spaCy/examples/training/conllu.py

244 lines
8.4 KiB
Python
Raw Normal View History

2018-02-21 15:53:59 +03:00
'''Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
.conllu format for development data, allowing the official scorer to be used.
'''
from __future__ import unicode_literals
import plac
import tqdm
import re
import spacy
import spacy.util
from spacy.gold import GoldParse, minibatch
from spacy.syntax.nonproj import projectivize
from collections import Counter
from timeit import default_timer as timer
from spacy._align import align
def prevent_bad_sentences(doc):
'''This is an example pipeline component for fixing sentence segmentation
mistakes. The component sets is_sent_start to False, which means the
parser will be prevented from making a sentence boundary there. The
rules here aren't necessarily a good idea.'''
for token in doc[1:]:
if token.nbor(-1).text == ',':
token.is_sent_start = False
elif not token.nbor(-1).whitespace_:
token.is_sent_start = False
elif not token.nbor(-1).is_punct:
token.is_sent_start = False
return doc
def load_model(lang):
'''This shows how to adjust the tokenization rules, to special-case
for ways the CoNLLU tokenization differs. We need to get the tokenizer
accuracy high on the various treebanks in order to do well. If we don't
align on a content word, all dependencies to and from that word will
be marked as incorrect.
'''
English = spacy.util.get_lang_class(lang)
English.Defaults.infixes += ('(?<=[^-\d])[+\-\*^](?=[^-\d])',)
English.Defaults.infixes += ('(?<=[^-])[+\-\*^](?=[^-\d])',)
English.Defaults.infixes += ('(?<=[^-\d])[+\-\*^](?=[^-])',)
English.Defaults.token_match = re.compile(r'=+').match
nlp = English()
nlp.tokenizer.add_special_case('***', [{'ORTH': '***'}])
nlp.tokenizer.add_special_case("):", [{'ORTH': ")"}, {"ORTH": ":"}])
nlp.tokenizer.add_special_case("and/or", [{'ORTH': "and"}, {"ORTH": "/"}, {"ORTH": "or"}])
nlp.tokenizer.add_special_case("non-Microsoft", [{'ORTH': "non-Microsoft"}])
nlp.tokenizer.add_special_case("mis-matches", [{'ORTH': "mis-matches"}])
nlp.tokenizer.add_special_case("X.", [{'ORTH': "X"}, {"ORTH": "."}])
nlp.tokenizer.add_special_case("b/c", [{'ORTH': "b/c"}])
return nlp
def get_token_acc(docs, golds):
'''Quick function to evaluate tokenization accuracy.'''
miss = 0
hit = 0
for doc, gold in zip(docs, golds):
for i in range(len(doc)):
token = doc[i]
align = gold.words[i]
if align == None:
miss += 1
else:
hit += 1
return miss, hit
def golds_to_gold_tuples(docs, golds):
'''Get out the annoying 'tuples' format used by begin_training, given the
GoldParse objects.'''
tuples = []
for doc, gold in zip(docs, golds):
text = doc.text
ids, words, tags, heads, labels, iob = zip(*gold.orig_annot)
sents = [((ids, words, tags, heads, labels, iob), [])]
tuples.append((text, sents))
return tuples
def split_text(text):
paragraphs = text.split('\n\n')
paragraphs = [par.strip().replace('\n', ' ') for par in paragraphs]
return paragraphs
def read_conllu(file_):
docs = []
doc = []
sent = []
for line in file_:
if line.startswith('# newdoc'):
if doc:
docs.append(doc)
doc = []
elif line.startswith('#'):
continue
elif not line.strip():
if sent:
doc.append(sent)
sent = []
else:
sent.append(line.strip().split())
if sent:
doc.append(sent)
if doc:
docs.append(doc)
return docs
def get_docs(nlp, text):
paragraphs = split_text(text)
docs = [nlp.make_doc(par) for par in paragraphs]
return docs
def get_golds(docs, conllu):
# sd is spacy doc; cd is conllu doc
# cs is conllu sent, ct is conllu token
golds = []
for sd, cd in zip(docs, conllu):
words = []
tags = []
heads = []
deps = []
for cs in cd:
for id_, word, lemma, pos, tag, morph, head, dep, _1, _2 in cs:
if '.' in id_:
continue
i = len(words)
id_ = int(id_)-1
head = int(head)-1 if head != '0' else id_
head_dist = head - id_
words.append(word)
tags.append(tag)
heads.append(i+head_dist)
deps.append('ROOT' if dep == 'root' else dep)
heads, deps = projectivize(heads, deps)
entities = ['-'] * len(words)
gold = GoldParse(sd, words=words, tags=tags, heads=heads, deps=deps,
entities=entities)
golds.append(gold)
return golds
def parse_dev_data(nlp, text_loc, conllu_loc):
with open(text_loc) as file_:
docs = get_docs(nlp, file_.read())
with open(conllu_loc) as file_:
conllu_dev = read_conllu(file_)
golds = list(get_golds(docs, conllu_dev))
scorer = nlp.evaluate(zip(docs, golds))
return docs, scorer
2018-02-21 16:46:54 +03:00
def print_progress(itn, losses, scorer):
2018-02-21 15:53:59 +03:00
scores = {}
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
'ents_p', 'ents_r', 'ents_f', 'cpu_wps', 'gpu_wps']:
scores[col] = 0.0
scores['dep_loss'] = losses.get('parser', 0.0)
scores['ner_loss'] = losses.get('ner', 0.0)
scores['tag_loss'] = losses.get('tagger', 0.0)
scores.update(scorer.scores)
tpl = '\t'.join((
'{:d}',
'{dep_loss:.3f}',
'{ner_loss:.3f}',
'{uas:.3f}',
'{ents_p:.3f}',
'{ents_r:.3f}',
'{ents_f:.3f}',
'{tags_acc:.3f}',
'{token_acc:.3f}',
))
print(tpl.format(itn, **scores))
def print_conllu(docs, file_):
for i, doc in enumerate(docs):
file_.write("# newdoc id = {i}\n".format(i=i))
for j, sent in enumerate(doc.sents):
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
file_.write("# text = {text}\n".format(text=sent.text))
for k, t in enumerate(sent):
if t.head.i == t.i:
head = 0
else:
head = k + (t.head.i - t.i) + 1
fields = [str(k+1), t.text, t.lemma_, t.pos_, t.tag_, '_', str(head), t.dep_, '_', '_']
file_.write('\t'.join(fields) + '\n')
file_.write('\n')
def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
output_loc):
with open(conllu_train_loc) as file_:
conllu_train = read_conllu(file_)
nlp = load_model(spacy_model)
print("Get docs")
with open(text_train_loc) as file_:
docs = get_docs(nlp, file_.read())
golds = list(get_golds(docs, conllu_train))
print("Create parser")
nlp.add_pipe(nlp.create_pipe('parser'))
nlp.add_pipe(nlp.create_pipe('tagger'))
for gold in golds:
for tag in gold.tags:
if tag is not None:
nlp.tagger.add_label(tag)
optimizer = nlp.begin_training(lambda: golds_to_gold_tuples(docs, golds))
# Replace labels that didn't make the frequency cutoff
actions = set(nlp.parser.labels)
label_set = set([act.split('-')[1] for act in actions if '-' in act])
for gold in golds:
for i, label in enumerate(gold.labels):
if label is not None and label not in label_set:
gold.labels[i] = label.split('||')[0]
2018-02-21 15:53:59 +03:00
n_train_words = sum(len(doc) for doc in docs)
print(n_train_words)
print("Begin training")
for i in range(10):
with open(text_train_loc) as file_:
docs = get_docs(nlp, file_.read())
docs = docs[:len(golds)]
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
losses = {}
for batch in minibatch(list(zip(docs, golds)), size=1):
if not batch:
continue
batch_docs, batch_gold = zip(*batch)
nlp.update(batch_docs, batch_gold, sgd=optimizer,
drop=0.2, losses=losses)
pbar.update(sum(len(doc) for doc in batch_docs))
with nlp.use_params(optimizer.averages):
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc)
2018-02-21 16:46:54 +03:00
print_progress(i, losses, scorer)
2018-02-21 15:53:59 +03:00
with open(output_loc, 'w') as file_:
print_conllu(dev_docs, file_)
if __name__ == '__main__':
plac.call(main)