Django-Styleguide/README.md
2019-01-04 17:16:01 +02:00

719 lines
21 KiB
Markdown

# Django Styleguide
Django styleguide used in [HackSoft](https://hacksoft.io) projects.
Expect often updates as we discuss & decide upon different things.
**Table of contents:**
<!-- toc -->
- [Examples](#examples)
- [Overview](#overview)
- [Cookie Cutter](#cookie-cutter)
- [Models](#models)
* [Custom validation](#custom-validation)
* [Properties](#properties)
* [Methods](#methods)
* [Testing](#testing)
- [Services](#services)
- [Selectors](#selectors)
- [APIs & Serializers](#apis--serializers)
* [An example list API](#an-example-list-api)
* [An example detail API](#an-example-detail-api)
* [An example create API](#an-example-create-api)
* [An example update API](#an-example-update-api)
* [Nested serializers](#nested-serializers)
- [Exception Handling](#exception-handling)
* [Raising Exceptions in Services](#raising-exceptions-in-services)
* [Handle Exceptions in APIs](#handle-exceptions-in-apis)
- [Inspiration](#inspiration)
<!-- tocstop -->
## Examples
Most of the examples are taken from HackSoft's Learning Management System - Odin - <https://github.com/HackSoftware/Odin>
## Overview
**In Django, business logic should live in:**
* Model properties (with some exceptions).
* Model `clean` method for additional validations (with some exceptions).
* Services - functions, that take care of code written to the database.
* Selectors - functions, that take care of code taken from the database.
**In Django, business logic should not live in:**
* APIs and Views.
* Serializers and Forms.
* Form tags.
* Model `save` method.
**Model properties vs selectors:**
* If the model property spans multiple relations, it should better be a selector.
* If a model property, added to some list API, will cause `N + 1` problem that cannot be easily solved with `select_related`, it should better be a selector.
## Cookie Cutter
We recommend starting every new project with [`cookiecutter-django`](https://github.com/pydanny/cookiecutter-django)
Once this is done, depending on the context, remove everything that's not needed.
The usual list is:
* `allauth`
* templates
* Settings for things that are not yet required (always add settings when necessary)
## Models
Lets take a look at an example model:
```python
class Course(models.Model):
name = models.CharField(unique=True, max_length=255)
start_date = models.DateField()
end_date = models.DateField()
attendable = models.BooleanField(default=True)
students = models.ManyToManyField(
Student,
through='CourseAssignment',
through_fields=('course', 'student')
)
teachers = models.ManyToManyField(
Teacher,
through='CourseAssignment',
through_fields=('course', 'teacher')
)
slug_url = models.SlugField(unique=True)
repository = models.URLField(blank=True)
video_channel = models.URLField(blank=True, null=True)
facebook_group = models.URLField(blank=True, null=True)
logo = models.ImageField(blank=True, null=True)
public = models.BooleanField(default=True)
generate_certificates_delta = models.DurationField(default=timedelta(days=15))
objects = CourseManager()
def clean(self):
if self.start_date > self.end_date:
raise ValidationError("End date cannot be before start date!")
def save(self, *args, **kwargs):
self.full_clean()
return super().save(*args, **kwargs)
@property
def visible_teachers(self):
return self.teachers.filter(course_assignments__hidden=False).select_related('profile')
@property
def duration_in_weeks(self):
weeks = rrule.rrule(
rrule.WEEKLY,
dtstart=self.start_date,
until=self.end_date
)
return weeks.count()
@property
def has_started(self):
now = get_now()
return self.start_date <= now.date()
@property
def has_finished(self):
now = get_now()
return self.end_date <= now.date()
@property
def can_generate_certificates(self):
now = get_now()
return now.date() <= self.end_date + self.generate_certificates_delta
def __str__(self) -> str:
return self.name
```
Few things to spot here.
**Custom validation:**
* There's a custom model validation, defined in `clean`. This validation uses only model fields and no relations.
* This requires someone to call `full_clean()` on the model instance. The best place to do that is in the `save()` method of the model. Otherwise people can forget to call `full_clean()` in the respective service.
**Properties:**
* All properties, expect `visible_teachers` work directly on model fields.
* `visible_teachers` is a great candidate for a **selector**.
We have few general rules for custom validations & model properties / methods:
### Custom validation
* If the custom validation depends only on the **non-relational model fields**, define it in `clean` and call `full_clean` in `save`.
* If the custom validation is more complex & **spans relationships**, do it in the service that creates the model.
* It's OK to combine both `clean` and additional validation in the `service`.
### Properties
* If your model properties use only **non-relational model fields**, they are OK to stay as properties.
* If a property, such as `visible_teachers` starts **spanning relationships**, it's better to define a selector for that.
### Methods
* If you need a method that updates several fields at once (for example - `created_at` and `created_by` when something happens), you can create a model method that does the job.
* Every model method should be wrapped in a service. There should be no model method calling outside a service.
### Testing
Models need to be tested only if there's something additional to them - like custom validation or properties.
If we are strict & don't do custom validation / properties, then we can test the models without actually writing anything to the database => we are going to get quicker tests.
For example, if we want to test the custom validation, here's how a test could look like:
```python
from datetime import timedelta
from django.test import TestCase
from django.core.exceptions import ValidationError
from odin.common.utils import get_now
from odin.education.factories import CourseFactory
from odin.education.models import Course
class CourseTests(TestCase):
def test_course_end_date_cannot_be_before_start_date(self):
start_date = get_now()
end_date = get_now() - timedelta(days=1)
course_data = CourseFactory.build()
course_data['start_date'] = start_date
course_data['end_date'] = end_date
course = Course(**course_data)
with self.assertRaises(ValidationError):
course.full_clean()
```
There's a lot going on in this test:
* `get_now()` returns a timezone aware datetime.
* `CourseFactory.build()` will return a dictionary with all required fields for a course to exist.
* We replace the values for `start_date` and `end_date`.
* We assert that a validation error is going to be raised if we call `full_clean`.
* We are not hitting the database at all, since there's no need for that.
Here's how `CourseFactory` looks like:
```python
class CourseFactory(factory.DjangoModelFactory):
name = factory.Sequence(lambda n: f'{n}{faker.word()}')
start_date = factory.LazyAttribute(
lambda _: get_now()
)
end_date = factory.LazyAttribute(
lambda _: get_now() + timedelta(days=30)
)
slug_url = factory.Sequence(lambda n: f'{n}{faker.slug()}')
repository = factory.LazyAttribute(lambda _: faker.url())
video_channel = factory.LazyAttribute(lambda _: faker.url())
facebook_group = factory.LazyAttribute(lambda _: faker.url())
class Meta:
model = Course
@classmethod
def _build(cls, model_class, *args, **kwargs):
return kwargs
@classmethod
def _create(cls, model_class, *args, **kwargs):
return create_course(**kwargs)
```
## Services
A service is a simple function that:
* Lives in `your_app/services.py` module
* Takes keyword-only arguments
* Is type-annotated (even if you are not using `mypy` at the moment)
* Works mostly with models & other services and selectors
* Does business logic - from simple model creation to complex cross-cutting concerns, to calling external services & tasks.
An example service that creates an user:
```python
def create_user(
*,
email: str,
name: str
) -> User:
user = User(email=email)
user.full_clean()
user.save()
create_profile(user=user, name=name)
send_confirmation_email(user=user)
return user
```
As you can see, this service calls 2 other services - `create_profile` and `send_confirmation_email`
## Selectors
A selector is a simple function that:
* Lives in `your_app/selectors.py` module
* Takes keyword-only arguments
* Is type-annotated (even if you are not using `mypy` at the moment)
* Works mostly with models & other services and selectors
* Does business logic around fetching data from your database
An example selector that list users from the database:
```python
def get_users(*, fetched_by: User) -> Iterable[User]:
user_ids = get_visible_users_for(user=fetched_by)
query = Q(id__in=user_ids)
return User.objects.filter(query)
```
As you can see, `get_visible_users_for` is another selector.
## APIs & Serializers
When using services & selectors, all of your APIs should look simple & the same.
General rules for an API is:
* Do 1 API per operation. For CRUD on a model, this means 4 APIs.
* Use the most simple `APIView` or `GenericAPIView`
* Use services / selectors & don't do business logic in your API.
* Use serializers for fetching objects from params - passed either via `GET` or `POST`
* Serializer should be nested in the API and be named either `InputSerializer` or `OutputSerializer`
* `OutputSerializer` can subclass `ModelSerializer`, if needed.
* `InputSerializer` should always be a plain `Serializer`
* Reuse serializers as little as possible
* If you need a nested serializer, use the `inline_serializer` util
### An example list API
```python
class CourseListApi(SomeAuthenticationMixin, APIView):
class OutputSerializer(serializers.ModelSerializer):
class Meta:
model = Course
fields = ('id', 'name', 'start_date', 'end_date')
def get(self, request):
courses = get_courses()
data = self.OutputSerializer(courses, many=True)
return Response(data)
```
### An example detail API
```python
class CourseDetailApi(SomeAuthenticationMixin, APIView):
class OutputSerializer(serializers.ModelSerializer):
class Meta:
model = Course
fields = ('id', 'name', 'start_date', 'end_date')
def get(self, request, course_id):
course = get_course(id=course_id)
data = self.OutputSerializer(course)
return Response(data)
```
### An example create API
```python
class CourseCreateApi(SomeAuthenticationMixin, APIView):
class InputSerializer(serializers.Serializer):
name = serializers.CharField()
start_date = serializers.DateField()
end_date = serializers.DateField()
def post(self, request):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
create_course(**serializer.validated_data)
return Response(status=status.HTTP_201_CREATED)
```
### An example update API
```python
class CourseUpdateApi(SomeAuthenticationMixin, APIView):
class InputSerializer(serializers.Serializer):
name = serializers.CharField(required=False)
start_date = serializers.DateField(required=False)
end_date = serializers.DateField(required=False)
def post(self, request, course_id):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
update_course(course_id=course_id, **serializer.validated_data)
return Response(status=status.HTTP_200_OK)
```
### Nested serializers
In case you need to use a nested serializer, you can do the following thing:
```python
class Serializer(serializers.Serializer):
weeks = inline_serializer(many=True, fields={
'id': serializers.IntegerField(),
'number': serializers.IntegerField(),
})
```
The implementation of `inline_serializer` can be found in `utils.py` in this repo.
## Exception Handling
### Raising Exceptions in Services / Selectors
Now we have separation between our HTTP interface & the core logic of our application.
In order to keep this separation of concerns, our services and selectors must not use the `rest_framework.exception` classes because they are bounded with HTTP status codes.
Our services and selectors must use one of:
* [Python built-in exceptions](https://docs.python.org/3/library/exceptions.html)
* Exceptions from `django.core.exceptions`
* Custom exceptions, inheriting from the ones above.
Here is a good example of service that preforms some validation and raises `django.core.exceptions.ValidationError`:
```python
from django.core.exceptions import ValidationError
def create_topic(*, name: str, course: Course) -> Topic:
if course.end_date < timezone.now():
raise ValidationError('You can not create topics for course that has ended.')
topic = Topic.objects.create(name=name, course=course)
return topic
```
### Handle Exceptions in APIs
In order to transform the exceptions raised in the services or selectors, to a standard HTTP response, you need to catch the exception and raise something that the rest framework understands.
The best place to do this is in the `handle_exception` method of the `APIView`.
There you can map your exception to DRF exception.
Here is an example:
```python
from rest_framework import exceptions as rest_exceptions
from django.core.exceptions import ValidationError
class CourseCreateApi(SomeAuthenticationMixin, APIView):
expected_exceptions = {
ValidationError: rest_exceptions.ValidationError
}
class InputSerializer(serializers.Serializer):
...
def post(self, request):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
create_course(**serializer.validated_data)
return Response(status=status.HTTP_201_CREATED)
def handle_exception(self, exc):
if isinstance(exc, tuple(self.expected_exceptions.keys())):
drf_exception_class = self.expected_exceptions[exc.__class__]
drf_exception = drf_exception_class(get_error_message(exc))
return super().handle_exception(drf_exception)
return super().handle_exception(exc)
```
Here's the implementation of `get_error_message`:
```python
def get_first_matching_attr(obj, *attrs, default=None):
for attr in attrs:
if hasattr(obj, attr):
return getattr(obj, attr)
return default
def get_error_message(exc):
if hasattr(exc, 'message_dict'):
return exc.message_dict
error_msg = get_first_matching_attr(exc, 'message', 'messages')
if isinstance(error_msg, list):
error_msg = ', '.join(error_msg)
if error_msg is None:
error_msg = str(exc)
return error_msg
```
You can move this code to a mixin and use it in every API to prevent code duplication.
We call this `ExceptionHandlerMixin`. Here's a sample implementation from one of our projects:
```python
from rest_framework import exceptions as rest_exceptions
from django.core.exceptions import ValidationError
from project.common.utils import get_error_message
class ExceptionHandlerMixin:
"""
Mixin that transforms Django and Python exceptions into rest_framework ones.
without the mixin, they return 500 status code which is not desired.
"""
expected_exceptions = {
ValueError: rest_exceptions.ValidationError,
ValidationError: rest_exceptions.ValidationError,
PermissionError: rest_exceptions.PermissionDenied
}
def handle_exception(self, exc):
if isinstance(exc, tuple(self.expected_exceptions.keys())):
drf_exception_class = self.expected_exceptions[exc.__class__]
drf_exception = drf_exception_class(get_error_message(exc))
return super().handle_exception(drf_exception)
return super().handle_exception(exc)
```
Having this mixin in mind, our API can be written like that:
```python
class CourseCreateApi(
SomeAuthenticationMixin,
ExceptionHandlerMixin,
APIView
):
class InputSerializer(serializers.Serializer):
...
def post(self, request):
serializer = self.InputSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
create_course(**serializer.validated_data)
return Response(status=status.HTTP_201_CREATED)
```
All of code above can be found in `utils.py` in this repository.
## Testing
In our Django projects, we split our tests depending on the type of code they represent.
Meaning, we generally have tests for models, services, selectors & APIs / views.
The file structure usually looks like this:
```
project_name
├── app_name
│   ├── __init__.py
│   └── tests
│   ├── __init__.py
│   ├── models
│   │   └── test_some_model_name.py
│   ├── selectors
│   │   └── test_some_selector_name.pyy
│   └── services
│   ├── __init__.py
│   └── test_some_service_name.py
└── __init__.py
```
### Naming conventions
We follow 2 general naming conventions:
* The test file names should be `test_the_name_of_the_thing_that_is_tested.py`
* The test case shoud be `class TheNameOfTheThingThatIsTestedTests(TestCase):`
For example if we have:
```python
def a_very_neat_service(*args, **kwargs):
pass
```
We are going to have the following for file name:
```
project_name/app_name/tests/services/test_a_very_neat_service.py
```
And the following for test case:
```python
class AVeryNeatServiceTests(TestCase):
pass
```
For tests of utility functions, we follow a similiar pattern.
For example, if we have `project_name/common/utils.py`, then we are going to have `project_name/common/tests/test_utils.py` and place different test cases in that file.
If we are to split the `utils.py` module into submodules, the same will happen for the tests:
* `project_name/common/utils/files.py`
* `project_name/common/tests/utils/test_files.py`
We try to match the stucture of our modules with the structure of their respective tests.
### Services
Service tests are the most important tests in the project. Usually, those are the heavier tests with most lines of code.
General rule of thumb for service tests:
* The tests should cover the business logic behind the services in an exhaustive manner.
* The tests should hit the database - creating & reading from it.
* The tests should mock async task calls & everything that goes outside the project.
When creating the required state for a given test, one can use a combination of:
* Fakes (We recommend using <https://github.com/joke2k/faker>)
* Other services, to create the required objects.
* Special test utility & helper methods.
* Factories (We recommend using [`factory_boy`](https://factoryboy.readthedocs.io/en/latest/orms.html))
Lets see an example.
This is our service:
```python
def buy_item(
*,
item: Item,
user: User,
) -> Payment:
if item in get_items_for_user(user=user):
raise ValidationError(f'Item {item} already in {user} items.')
payment = Payment.objects.create(
item=item,
user=user,
successful=False
)
charge_payment.delay(payment_id=payment.id)
return payment
```
The service:
* Calls a selector for validation
* Create ORM object
* Calls a task
Those are our tests:
```python
class BuyItemTests(TestCase):
def setUp(self):
self.user = UserFactory()
self.item = ItemFactory()
self.service = buy_item
@patch('project_name.app_name.services.payments.get_items_for_user')
def test_buying_item_that_is_already_bought_fails(self, get_items_for_user_mock):
"""
Since we already have tests for `get_items_for_user`,
we can safely mock it here and give it a proper return value.
"""
get_items_for_user_mock.return_value = [self.item]
with self.assertRaises(ValidationError):
self.service(user=self.user, item=self.item)
@patch('project_name.app_name.services.payments.charge_payment.delay')
def test_buying_item_creates_a_payment_and_calls_charge_task(
self,
charge_payment_mock
):
self.assetEqual(0, Payment.objects.count())
payment = self.service(user=self.user, item=self.item)
self.assetEqual(1, Payment.objects.count())
self.assertEqual(payment, Payment.objects.first())
self.assertFalse(payment.successful)
self.assert_called(charge_payment_mock)
```
## Inspiration
The way we do Django is inspired by the following things:
* The general idea for **separation of concerns**
* [Boundaries by Gary Bernhardt](https://www.youtube.com/watch?v=yTkzNHF6rMs)
* Rails service objects