tools | ||
.gitignore | ||
LICENSE | ||
package-lock.json | ||
package.json | ||
queryset_type.py | ||
README.md | ||
utils.py |
Django Styleguide
Django styleguide used in HackSoft projects.
Expect often updates as we discuss & decide upon different things.
Table of contents:
- Examples
- Overview
- Cookie Cutter
- Models
- Services
- Selectors
- APIs & Serializers
- Exception Handling
- Testing
- Inspiration
Examples
Most of the examples are taken from HackSoft's Learning Management System - Odin - https://github.com/HackSoftware/Odin
Overview
In Django, business logic should live in:
- Model properties (with some exceptions).
- Model
clean
method for additional validations (with some exceptions). - Services - functions, that take care of code written to the database.
- Selectors - functions, that take care of code taken from the database.
In Django, business logic should not live in:
- APIs and Views.
- Serializers and Forms.
- Form tags.
- Model
save
method.
Model properties vs selectors:
- If the model property spans multiple relations, it should better be a selector.
- If a model property, added to some list API, will cause
N + 1
problem that cannot be easily solved withselect_related
, it should better be a selector.
Cookie Cutter
We recommend starting every new project with cookiecutter-django
Once this is done, depending on the context, remove everything that's not needed.
The usual list is:
allauth
- templates
- Settings for things that are not yet required (always add settings when necessary)
Models
Lets take a look at an example model:
class Course(models.Model):
name = models.CharField(unique=True, max_length=255)
start_date = models.DateField()
end_date = models.DateField()
attendable = models.BooleanField(default=True)
students = models.ManyToManyField(
Student,
through='CourseAssignment',
through_fields=('course', 'student')
)
teachers = models.ManyToManyField(
Teacher,
through='CourseAssignment',
through_fields=('course', 'teacher')
)
slug_url = models.SlugField(unique=True)
repository = models.URLField(blank=True)
video_channel = models.URLField(blank=True, null=True)
facebook_group = models.URLField(blank=True, null=True)
logo = models.ImageField(blank=True, null=True)
public = models.BooleanField(default=True)
generate_certificates_delta = models.DurationField(default=timedelta(days=15))
objects = CourseManager()
def clean(self):
if self.start_date > self.end_date:
raise ValidationError("End date cannot be before start date!")
def save(self, *args, **kwargs):
self.full_clean()
return super().save(*args, **kwargs)
@property
def visible_teachers(self):
return self.teachers.filter(course_assignments__hidden=False).select_related('profile')
@property
def duration_in_weeks(self):
weeks = rrule.rrule(
rrule.WEEKLY,
dtstart=self.start_date,
until=self.end_date
)
return weeks.count()
@property
def has_started(self):
now = get_now()
return self.start_date <= now.date()
@property
def has_finished(self):
now = get_now()
return self.end_date <= now.date()
@property
def can_generate_certificates(self):
now = get_now()
return now.date() <= self.end_date + self.generate_certificates_delta
def __str__(self) -> str:
return self.name
Few things to spot here.
Custom validation:
- There's a custom model validation, defined in
clean
. This validation uses only model fields and no relations. - This requires someone to call
full_clean()
on the model instance. The best place to do that is in thesave()
method of the model. Otherwise people can forget to callfull_clean()
in the respective service.
Properties:
- All properties, expect
visible_teachers
work directly on model fields. visible_teachers
is a great candidate for a selector.
We have few general rules for custom validations & model properties / methods:
Custom validation
- If the custom validation depends only on the non-relational model fields, define it in
clean
and callfull_clean
insave
. - If the custom validation is more complex & spans relationships, do it in the service that creates the model.
- It's OK to combine both
clean
and additional validation in theservice
.
Properties
- If your model properties use only non-relational model fields, they are OK to stay as properties.
- If a property, such as
visible_teachers
starts spanning relationships, it's better to define a selector for that.
Methods
- If you need a method that updates several fields at once (for example -
created_at
andcreated_by
when something happens), you can create a model method that does the job. - Every model method should be wrapped in a service. There should be no model method calling outside a service.
Testing
Models need to be tested only if there's something additional to them - like custom validation or properties.
If we are strict & don't do custom validation / properties, then we can test the models without actually writing anything to the database => we are going to get quicker tests.
For example, if we want to test the custom validation, here's how a test could look like:
from datetime import timedelta
from django.test import TestCase
from django.core.exceptions import ValidationError
from odin.common.utils import get_now
from odin.education.factories import CourseFactory
from odin.education.models import Course
class CourseTests(TestCase):
def test_course_end_date_cannot_be_before_start_date(self):
start_date = get_now()
end_date = get_now() - timedelta(days=1)
course_data = CourseFactory.build()
course_data['start_date'] = start_date
course_data['end_date'] = end_date
course = Course(**course_data)
with self.assertRaises(ValidationError):
course.full_clean()
There's a lot going on in this test:
get_now()
returns a timezone aware datetime.CourseFactory.build()
will return a dictionary with all required fields for a course to exist.- We replace the values for
start_date
andend_date
. - We assert that a validation error is going to be raised if we call
full_clean
. - We are not hitting the database at all, since there's no need for that.
Here's how CourseFactory
looks like:
class CourseFactory(factory.DjangoModelFactory):
name = factory.Sequence(lambda n: f'{n}{faker.word()}')
start_date = factory.LazyAttribute(
lambda _: get_now()
)
end_date = factory.LazyAttribute(
lambda _: get_now() + timedelta(days=30)
)
slug_url = factory.Sequence(lambda n: f'{n}{faker.slug()}')
repository = factory.LazyAttribute(lambda _: faker.url())
video_channel = factory.LazyAttribute(lambda _: faker.url())
facebook_group = factory.LazyAttribute(lambda _: faker.url())
class Meta:
model = Course
@classmethod
def _build(cls, model_class, *args, **kwargs):
return kwargs
@classmethod
def _create(cls, model_class, *args, **kwargs):
return create_course(**kwargs)
Services
A service is a simple function that:
- Lives in
your_app/services.py
module - Takes keyword-only arguments
- Is type-annotated (even if you are not using
mypy
at the moment) - Works mostly with models & other services and selectors
- Does business logic - from simple model creation to complex cross-cutting concerns, to calling external services & tasks.
An example service that creates an user:
def create_user(
*,
email: str,
name: str
) -> User:
user = User(email=email)
user.full_clean()
user.save()
create_profile(user=user, name=name)
send_confirmation_email(user=user)
return user
As you can see, this service calls 2 other services - create_profile
and send_confirmation_email
Selectors
A selector is a simple function that:
- Lives in
your_app/selectors.py
module - Takes keyword-only arguments
- Is type-annotated (even if you are not using
mypy
at the moment) - Works mostly with models & other services and selectors
- Does business logic around fetching data from your database
An example selector that list users from the database:
def get_users(*, fetched_by: User) -> Iterable[User]:
user_ids = get_visible_users_for(user=fetched_by)
query = Q(id__in=user_ids)
return User.objects.filter(query)
As you can see, get_visible_users_for
is another selector.
APIs & Serializers
When using services & selectors, all of your APIs should look simple & the same.
General rules for an API is:
- Do 1 API per operation. For CRUD on a model, this means 4 APIs.
- Use the most simple
APIView
orGenericAPIView
- Use services / selectors & don't do business logic in your API.
- Use serializers for fetching objects from params - passed either via
GET
orPOST
- Serializer should be nested in the API and be named either
InputSerializer
orOutputSerializer
OutputSerializer
can subclassModelSerializer
, if needed.InputSerializer
should always be a plainSerializer
- Reuse serializers as little as possible
- If you need a nested serializer, use the
inline_serializer
util
An example list API
class CourseListApi(SomeAuthenticationMixin, APIView):
class OutputSerializer(serializers.ModelSerializer):
class Meta:
model = Course
fields = ('id', 'name', 'start_date', 'end_date')
def get(self, request):
courses = get_courses()
data = self.OutputSerializer(courses, many=True)
return Response(data)
An example detail API
class CourseDetailApi(SomeAuthenticationMixin, APIView):
class OutputSerializer(serializers.ModelSerializer):
class Meta:
model = Course
fields = ('id', 'name', 'start_date', 'end_date')
def get(self, request, course_id):
course = get_course(id=course_id)
data = self.OutputSerializer(course)
return Response(data)
An example create API
class CourseCreateApi(SomeAuthenticationMixin, APIView):
class InputSerializer(serializers.Serializer):
name = serializers.CharField()
start_date = serializers.DateField()
end_date = serializers.DateField()
def post(self, request):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
create_course(**serializer.validated_data)
return Response(status=status.HTTP_201_CREATED)
An example update API
class CourseUpdateApi(SomeAuthenticationMixin, APIView):
class InputSerializer(serializers.Serializer):
name = serializers.CharField(required=False)
start_date = serializers.DateField(required=False)
end_date = serializers.DateField(required=False)
def post(self, request, course_id):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
update_course(course_id=course_id, **serializer.validated_data)
return Response(status=status.HTTP_200_OK)
Nested serializers
In case you need to use a nested serializer, you can do the following thing:
class Serializer(serializers.Serializer):
weeks = inline_serializer(many=True, fields={
'id': serializers.IntegerField(),
'number': serializers.IntegerField(),
})
The implementation of inline_serializer
can be found in utils.py
in this repo.
Exception Handling
Raising Exceptions in Services / Selectors
Now we have separation between our HTTP interface & the core logic of our application.
In order to keep this separation of concerns, our services and selectors must not use the rest_framework.exception
classes because they are bounded with HTTP status codes.
Our services and selectors must use one of:
- Python built-in exceptions
- Exceptions from
django.core.exceptions
- Custom exceptions, inheriting from the ones above.
Here is a good example of service that preforms some validation and raises django.core.exceptions.ValidationError
:
from django.core.exceptions import ValidationError
def create_topic(*, name: str, course: Course) -> Topic:
if course.end_date < timezone.now():
raise ValidationError('You can not create topics for course that has ended.')
topic = Topic.objects.create(name=name, course=course)
return topic
Handle Exceptions in APIs
In order to transform the exceptions raised in the services or selectors, to a standard HTTP response, you need to catch the exception and raise something that the rest framework understands.
The best place to do this is in the handle_exception
method of the APIView
.
There you can map your exception to DRF exception.
Here is an example:
from rest_framework import exceptions as rest_exceptions
from django.core.exceptions import ValidationError
class CourseCreateApi(SomeAuthenticationMixin, APIView):
expected_exceptions = {
ValidationError: rest_exceptions.ValidationError
}
class InputSerializer(serializers.Serializer):
...
def post(self, request):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
create_course(**serializer.validated_data)
return Response(status=status.HTTP_201_CREATED)
def handle_exception(self, exc):
if isinstance(exc, tuple(self.expected_exceptions.keys())):
drf_exception_class = self.expected_exceptions[exc.__class__]
drf_exception = drf_exception_class(get_error_message(exc))
return super().handle_exception(drf_exception)
return super().handle_exception(exc)
Here's the implementation of get_error_message
:
def get_first_matching_attr(obj, *attrs, default=None):
for attr in attrs:
if hasattr(obj, attr):
return getattr(obj, attr)
return default
def get_error_message(exc):
if hasattr(exc, 'message_dict'):
return exc.message_dict
error_msg = get_first_matching_attr(exc, 'message', 'messages')
if isinstance(error_msg, list):
error_msg = ', '.join(error_msg)
if error_msg is None:
error_msg = str(exc)
return error_msg
You can move this code to a mixin and use it in every API to prevent code duplication.
We call this ExceptionHandlerMixin
. Here's a sample implementation from one of our projects:
from rest_framework import exceptions as rest_exceptions
from django.core.exceptions import ValidationError
from project.common.utils import get_error_message
class ExceptionHandlerMixin:
"""
Mixin that transforms Django and Python exceptions into rest_framework ones.
without the mixin, they return 500 status code which is not desired.
"""
expected_exceptions = {
ValueError: rest_exceptions.ValidationError,
ValidationError: rest_exceptions.ValidationError,
PermissionError: rest_exceptions.PermissionDenied
}
def handle_exception(self, exc):
if isinstance(exc, tuple(self.expected_exceptions.keys())):
drf_exception_class = self.expected_exceptions[exc.__class__]
drf_exception = drf_exception_class(get_error_message(exc))
return super().handle_exception(drf_exception)
return super().handle_exception(exc)
Having this mixin in mind, our API can be written like that:
class CourseCreateApi(
SomeAuthenticationMixin,
ExceptionHandlerMixin,
APIView
):
class InputSerializer(serializers.Serializer):
...
def post(self, request):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
create_course(**serializer.validated_data)
return Response(status=status.HTTP_201_CREATED)
All of code above can be found in utils.py
in this repository.
Testing
In our Django projects, we split our tests depending on the type of code they represent.
Meaning, we generally have tests for models, services, selectors & APIs / views.
The file structure usually looks like this:
project_name
├── app_name
│ ├── __init__.py
│ └── tests
│ ├── __init__.py
│ ├── models
│ │ └── test_some_model_name.py
│ ├── selectors
│ │ └── test_some_selector_name.py
│ └── services
│ ├── __init__.py
│ └── test_some_service_name.py
└── __init__.py
Naming conventions
We follow 2 general naming conventions:
- The test file names should be
test_the_name_of_the_thing_that_is_tested.py
- The test case shoud be
class TheNameOfTheThingThatIsTestedTests(TestCase):
For example if we have:
def a_very_neat_service(*args, **kwargs):
pass
We are going to have the following for file name:
project_name/app_name/tests/services/test_a_very_neat_service.py
And the following for test case:
class AVeryNeatServiceTests(TestCase):
pass
For tests of utility functions, we follow a similiar pattern.
For example, if we have project_name/common/utils.py
, then we are going to have project_name/common/tests/test_utils.py
and place different test cases in that file.
If we are to split the utils.py
module into submodules, the same will happen for the tests:
project_name/common/utils/files.py
project_name/common/tests/utils/test_files.py
We try to match the stucture of our modules with the structure of their respective tests.
Example
We have a demo django_styleguide
project.
Example models
import uuid
from django.db import models
from django.contrib.auth.models import User
from django.utils import timezone
from djmoney.models.fields import MoneyField
class Item(models.Model):
id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False)
name = models.CharField(max_length=255)
description = models.TextField()
price = MoneyField(
max_digits=14,
decimal_places=2,
default_currency='EUR'
)
def __str__(self):
return f'Item {self.id} / {self.name} / {self.price}'
class Payment(models.Model):
item = models.ForeignKey(
Item,
on_delete=models.CASCADE,
related_name='payments'
)
user = models.ForeignKey(
User,
on_delete=models.CASCADE,
related_name='payments'
)
successful = models.BooleanField(default=False)
created_at = models.DateTimeField(default=timezone.now)
def __str__(self):
return f'Payment for {self.item} / {self.user}'
Example selectors
For implementation of QuerySetType
, check queryset_type.py
.
from django.contrib.auth.models import User
from django_styleguide.common.types import QuerySetType
from django_styleguide.payments.models import Item
def get_items_for_user(
*,
user: User
) -> QuerySetType[Item]:
return Item.objects.filter(payments__user=user)
Example services
from django.contrib.auth.models import User
from django.core.exceptions import ValidationError
from django_styleguide.payments.selectors import get_items_for_user
from django_styleguide.payments.models import Item, Payment
from django_styleguide.payments.tasks import charge_payment
def buy_item(
*,
item: Item,
user: User,
) -> Payment:
if item in get_items_for_user(user=user):
raise ValidationError(f'Item {item} already in {user} items.')
payment = Payment.objects.create(
item=item,
user=user,
successful=False
)
charge_payment.delay(payment_id=payment.id)
return payment
Testing services
Service tests are the most important tests in the project. Usually, those are the heavier tests with most lines of code.
General rule of thumb for service tests:
- The tests should cover the business logic behind the services in an exhaustive manner.
- The tests should hit the database - creating & reading from it.
- The tests should mock async task calls & everything that goes outside the project.
When creating the required state for a given test, one can use a combination of:
- Fakes (We recommend using https://github.com/joke2k/faker)
- Other services, to create the required objects.
- Special test utility & helper methods.
- Factories (We recommend using
factory_boy
) - Plain
Model.object.create()
calls, if factories are not yet introduced in the project.
Lets take a look at our service from the example:
from django.contrib.auth.models import User
from django.core.exceptions import ValidationError
from django_styleguide.payments.selectors import get_items_for_user
from django_styleguide.payments.models import Item, Payment
from django_styleguide.payments.tasks import charge_payment
def buy_item(
*,
item: Item,
user: User,
) -> Payment:
if item in get_items_for_user(user=user):
raise ValidationError(f'Item {item} already in {user} items.')
payment = Payment.objects.create(
item=item,
user=user,
successful=False
)
charge_payment.delay(payment_id=payment.id)
return payment
The service:
- Calls a selector for validation
- Creates ORM object
- Calls a task
Those are our tests:
from unittest.mock import patch
from django.test import TestCase
from django.contrib.auth.models import User
from django.core.exceptions import ValidationError
from django_styleguide.payments.services import buy_item
from django_styleguide.payments.models import Payment, Item
class BuyItemTests(TestCase):
def setUp(self):
self.user = User.objects.create_user(username='Test User')
self.item = Item.objects.create(
name='Test Item',
description='Test Item description',
price=10.15
)
self.service = buy_item
@patch('django_styleguide.payments.services.get_items_for_user')
def test_buying_item_that_is_already_bought_fails(self, get_items_for_user_mock):
"""
Since we already have tests for `get_items_for_user`,
we can safely mock it here and give it a proper return value.
"""
get_items_for_user_mock.return_value = [self.item]
with self.assertRaises(ValidationError):
self.service(user=self.user, item=self.item)
@patch('django_styleguide.payments.services.charge_payment.delay')
def test_buying_item_creates_a_payment_and_calls_charge_task(
self,
charge_payment_mock
):
self.assertEqual(0, Payment.objects.count())
payment = self.service(user=self.user, item=self.item)
self.assertEqual(1, Payment.objects.count())
self.assertEqual(payment, Payment.objects.first())
self.assertFalse(payment.successful)
charge_payment_mock.assert_called()
Testing selectors
Testing selectors is also an important part of every project.
Sometimes, the selectors can be really straightforward, and if we have to "cut corners", we can omit those tests. But it the end, it's important to cover our selectors too.
Lets take another look at our example selector:
from django.contrib.auth.models import User
from django_styleguide.common.types import QuerySetType
from django_styleguide.payments.models import Item
def get_items_for_user(
*,
user: User
) -> QuerySetType[Item]:
return Item.objects.filter(payments__user=user)
As you can see, this is a very straighforward & simple selector. We can easily cover that with 2 to 3 tests.
Here are the tests:
from django.test import TestCase
from django.contrib.auth.models import User
from django_styleguide.payments.selectors import get_items_for_user
from django_styleguide.payments.models import Item, Payment
class GetItemsForUserTests(TestCase):
def test_selector_returns_nothing_for_user_without_items(self):
"""
This is a "corner case" test.
We should get nothing if the user has no items.
"""
user = User.objects.create_user(username='Test User')
expected = []
result = list(get_items_for_user(user=user))
self.assertEqual(expected, result)
def test_selector_returns_item_for_user_with_that_item(self):
"""
This test will fail in case we change the model structure.
"""
user = User.objects.create_user(username='Test User')
item = Item.objects.create(
name='Test Item',
description='Test Item description',
price=10.15
)
Payment.objects.create(
item=item,
user=user
)
expected = [item]
result = list(get_items_for_user(user=user))
self.assertEqual(expected, result)
Inspiration
The way we do Django is inspired by the following things:
- The general idea for separation of concerns
- Boundaries by Gary Bernhardt
- Rails service objects