spaCy/spacy/cli/pretrain.py

392 lines
14 KiB
Python
Raw Permalink Normal View History

💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
# coding: utf8
from __future__ import print_function, unicode_literals
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
import plac
import random
import numpy
import time
import re
2018-11-16 01:45:36 +03:00
from collections import Counter
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
from pathlib import Path
2018-11-29 15:36:43 +03:00
from thinc.v2v import Affine, Maxout
from thinc.misc import LayerNorm as LN
from thinc.neural.util import prefer_gpu, get_array_module
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
from wasabi import Printer
import srsly
from ..errors import Errors
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
from ..tokens import Doc
from ..attrs import ID, HEAD
2019-02-08 16:14:49 +03:00
from .._ml import Tok2Vec, flatten, chain, create_default_optimizer
💫 Better support for semi-supervised learning (#3035) The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting Support semi-supervised learning in spacy train One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing. Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning. Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective. Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage: python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze Implement rehearsal methods for pipeline components The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows: Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model. Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details. Implement rehearsal updates for tagger Implement rehearsal updates for text categoriz
2018-12-10 18:25:33 +03:00
from .._ml import masked_language_model
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
from .. import util
from .train import _load_pretrained_tok2vec
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
@plac.annotations(
2019-06-20 11:36:38 +03:00
texts_loc=(
"Path to JSONL file with raw texts to learn from, with text provided as the key 'text' or tokens as the "
"key 'tokens'",
"positional",
None,
str,
),
vectors_model=("Name or path to spaCy model with vectors to learn from"),
output_dir=("Directory to write models to on each epoch", "positional", None, str),
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
width=("Width of CNN layers", "option", "cw", int),
depth=("Depth of CNN layers", "option", "cd", int),
embed_rows=("Number of embedding rows", "option", "er", int),
2019-06-20 11:36:38 +03:00
loss_func=(
"Loss function to use for the objective. Either 'L2' or 'cosine'",
"option",
"L",
str,
),
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
use_vectors=("Whether to use the static vectors as input features", "flag", "uv"),
dropout=("Dropout rate", "option", "d", float),
batch_size=("Number of words per training batch", "option", "bs", int),
2019-06-20 11:36:38 +03:00
max_length=(
"Max words per example. Longer examples are discarded",
"option",
"xw",
int,
),
min_length=(
"Min words per example. Shorter examples are discarded",
"option",
"nw",
int,
),
seed=("Seed for random number generators", "option", "s", int),
Add save after `--save-every` batches for `spacy pretrain` (#3510) <!--- Provide a general summary of your changes in the title. --> When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches. ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> To test... Save this file to `sample_sents.jsonl` ``` {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} ``` Then run `--save-every 2` when pretraining. ```bash spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2 ``` And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name. At the end the training, you should see these files (`ls here/`): ```bash config.json model2.bin model5.bin model8.bin log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin model0.bin model3.bin model6.bin model9.bin model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin model1.bin model4.bin model7.bin model1.temp.bin model4.temp.bin model7.temp.bin ``` ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> This is a new feature to `spacy pretrain`. 🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).** ``` Processing matcher.pyx [Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx' Traceback (most recent call last): File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module> run(args.root) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run process(base, filename, db) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp") File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd func(*args) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx raise Exception("Cython failed") Exception: Cython failed Traceback (most recent call last): File "setup.py", line 276, in <module> setup_package() File "setup.py", line 209, in setup_package generate_cython(root, "spacy") File "setup.py", line 132, in generate_cython raise RuntimeError("Running cythonize failed") RuntimeError: Running cythonize failed ``` Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm` ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-04-22 15:10:16 +03:00
n_iter=("Number of iterations to pretrain", "option", "i", int),
n_save_every=("Save model every X batches.", "option", "se", int),
init_tok2vec=(
"Path to pretrained weights for the token-to-vector parts of the models. See 'spacy pretrain'. Experimental.",
"option",
"t2v",
Path,
),
epoch_start=(
"The epoch to start counting at. Only relevant when using '--init-tok2vec' and the given weight file has been "
"renamed. Prevents unintended overwriting of existing weight files.",
"option",
"es",
int
),
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
)
def pretrain(
texts_loc,
vectors_model,
output_dir,
width=96,
depth=4,
embed_rows=2000,
loss_func="cosine",
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
use_vectors=False,
dropout=0.2,
Add save after `--save-every` batches for `spacy pretrain` (#3510) <!--- Provide a general summary of your changes in the title. --> When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches. ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> To test... Save this file to `sample_sents.jsonl` ``` {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} ``` Then run `--save-every 2` when pretraining. ```bash spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2 ``` And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name. At the end the training, you should see these files (`ls here/`): ```bash config.json model2.bin model5.bin model8.bin log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin model0.bin model3.bin model6.bin model9.bin model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin model1.bin model4.bin model7.bin model1.temp.bin model4.temp.bin model7.temp.bin ``` ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> This is a new feature to `spacy pretrain`. 🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).** ``` Processing matcher.pyx [Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx' Traceback (most recent call last): File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module> run(args.root) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run process(base, filename, db) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp") File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd func(*args) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx raise Exception("Cython failed") Exception: Cython failed Traceback (most recent call last): File "setup.py", line 276, in <module> setup_package() File "setup.py", line 209, in setup_package generate_cython(root, "spacy") File "setup.py", line 132, in generate_cython raise RuntimeError("Running cythonize failed") RuntimeError: Running cythonize failed ``` Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm` ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-04-22 15:10:16 +03:00
n_iter=1000,
batch_size=3000,
max_length=500,
min_length=5,
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
seed=0,
Add save after `--save-every` batches for `spacy pretrain` (#3510) <!--- Provide a general summary of your changes in the title. --> When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches. ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> To test... Save this file to `sample_sents.jsonl` ``` {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} ``` Then run `--save-every 2` when pretraining. ```bash spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2 ``` And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name. At the end the training, you should see these files (`ls here/`): ```bash config.json model2.bin model5.bin model8.bin log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin model0.bin model3.bin model6.bin model9.bin model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin model1.bin model4.bin model7.bin model1.temp.bin model4.temp.bin model7.temp.bin ``` ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> This is a new feature to `spacy pretrain`. 🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).** ``` Processing matcher.pyx [Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx' Traceback (most recent call last): File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module> run(args.root) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run process(base, filename, db) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp") File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd func(*args) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx raise Exception("Cython failed") Exception: Cython failed Traceback (most recent call last): File "setup.py", line 276, in <module> setup_package() File "setup.py", line 209, in setup_package generate_cython(root, "spacy") File "setup.py", line 132, in generate_cython raise RuntimeError("Running cythonize failed") RuntimeError: Running cythonize failed ``` Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm` ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-04-22 15:10:16 +03:00
n_save_every=None,
init_tok2vec=None,
epoch_start=None,
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
):
"""
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
using an approximate language-modelling objective. Specifically, we load
pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict
vectors which match the pre-trained ones. The weights are saved to a directory
after each epoch. You can then pass a path to one of these pre-trained weights
files to the 'spacy train' command.
This technique may be especially helpful if you have little labelled data.
However, it's still quite experimental, so your mileage may vary.
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
To load the weights back in during 'spacy train', you need to ensure
all settings are the same between pretraining and training. The API and
errors around this need some improvement.
"""
config = dict(locals())
for key in config:
if isinstance(config[key], Path):
config[key] = str(config[key])
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
msg = Printer()
util.fix_random_seed(seed)
has_gpu = prefer_gpu()
msg.info("Using GPU" if has_gpu else "Not using GPU")
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
msg.good("Created output directory")
srsly.write_json(output_dir / "config.json", config)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
msg.good("Saved settings to config.json")
# Load texts from file or stdin
if texts_loc != "-": # reading from a file
texts_loc = Path(texts_loc)
if not texts_loc.exists():
msg.fail("Input text file doesn't exist", texts_loc, exits=1)
with msg.loading("Loading input texts..."):
texts = list(srsly.read_jsonl(texts_loc))
if not texts:
msg.fail("Input file is empty", texts_loc, exits=1)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
msg.good("Loaded input texts")
random.shuffle(texts)
else: # reading from stdin
msg.text("Reading input text from stdin...")
texts = srsly.read_jsonl("-")
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
with msg.loading("Loading model '{}'...".format(vectors_model)):
nlp = util.load_model(vectors_model)
msg.good("Loaded model '{}'".format(vectors_model))
pretrained_vectors = None if not use_vectors else nlp.vocab.vectors.name
model = create_pretraining_model(
nlp,
Tok2Vec(
width,
embed_rows,
conv_depth=depth,
pretrained_vectors=pretrained_vectors,
bilstm_depth=0, # Requires PyTorch. Experimental.
cnn_maxout_pieces=3, # You can try setting this higher
2018-12-18 21:19:26 +03:00
subword_features=True, # Set to False for Chinese etc
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
),
2018-12-18 21:19:26 +03:00
)
# Load in pre-trained weights
if init_tok2vec is not None:
components = _load_pretrained_tok2vec(nlp, init_tok2vec)
msg.text("Loaded pretrained tok2vec for: {}".format(components))
# Parse the epoch number from the given weight file
model_name = re.search(r"model\d+\.bin", str(init_tok2vec))
if model_name:
# Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
epoch_start = int(model_name.group(0)[5:][:-4]) + 1
else:
if not epoch_start:
msg.fail(
"You have to use the '--epoch-start' argument when using a renamed weight file for "
"'--init-tok2vec'", exits=True
)
elif epoch_start < 0:
msg.fail(
"The argument '--epoch-start' has to be greater or equal to 0. '%d' is invalid" % epoch_start,
exits=True
)
else:
# Without '--init-tok2vec' the '--epoch-start' argument is ignored
epoch_start = 0
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
optimizer = create_default_optimizer(model.ops)
2018-12-18 21:19:26 +03:00
tracker = ProgressTracker(frequency=10000)
msg.divider("Pre-training tok2vec layer - starting at epoch %d" % epoch_start)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
Add save after `--save-every` batches for `spacy pretrain` (#3510) <!--- Provide a general summary of your changes in the title. --> When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches. ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> To test... Save this file to `sample_sents.jsonl` ``` {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} ``` Then run `--save-every 2` when pretraining. ```bash spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2 ``` And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name. At the end the training, you should see these files (`ls here/`): ```bash config.json model2.bin model5.bin model8.bin log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin model0.bin model3.bin model6.bin model9.bin model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin model1.bin model4.bin model7.bin model1.temp.bin model4.temp.bin model7.temp.bin ``` ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> This is a new feature to `spacy pretrain`. 🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).** ``` Processing matcher.pyx [Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx' Traceback (most recent call last): File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module> run(args.root) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run process(base, filename, db) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp") File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd func(*args) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx raise Exception("Cython failed") Exception: Cython failed Traceback (most recent call last): File "setup.py", line 276, in <module> setup_package() File "setup.py", line 209, in setup_package generate_cython(root, "spacy") File "setup.py", line 132, in generate_cython raise RuntimeError("Running cythonize failed") RuntimeError: Running cythonize failed ``` Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm` ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-04-22 15:10:16 +03:00
def _save_model(epoch, is_temp=False):
is_temp_str = ".temp" if is_temp else ""
with model.use_params(optimizer.averages):
with (output_dir / ("model%d%s.bin" % (epoch, is_temp_str))).open(
"wb"
) as file_:
file_.write(model.tok2vec.to_bytes())
log = {
"nr_word": tracker.nr_word,
"loss": tracker.loss,
"epoch_loss": tracker.epoch_loss,
"epoch": epoch,
}
with (output_dir / "log.jsonl").open("a") as file_:
file_.write(srsly.json_dumps(log) + "\n")
skip_counter = 0
for epoch in range(epoch_start, n_iter + epoch_start):
Add save after `--save-every` batches for `spacy pretrain` (#3510) <!--- Provide a general summary of your changes in the title. --> When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches. ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> To test... Save this file to `sample_sents.jsonl` ``` {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} ``` Then run `--save-every 2` when pretraining. ```bash spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2 ``` And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name. At the end the training, you should see these files (`ls here/`): ```bash config.json model2.bin model5.bin model8.bin log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin model0.bin model3.bin model6.bin model9.bin model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin model1.bin model4.bin model7.bin model1.temp.bin model4.temp.bin model7.temp.bin ``` ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> This is a new feature to `spacy pretrain`. 🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).** ``` Processing matcher.pyx [Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx' Traceback (most recent call last): File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module> run(args.root) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run process(base, filename, db) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp") File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd func(*args) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx raise Exception("Cython failed") Exception: Cython failed Traceback (most recent call last): File "setup.py", line 276, in <module> setup_package() File "setup.py", line 209, in setup_package generate_cython(root, "spacy") File "setup.py", line 132, in generate_cython raise RuntimeError("Running cythonize failed") RuntimeError: Running cythonize failed ``` Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm` ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-04-22 15:10:16 +03:00
for batch_id, batch in enumerate(
util.minibatch_by_words(((text, None) for text in texts), size=batch_size)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
):
docs, count = make_docs(
nlp,
[text for (text, _) in batch],
max_length=max_length,
min_length=min_length,
)
skip_counter += count
2019-04-01 13:11:27 +03:00
loss = make_update(
model, docs, optimizer, objective=loss_func, drop=dropout
)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
progress = tracker.update(epoch, loss, docs)
if progress:
msg.row(progress, **row_settings)
if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 7:
break
Add save after `--save-every` batches for `spacy pretrain` (#3510) <!--- Provide a general summary of your changes in the title. --> When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches. ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> To test... Save this file to `sample_sents.jsonl` ``` {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} {"text": "hello there."} ``` Then run `--save-every 2` when pretraining. ```bash spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2 ``` And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name. At the end the training, you should see these files (`ls here/`): ```bash config.json model2.bin model5.bin model8.bin log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin model0.bin model3.bin model6.bin model9.bin model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin model1.bin model4.bin model7.bin model1.temp.bin model4.temp.bin model7.temp.bin ``` ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> This is a new feature to `spacy pretrain`. 🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).** ``` Processing matcher.pyx [Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx' Traceback (most recent call last): File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module> run(args.root) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run process(base, filename, db) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp") File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd func(*args) File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx raise Exception("Cython failed") Exception: Cython failed Traceback (most recent call last): File "setup.py", line 276, in <module> setup_package() File "setup.py", line 209, in setup_package generate_cython(root, "spacy") File "setup.py", line 132, in generate_cython raise RuntimeError("Running cythonize failed") RuntimeError: Running cythonize failed ``` Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm` ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2019-04-22 15:10:16 +03:00
if n_save_every and (batch_id % n_save_every == 0):
_save_model(epoch, is_temp=True)
_save_model(epoch)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
tracker.epoch_loss = 0.0
if texts_loc != "-":
# Reshuffle the texts if texts were loaded from a file
random.shuffle(texts)
if skip_counter > 0:
msg.warn("Skipped {count} empty values".format(count=str(skip_counter)))
msg.good("Successfully finished pretrain")
2019-02-08 16:14:49 +03:00
def make_update(model, docs, optimizer, drop=0.0, objective="L2"):
"""Perform an update over a single batch of documents.
docs (iterable): A batch of `Doc` objects.
drop (float): The droput rate.
optimizer (callable): An optimizer.
RETURNS loss: A float for the loss.
"""
predictions, backprop = model.begin_update(docs, drop=drop)
2018-12-18 21:19:26 +03:00
loss, gradients = get_vectors_loss(model.ops, docs, predictions, objective)
backprop(gradients, sgd=optimizer)
# Don't want to return a cupy object here
# The gradients are modified in-place by the BERT MLM,
# so we get an accurate loss
2018-12-18 21:19:26 +03:00
return float(loss)
def make_docs(nlp, batch, min_length, max_length):
docs = []
skip_count = 0
for record in batch:
if not isinstance(record, dict):
raise TypeError(Errors.E137.format(type=type(record), line=record))
if "tokens" in record:
words = record["tokens"]
if not words:
skip_count += 1
continue
doc = Doc(nlp.vocab, words=words)
elif "text" in record:
text = record["text"]
if not text:
skip_count += 1
continue
doc = nlp.make_doc(text)
else:
raise ValueError(Errors.E138.format(text=record))
if "heads" in record:
heads = record["heads"]
heads = numpy.asarray(heads, dtype="uint64")
heads = heads.reshape((len(doc), 1))
doc = doc.from_array([HEAD], heads)
2018-11-30 23:58:18 +03:00
if len(doc) >= min_length and len(doc) < max_length:
docs.append(doc)
return docs, skip_count
2019-02-08 16:14:49 +03:00
def get_vectors_loss(ops, docs, prediction, objective="L2"):
"""Compute a mean-squared error loss between the documents' vectors and
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
the prediction.
Note that this is ripe for customization! We could compute the vectors
in some other word, e.g. with an LSTM language model, or use some other
type of objective.
"""
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids]
2019-02-08 16:14:49 +03:00
if objective == "L2":
d_target = prediction - target
loss = (d_target ** 2).sum()
elif objective == "cosine":
loss, d_target = get_cossim_loss(prediction, target)
else:
2019-06-20 11:35:51 +03:00
raise ValueError(Errors.E142.format(loss_func=objective))
return loss, d_target
def get_cossim_loss(yh, y):
# Add a small constant to avoid 0 vectors
yh = yh + 1e-8
y = y + 1e-8
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
xp = get_array_module(yh)
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
mul_norms = norm_yh * norm_y
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
2019-04-01 13:11:27 +03:00
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
loss = xp.abs(cosine - 1).sum()
return loss, -d_yh
2018-12-18 21:19:26 +03:00
def create_pretraining_model(nlp, tok2vec):
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
"""Define a network for the pretraining. We simply add an output layer onto
the tok2vec input model. The tok2vec input model needs to be a model that
takes a batch of Doc objects (as a list), and returns a list of arrays.
Each array in the output needs to have one row per token in the doc.
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
"""
output_size = nlp.vocab.vectors.data.shape[1]
2018-11-29 15:36:43 +03:00
output_layer = chain(
2019-02-08 16:14:49 +03:00
LN(Maxout(300, pieces=3)), Affine(output_size, drop_factor=0.0)
2018-11-29 15:36:43 +03:00
)
2018-11-16 02:34:35 +03:00
# This is annoying, but the parser etc have the flatten step after
# the tok2vec. To load the weights in cleanly, we need to match
# the shape of the models' components exactly. So what we cann
# "tok2vec" has to be the same set of processes as what the components do.
tok2vec = chain(tok2vec, flatten)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
model = chain(tok2vec, output_layer)
model = masked_language_model(nlp.vocab, model)
2018-11-16 02:34:35 +03:00
model.tok2vec = tok2vec
model.output_layer = output_layer
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
model.begin_training([nlp.make_doc("Give it a doc to infer shapes")])
return model
class ProgressTracker(object):
2018-11-29 15:36:43 +03:00
def __init__(self, frequency=1000000):
self.loss = 0.0
self.prev_loss = 0.0
self.nr_word = 0
self.words_per_epoch = Counter()
self.frequency = frequency
self.last_time = time.time()
self.last_update = 0
2018-11-29 15:36:43 +03:00
self.epoch_loss = 0.0
def update(self, epoch, loss, docs):
self.loss += loss
2018-11-29 15:36:43 +03:00
self.epoch_loss += loss
words_in_batch = sum(len(doc) for doc in docs)
self.words_per_epoch[epoch] += words_in_batch
self.nr_word += words_in_batch
words_since_update = self.nr_word - self.last_update
if words_since_update >= self.frequency:
wps = words_since_update / (time.time() - self.last_time)
self.last_update = self.nr_word
self.last_time = time.time()
loss_per_word = self.loss - self.prev_loss
status = (
epoch,
self.nr_word,
_smart_round(self.loss, width=10),
_smart_round(loss_per_word, width=6),
int(wps),
)
self.prev_loss = float(self.loss)
return status
else:
return None
def _smart_round(figure, width=10, max_decimal=4):
"""Round large numbers as integers, smaller numbers as decimals."""
n_digits = len(str(int(figure)))
n_decimal = width - (n_digits + 1)
if n_decimal <= 1:
return str(int(figure))
else:
n_decimal = min(n_decimal, max_decimal)
format_str = "%." + str(n_decimal) + "f"
return format_str % figure