
sample_attractions = sample(list(Event.objects.filter(type="attraction")), 200)
|
|
first_attraction = choice(sample_attractions)
|
|
|
|
attractions = [first_attraction]
|
|
|
|
while len(attractions) < 10:
|
|
mx_dist = 0
|
|
mx_attraction = None
|
|
for att in sample_attractions:
|
|
if att in attractions: continue
|
|
local_dist = calculate_distance(
|
|
att,
|
|
attractions,
|
|
attracion_model,
|
|
rev_attraction_mapping
|
|
)
|
|
if local_dist > mx_dist:
|
|
mx_dist = local_dist
|
|
mx_attraction = att
|
|
attractions.append(mx_attraction)
|
|
return attractions
|
|
|
|
|
|
def get_onboarding_hotels(stars=Iterable[int]):
|
|
return sample(list(Hotel.objects.filter(stars__in=stars)), 10)
|
|
|
|
|
|
def generate_points_path(user: User, points: Iterable[Event], velocity=3.0):
|
|
if len(points) < 7:
|
|
candidates = NearestEvent.objects.get(event=points[0]).nearest.all()
|
|
points.extend(list(get_nearest_favorite(candidates, user, points[0], [], velocity, 7-len(points))))
|
|
|
|
dist_matrix = [[0 for j in range(len(points))] for i in range(len(points))]
|
|
for i in range(len(dist_matrix)):
|
|
for j in range(len(dist_matrix)):
|
|
dist_matrix[i][j] = time_func(dist_func(points[i], points[j]), velocity).seconds
|
|
for i in range(len(dist_matrix)):
|
|
dist_matrix[i][0] = 0
|
|
dist_matrix = np.array(dist_matrix)
|
|
dist_matrix[:, 0] = 0
|
|
perm, dist = solve_tsp_dynamic_programming(dist_matrix)
|
|
|
|
perm_pts = [points[i] for i in perm]
|
|
|
|
res = [generate_point(perm_pts[0])]
|
|
visited_points = [perm_pts[0]]
|
|
|
|
for pt in perm_pts[1:]:
|
|
res.extend([
|
|
generate_route(
|
|
visited_points[-1],
|
|
pt,
|
|
velocity
|
|
),
|
|
generate_point(pt)
|
|
])
|
|
visited_points.append(pt)
|
|
|
|
return res
|
|
|
|
|
|
def flat_list(lst):
|
|
res = []
|
|
for i in lst:
|
|
res.extend(i)
|
|
return res
|
|
|
|
|
|
def range_candidates(candidates, user, favorite_events):
|
|
model_mappings = {
|
|
'attraction': [attracion_model, rev_attraction_mapping],
|
|
'museum': [mus_model, rev_mus_mapping],
|
|
'movie': [cinema_model, rev_cinema_mapping],
|
|
'concert': [concert_model, rev_concert_mapping],
|
|
'plays': [plays_model, rev_plays_mapping]
|
|
}
|
|
|
|
if candidates[0].type in ['attraction', 'museum', 'movie', 'concert', 'plays']:
|
|
candidates = sorted(
|
|
candidates,
|
|
key=lambda cand: calculate_mean_metric(
|
|
favorite_events,
|
|
cand,
|
|
*model_mappings[cand.type]
|
|
)
|
|
)
|
|
return candidates[0:10]
|
|
return sample(candidates, 10)
|
|
|
|
|
|
def get_personal_recomendations(user):
|
|
up, _ = UserPreferences.objects.get_or_create(user=user)
|
|
candidates_generate_strategy = {
|
|
'plays': [lambda pref: flat_list(
|
|
list(
|
|
map(
|
|
lambda cand: nearest_plays(
|
|
cand, 30
|
|
),
|
|
pref.preffered_plays.all()
|
|
)
|
|
),
|
|
), lambda pref: pref.preffered_plays.all()],
|
|
'movie': [lambda pref: flat_list(
|
|
list(
|
|
map(
|
|
lambda cand: nearest_movie(
|
|
cand, 30
|
|
),
|
|
pref.preffered_movies.all()
|
|
)
|
|
),
|
|
), lambda pref: pref.preffered_movies.all()],
|
|
'concert': [lambda pref: flat_list(
|
|
list(
|
|
map(
|
|
lambda cand: nearest_concert(
|
|
cand, 30
|
|
),
|
|
pref.preferred_concerts.all()
|
|
)
|
|
),
|
|
), lambda pref: pref.preferred_concerts.all()],
|
|
'attractions': [lambda pref: flat_list(
|
|
list(
|
|
map(
|
|
lambda cand: nearest_attraction(
|
|
cand, 30
|
|
),
|
|
pref.prefferred_attractions.all()
|
|
)
|
|
),
|
|
), lambda pref: pref.prefferred_attractions.all()],
|
|
'museum': [lambda pref: flat_list(
|
|
list(
|
|
map(
|
|
lambda cand: nearest_mus(
|
|
cand, 30
|
|
),
|
|
pref.prefferred_museums.all()
|
|
)
|
|
),
|
|
), lambda pref: pref.prefferred_museums.all()],
|
|
'shop': [lambda pref: sample(list(Event.objects.filter(type='shop')), 10), lambda x: []],
|
|
'gallery': [lambda pref: sample(list(Event.objects.filter(type='gallery')), 10), lambda x: []],
|
|
'theme_park': [lambda pref: sample(list(Event.objects.filter(type='theme_park')), 10), lambda x: []],
|
|
'viewpoint': [lambda pref: sample(list(Event.objects.filter(type='viewpoint')), 10), lambda x: []],
|
|
'zoo': [lambda pref: sample(list(Event.objects.filter(type='zoo')), 10), lambda x: []],
|
|
}
|
|
|
|
res = []
|
|
for category_candidate in up.preferred_categories:
|
|
candidates = candidates_generate_strategy[category_candidate][0](up)
|
|
ranged = range_candidates(
|
|
candidates,
|
|
user,
|
|
candidates_generate_strategy[category_candidate][1](up)
|
|
)
|
|
res.append(
|
|
{
|
|
'category': category_candidate,
|
|
'events': list(
|
|
map(
|
|
lambda x: ObjectRouteSerializer(x).data,
|
|
ranged
|
|
)
|
|
)
|
|
}
|
|
)
|
|
return res
|